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Abstract: In recent years, the development of deep learning has brought great convenience to the work
of target detection, semantic segmentation, and object recognition. In the field of infrared weak small
target detection (e.g., surveillance and reconnaissance), it is not only necessary to accurately detect
targets but also to perform precise segmentation and sub-pixel-level centroid localization for infrared
small targets with low signal-to-noise ratio and weak texture information. To address these issues,
we propose UCDnet (Double U-shaped Segmentation Network Cascade Centroid Map Prediction
for Infrared Weak Small Target Detection) in this paper, which completes “end-to-end” training and
prediction by cascading the centroid localization subnet with the semantic segmentation subnet. We
propose the novel double U-shaped feature extraction network for point target fine segmentation.
We propose the concept and method of centroid map prediction for point target localization and
design the corresponding Com loss function, together with a new centroid localization evaluation
metrics. The experiments show that ours achieves target detection, semantic segmentation, and
sub-pixel-level centroid localization. When the target signal-to-noise ratio is greater than 0.4, the IoU
of our semantic segmentation results can reach 0.9186, and the average centroid localization precision
can reach 0.3371 pixels. On our simulated dataset of infrared weak small targets, the algorithm we
proposed performs better than existing state-of-the-art networks in terms of semantic segmentation
and centroid localization.

Keywords: infrared weak small target; target detection; semantic segmentation; centroid localization;
sub-pixel-level localization

1. Introduction

Infrared small target detection technology, as the main technical support for surveil-
lance and reconnaissance [1,2], precise localization [3–5], and attitude estimation [6], has
been widely applied in various fields. In the field of surveillance and reconnaissance, such
as drone tracking and search and rescue operations, not only the rough detection of infrared
targets is required but also precise segmentation and centroid localization of the targets.
This is essential for effective prediction of target motion trajectories, thereby enabling early
warning and appropriate measures. In the field of the Internet of Things (IoT), such as
smart transportation and smart agriculture, precise detection is a prerequisite for achieving
perception and decision-making. In the aforementioned application scenarios, targets often
occupy a small number of pixels in the image and suffer from issues such as texture loss
and low signal-to-noise ratio.
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Challenges:
On one hand, as the distance between the imaging device and the target increases, the

size of the target in the image becomes smaller, and the target appears in a faint and weak
state. Existing semantic segmentation algorithms perform well in segmenting large-sized
or clearly bounded targets, but they show limited effectiveness in segmenting infrared
small targets with low signal-to-noise ratio and weak texture information.

On the other hand, existing infrared weak small target detection methods focus
on bounding box detection and pay less attention to the problem of accurate centroid
localization of these targets. When the infrared small targets have irregular shapes and
undergo continuous changes in posture, the center of the bounding box cannot effectively
represent the centroid of the target. Existing deep learning-based methods for predicting
target centroids are still limited to pixel-level predictions, only able to predict which pixel
the centroid belongs to in the image. In certain specific scenarios, a deviation of one pixel
in predicting the target centroid can result in several meters of actual distance, and this
deviation may be further amplified as the process continues.

Existing Methods:
To date, there are various traditional methods for infrared small target detection.

Common approaches include: (1) filter-based methods [7–9], (2) methods based on the
human visual system [10–14], and (3) methods based on low-rank sparse recovery [15,16].
However, filter-based detection algorithms can only suppress uniform background to a
certain extent and fail to address complex background problems, resulting in low detection
performance and poor robustness. Methods based on the human visual system rely on
contrasting the differences between small target regions and their surrounding areas,
making them unsuitable for detecting weak small targets. Low-rank sparse recovery
methods can improve detection precision by applying certain constraints. However, in
infrared images with weak small targets and complex backgrounds, some strong clutter
signals may be as sparse as the target signal, leading to increased false alarm. Overall,
traditional algorithms heavily rely on manual craftsmanship, lack adaptability, and are
difficult to be widely applied in infrared target detection in various application scenarios.

Recent approaches have turned to deep learning methods to address these issues.
For example, Liu et al. [17] developed a CNN-based method for infrared small target
detection. Y. Dai et al. [18] encoded spatial information and proposed an Asymmetric
Context Module (ACM). They also introduced the SIRST dataset, which has been widely
used in the field of infrared small target detection. Other researchers, such as Q. Hou
et al. [19], proposed a robust infrared small target detection network (RISTDnet) based on
deep learning. They constructed a feature extraction framework that combines handcrafted
features and convolutional neural networks, established a mapping network between
the feature map and the likelihood of small targets in the image, and applied threshold
segmentation to identify real targets. X. Zhou et al. [20] unfolded the sparse low-rank
regularization model into a deep neural network. They used the infrared patch-image
(IPI) model to convert the original infrared image into patch images through local patch
construction. Zhao et al. [21] proposed a detection pattern based on generative adversarial
networks (GAN) to automatically learn the features of the target and directly predict the
intensity of the target.

Our Contribution:
In this paper, to address the sub-pixel-level accurate centroid localization of infrared

weak small targets, we propose UCDnet (Double U-shaped Segmentation Network Cascade
Centroid Map Prediction for Infrared Weak Small Target Detection), and its prediction
results are shown in Figure 1. The algorithm takes the input infrared image and passes it
through a semantic segmentation subnet for feature extraction, feature fusion, and dense
prediction, outputting pixel-level predictions (i.e., semantic segmentation results) of the
targets (Figure 1a). Meanwhile, the input infrared image is also fed into the centroid local-
ization subnet, which generates a centroid map with target centroid position information.
The pixel-level predictions from the semantic segmentation subnet are mapped onto the
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centroid map, allowing the centroid map to retain only the results corresponding to the tar-
get’s pixel locations. Finally, through decoding operations, accurate centroid results of the
targets can be obtained (Figure 1b). Additionally, we have created an infrared simulation
dataset specifically tailored for weak small targets.
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Figure 1. The performance of our algorithm on our simulated datasets for semantic segmentation
and centroid localization. (a) The left column shows our UCDnet semantic segmentation results, and
the right column shows the corresponding ground truth. (b) The left column shows our UCDnet
centroid localization results, and the right column shows the corresponding ground truth.

Our contributions can be summarized as follows:
We have designed a novel sub-pixel-level centroid localization method for infrared

weak small targets. We innovatively propose the concept and method of centroid map
prediction, addressing the challenge of accurately locating the centroid of point targets.
Our method utilizes a lightweight fully convolutional structure and incorporates a novel
Com loss function. We also introduce a new evaluation metric for centroid localization.
Experimental results demonstrate that our average centroid localization precision achieves
0.3371 pixels when the signal-to-noise ratio of the targets is above 0.4.

We have proposed a feature extraction network for semantic segmentation of infrared
weak small targets. Our method employs a novel double U-shaped structure, which ef-
fectively combines the feature extraction module and attention module to finer predict
the easily overlooked edge pixels, which is crucial for precise centroid localization. Ex-
perimental results show that our semantic segmentation IoU achieves 0.9186 when the
signal-to-noise ratio of the targets is above 0.4.

We have simulated a series of infrared weak small target datasets for training, val-
idation, and testing purposes. These datasets include various forms of infrared small
targets. To replicate real-world scenarios, we have introduced multiple types of vertical
line noise and Gaussian noise in the images. We have also specifically simulated the
dim and weak states of targets when they pass through cloud, which pose challenges for
detection algorithms.

2. Materials and Methods

The main idea of UCDnet is to construct an infrared small target detection network that
achieves dense prediction and sub-pixel-level centroid localization. Its network structure
is shown in Figure 2 and consists of two parts: the semantic segmentation subnet and
the centroid localization subnet. Section 2.1 introduces the simulation content of the
dataset. Section 2.2 presents the proposed semantic segmentation method, while Section 2.3
describes the proposed sub-pixel-level centroid localization method. Finally, Section 2.4
discusses the loss function and training method used during network training.
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Figure 2. The network structure diagram of our proposed algorithm, UCDnet, consists of a semantic
segmentation subnet and a centroid localization subnet. In the semantic segmentation subnet, a
double U-shaped backbone network, which embeds attention modules, is used to extract features
from the input infrared images. A feature fusion prediction branch is then used to perform pixel-
wise binary classification based on the fused features at different levels, generating a semantic
segmentation mask. In the centroid localization subnet, a “floating-point” centroid map is predicted
based on the input infrared images. The semantic segmentation mask generated by the semantic
segmentation subnet is mapped into the centroid map to narrow down the predicted range of the
centroid, enabling accurate calculation of the target’s centroid. The details of the Res_Attention block,
Downsample block, Upsample_n block, and Multiply block are shown in Table A1 in Appendix A.

2.1. Dataset Simulation

The dataset used in this paper is simulated based on satellite imagery (with a size of
around 10,000 × 10,000 pixels) collected by meteorological satellites. The simulated targets
are generated based on the grayscale distribution of real targets, and a total of 125 targets
were simulated. The extraction of target features from infrared images is closely related
to background information and noise [22]. The image data from different backgrounds
exhibit significant differences. For meteorological satellite images, cloud cover is the main
source of interference, and the presence of high-intensity noise further complicates target
detection. We simulated 8 to 14 frames of motion trajectories for each target individually. In
order to make the dataset more representative of real-world scenarios, slight variations in
the shape and pixel values of the targets were introduced within each trajectory, resulting
in a total of 1306 images. Finally, random cropping was performed on these images to
obtain sub-images of size 256 × 256 pixels containing the targets (the simulation process of
the infrared weak small target dataset is illustrated in Figure A1 in Appendix A). The size
of the targets ranged from 6 × 4 pixels to 10 × 13 pixels, and the signal-to-noise ratio (SNR)
of the images varied from 0.4 to 6.4. It can also be observed from Figure 3 that the SNR of
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the image complies with the central limit theorem. Figure 4 illustrates the range of target
sizes, with blue dots representing the number of targets for each size. Figure 5 showcases
the approximate shapes of the targets.
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Figure 5. The schematic representation of the shapes of certain targets in the dataset used in this paper.

2.2. Semantic Segmentation Subnet

The semantic segmentation subnet consists of a feature extraction backbone network
and a feature fusion prediction branch. The feature extraction backbone network adopts a
double U-shaped structure, focusing on extracting edge features of the targets to handle low
signal-to-noise ratio situations. It incorporates embedded attention modules to enhance
segmentation precision. The feature fusion prediction branch performs feature fusion at
different hierarchical levels and conducts per-pixel binary classification based on the fused
results to generate semantic segmentation masks.

The double U-shaped network structure is shown in Figure 6. Inspired by the U-
Net [23] and DNAnet [24] network structures, we have made improvements to the main
feature extraction network. It follows the overall Encoder–Decoder structure, which is
similar to the combination of two large U-shaped networks and one small U-shaped
network. The two large U-shaped networks perform four downsampling operations,
where the shallow network extracts more target texture information, and the deep network
allows for a larger field of view and captures deeper semantic information [25]. The small
U-shaped network just performs two downsampling operations, reserving more target
positional information than bigger ones. Compared to the U-Net network, our approach
uses more feature concatenation to achieve precise extraction of edge features.
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the feature fusion prediction branch utilizes the fused features at different hierarchical levels to
perform per-pixel binary classification and generate semantic segmentation masks.
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In contrast to most existing infrared small target semantic segmentation methods,
inspired by the DNAnet network structure, each layer of our main feature extraction
network incorporates a specific attention module [26]. Each attention module in a layer
includes channel attention and spatial attention components, enabling adaptive learning
of the importance of different channels and spatial positions in the image. The channel
attention dynamically adjusts the impact of each channel in the output feature map, while
the spatial attention dynamically searches for the precise location of the targets on the
feature map. The combination of two attentions helps the network pay more attention to the
positional information of small targets and some detailed edge information in each feature
map. The feature extraction network determines the overall position of the infrared small
targets based on their grayscale and contrast information, while the attention modules
focus more on the edge information of the targets.

The basic and core component of the entire network is the Res_Attention Block. In each
layer, the input feature map undergoes a series of operations, including a 3× 3 convolution,
normalization, activation function, another 3 × 3 convolution, and normalization, followed
by a hybrid attention mechanism. The output of this series of operations is then added to
the original input to obtain the output of the Res_Attention Block. The hybrid attention
mechanism consists of a channel attention mechanism followed by a spatial attention
mechanism. For an input F, the equations for the channel attention mechanism (Mc(F)) and
the spatial attention mechanism (Ms(F)) can be expressed as:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

(2)

where σ represents the sigmoid operation, MLP represents a convolution operation with a
kernel size of 1 × 1, AvgPool represents average pooling, MaxPool represents maximum
pooling, [;] represents channel concatenation, and f 7×7 represents a convolution with a
kernel size of 7 × 7.

2.3. Centroid Localization Subnet

The centroid localization subnet (shown in Figure 7) consists of the centroid feature
extraction network and the mapping module. The feature extraction network includes
a hybrid attention mechanism, downsampling, and upsampling structures. The hybrid
attention mechanism focuses on learning the relationship between the image’s grayscale,
contrast, and target centroids. The mapping module performs pixel-wise multiplication,
multiplying the binary segmentation result with the centroid map. This operation filters out
the parts that do not belong to the target, resulting in more accurate centroid localization.

The centroid localization subnet predicts the “floating-point” centroid map (as shown
in Figure 8) based on the semantic segmentation results to calculate the target centroid.
The centroid map, which is different from the heatmap proposed in CenterNet [27], is first
introduced and applied by us. In the centroid map, the value of each pixel represents the
proximity to the target centroid. To achieve sub-pixel-level centroid localization, we do
not designate a specific pixel as the centroid in both the ground truth label map and the
predicted map. Instead, we employ an indirect constraint method to obtain the floating-
point centroid position (sub-pixel-level). Specifically, during the training phase, the labels
for the centroid localization subnet are calculated using a two-dimensional Gaussian
function [28]. When the target centroid position is (x0, y0), the label value at any position in
the centroid map can be obtained using the two-dimensional Gaussian function as follows:

Vij = e−
(x0−j)2+(y0−i)2

2 (3)

where j represents the current pixel’s column, i represents the current pixel’s row, and Vij
represents the corresponding label value at that position. As shown in Figure 8, when
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the centroid position is x0 = 3.3, y0 = 4.6, we can calculate the values of V43, V53, and V54
as follows:

V43 = e−
(3.3−3)2+(4.6−4)2

2 ≈ 0.79852 (yellow pixel)

V53 = e−
(3.3−3)2+(4.6−5)2

2 ≈ 0.88250 (red pixel)

V54 = e−
(3.3−4)2+(4.6−5)2

2 ≈ 0.72253 (blue pixel)
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During the prediction phase, the actual centroid positions are calculated based on the
predicted centroid map, following these steps:

1. Firstly, determine the number of targets N in our predicted centroid map, which
corresponds to N clusters of pixels.

2. For each cluster of pixels mentioned above, select the maximum value Vi1 j1 from our
predicted results as the centroid reference point Ai,i∈[1, N] (represented by the red
position in Figure 8).

3. Take the centroid reference point Ai as the center and find the maximum value Vi2 j2
within the vertical neighborhood N4(Ai) to serve as the centroid vertical correction
point Bi,i∈[1, N] (represented by the yellow position in Figure 8).

4. Similarly, take the centroid reference point Ai as the center and find the maximum
value Vi3 j3 within the horizontal neighborhood N4(Ai) to serve as the centroid hori-
zontal correction point Ci,i∈[1, N] (represented by the blue position in Figure 8).

5. Combining the centroid reference point Ai, the vertical correction point Bi, and the
horizontal correction point Ci, calculate the sub-pixel-level precise positions x0 and y0
of each centroid using the following equations:

Vi1 j1 = e−
(x0−j1)

2+(y0−i1)
2

2 (4)

Vi2 j2 = e−
(x0−j2)

2+(y0−i2)
2

2 (5)

Vi3 j3 = e−
(x0−j3)

2+(y0−i3)
2

2 (6)

where i1 = i3 and j1 = j2, the above three equations can be used to obtain the following:

x0 =
2 ln

Vi3 j3
Vi1 j1
−
(

j21 − j23
)

2(j3 − j1)
(7)

y0 =
2 ln

Vi2 j2
Vi1 j1
−
(
i21 − i22

)
2(i2 − i1)

(8)

6. Repeat the above steps 2 to 5 until all N predicted targets have been traversed.

In summary, compared to directly predicting the centroid positions (x0, y0) using the
network, predicting the centroid map makes the network training more easily convergent
(due to the presence of more constraints). Furthermore, compared to predicting bounding
boxes and then post-processing to obtain the centroids, the proposed method of predicting
the centroid map and then extracting the centroids is more efficient and accurate.

2.4. Loss Function

The loss function used in our method consists of two parts. For the semantic segmen-
tation part, as shown in Equation (9), we employ Dice Loss as the loss function. For the
centroid localization part, as shown in Equation (10), we have developed our own loss
function based on the MSE Loss, which we refer to as the Center of Mass Loss (Com Loss).

Dice Loss = 1− 2
|A ∩ B|
|A|+ |B| (9)

Com Loss =

{
(y− p)2 i f y > 0.1
(y− p)2(1− y)4 other

(10)
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In Equation (9), A and B represent the semantic segmentation label (per-pixel) and
the predicted semantic segmentation results (per-pixel), respectively. In Equation (10), y
represents the centroid map label (per-position), and p represents the predicted centroid
map (per-position).

To improve the algorithm’s performance, we first optimize the semantic segmenta-
tion results. During the first 10 epochs, we only calculate the loss value for semantic
segmentation. After the 10th epoch, we add to calculate the loss value for the centroid
localization module. The weights assigned to the loss values of the semantic segmentation
and centroid localization parts follow specific function distributions: 1

1+e−0.1(60−epoch)+0.5 + 1

for the semantic segmentation part and
(

1− 1
1+e−0.1(60−epoch)+0.5

)
× 0.8 + 0.2 for the centroid

localization part (shown in Figure 9). This approach improves the overall efficiency of the
network by filtering out unnecessary computations and further enhances the performance
of the centroid localization module.
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3. Results

This section presents the experimental results of the proposed method in this paper,
along with some comparative results, which demonstrate that our method outperforms
other approaches. Section 3.1 provides a detailed introduction to the evaluation metrics
used in this study. Section 3.2 presents all the experimental procedures and analyses.

3.1. Evaluation Metrics
3.1.1. Semantic Segmentation Evaluation Metrics

Since there is only one semantic segmentation class in this paper, the main evaluation
metrics used are IoU, Precision, and Recall. In semantic segmentation, the definition of
IoU is the ratio of the intersection to the union of the ground truth and predicted sets. This
ratio can be expressed as the ratio of True Positive (TP) to the sum of TP, False Positive (FP),
and False Negative (FN), which represents the overall segmentation precision. Precision is
defined as the ratio of the intersection to the predicted segmentation set. This ratio can be
expressed as the ratio of TP to the sum of TP and FP, reflecting the precision of the predicted
results. Recall is defined as the ratio of the intersection to the ground truth segmentation
set. This ratio can be expressed as the ratio of TP to the sum of TP and FN, reflecting the
recall or sensitivity of the predicted results. TP, FP, FN, and TN are shown in Figure 10.
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IoU =
TP

FP + FN + TP
(11)

Precision =
TP

FP + TP
(12)

Recall =
TP

FN + TP
(13)
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Figure 10. Illustration of IoU evaluation metric. TP (True Positive): the predicted result is positive,
and it is actually positive. FP (False Positive): the predicted result is positive, but it is actually
negative. FN (False Negative): the predicted result is negative, but it is actually positive. TN (True
Negative): the predicted result is negative, and it is actually negative.

3.1.2. Centroid Localization Evaluation Metrics

If there is only one target in each image, we can directly use the Euclidean distance
between the predicted centroid and the actual centroid of the target as the evaluation metric
for centroid localization. However, considering the cases of multiple targets or false alarms,
this paper introduces a novel centroid localization evaluation metric. Specifically, clustering
is performed with the real centroids as centers, and all detected centroids are assigned
to the nearest real centroid. Then, the sum of distances between all predicted centroids
and their closest real centroids is calculated. This distance sum is divided by the smaller
value between the number of real centroids and the number of detected centroids. The
calculation equation is as follows:

mDis =

∑m
i=0 min

0�j�n

(√(
xi − xj

)2
+
(
yi − yj

)2
)

min(m, n)
(14)

where n represents the number of actual target centroids, m represents the number of
detected target centroids, xi represents the horizontal coordinate of the detected target
centroid, xj represents the horizontal coordinate of the real target centroid, yi represents the
vertical coordinate of the detected target centroid, and yj represents the vertical coordinate
of the real target centroid.
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3.2. Experimental Results and Analysis
3.2.1. Experimental Setup

In this experiment, the input image size of the network is 256 × 256 pixels, and the
batch size is set to 16. The training and testing dataset are divided approximately in a ratio
of 5:1. The semantic segmentation subnet in the experiment utilizes Dice Loss as the loss
function, while the centroid localization subnet employs Com Loss as the loss function.
The optimization method for the loss function is Adaptive Gradient (AdaGrad), which is
a first-order optimization method [29]. The advantage of using AdaGrad is that it allows
the manual adjustment of learning rate to be replaced by setting hyperparameters. The
hardware device mainly used in the experiment is an NVIDIA RTX 3090 graphics card
with 24 GB of VRAM. The software programs primarily used include the deep learning
framework PyTorch, the plotting tool Matplotlib, the image processing library OpenCV,
and the scientific computing library NumPy.

3.2.2. Comparison with Other State-of-the-Art Methods

In this section, we evaluate our implementation by comparing it with traditional image
processing method MLCM [30], classic semantic segmentation network U-Net [23], and the
latest semantic segmentation networks DNAnet [24], HRNet [31], and MTU-Net [32]. We
perform a quantitative and qualitative analysis of the experimental results.

(1) Quantitative Analysis

Table 1 compares the performance of our algorithm and the other five state-of-the-
art algorithms in terms of evaluation metrics such as IoU, Precision, Recall, F1-score,
and GFLOPs. The experimental results demonstrate that our method ranks first in all
evaluation metrics.

Table 1. Comparison of our semantic segmentation algorithm with five other algorithms.

Semantic Segmentation
Algorithm IoU Precision Recall F1-Score GFLOPs

MLCM [30] 0.1810 0.1810 1.0000 0.3065 -
U-Net [23] 0.4905 0.6435 0.5774 0.6087 46.02

HRNetv2-w18 [31] 0.7216 0.8307 0.8443 0.8374 4.64
MTU-Net [32] 0.8712 0.9403 0.9229 0.9315 5.48
DNAnet [24] 0.8862 0.9566 0.9236 0.9398 14.05

UCDnet (ours) 0.9186 0.9673 0.9480 0.9576 15.56

(2) Qualitative Analysis

We visualized the semantic segmentation results of three classical algorithms and
our UCDnet. As shown in Figure 11, yellow annotations represent false alarms, red
annotations represent missed detections, green annotations represent correctly predicted
targets, and blue annotations indicate zoomed-in views of the targets. Due to the influence
of factors such as complex background in infrared images and noise resembling target
shapes, the existing algorithms and network detection performance are unsatisfactory.
From the prediction results, it can be observed that the traditional MLCM algorithm has
significant limitations, with excessive false alarms and almost complete loss of target
edge information. The U-Net misses some targets in particular situations but retains
some edge information compared to traditional algorithms. The DNAnet’s prediction
results show a good segmentation of the edges, but still have some errors compared to the
ground truth. However, it is evident that our algorithm’s predicted target edges closely
match the ground truth, demonstrating high robustness without false alarms or missed
targets. Our algorithm outperforms other comparative approaches in terms of detection
and segmentation performance.
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of three classical algorithms.

3.2.3. Analysis of UCDnet Feature Extraction Network

(1) Quantitative Analysis

To validate the superior performance of the proposed network structures in feature
extraction compared to other similar network structures, we conducted the following
ablation experiments on the main feature extraction network of the semantic segmentation
subnet. Throughout the ablation experiments, we kept the structure of the centroid local-
ization subnet unchanged and investigated the impact of variations in the structure of the
semantic segmentation subnet on the network performance. As illustrated in Figure 12,
“ablation study1” represents the network structure of a single U-shaped structure shown in
Figure 12a, “ablation study2” represents a network structure similar to double U-shaped
structure shown in Figure 12b, “ablation study3” represents a network structure based on
Figure 12b with an added attention module shown in Figure 12c, and “ablation study4”
represents a network structure with the addition of a feature fusion strategy based on
Figure 12c. Training each of the four networks for 100 epochs yielded the results shown in
Table 2 and Figure 13.

From Table 2, it can be observed that the double U-shaped network structure achieves
higher IoU, Precision, and Recall compared to the single U-shaped network structure. By
incorporating attention modules into the network, the IoU of the network in the test results
improves by two percentage points, while Recall increases by three percentage points.
Additionally, the introduction of a feature fusion strategy leads to an IoU improvement of
over one percentage point. Considering the high IoU requirement for the output results in
this study, the network structure depicted in Figure 12d is adopted.
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Figure 12. Architecture diagrams of the four networks in the ablation experiments, where (d)
represents the network structure proposed in this paper. The figure (a) represents a single U-shaped
structure without an attention module, the figure (b) represents a double U-shaped structure without
an attention module, and the figure (c) represents a double U-shaped structure with an added
attention module. The colored dotted lines in the figures indicate the presence of the attention
module in the corresponding operation step.

Table 2. Comparison of results from four ablation studies.

Semantic Segmentation Algorithm IoU Precision Recall

single U-shaped structure (ablation study1) 0.8665 0.9419 0.9155
double U-shaped structure (ablation study2) 0.8728 0.9600 0.9057

double U-shaped structure + attention
module (ablation study3) 0.9070 0.9599 0.9428

double U-shaped structure + attention
module + feature fusion (ours) 0.9186 0.9673 0.9480
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According to the curve shown in Figure 13, it can be observed that the network
structure proposed in this paper consistently outperforms the other three ablation study
network structures in terms of the evaluation metric IoU. Furthermore, the IoU values
exhibit minimal fluctuations with increasing epochs. Considering the comprehensive set of
ablation experiments, the proposed network structure in this paper demonstrates stronger
feature extraction capabilities and better stability, while exhibiting superior learning ability
for capturing detailed target features.

(2) Qualitative Analysis

From Figure 14, it can be observed that in the encoding process of the first U-shaped
structure, as the downsampling iterations increase, the network pays more attention to the
brighter regions in the image. In the decoding process, with the increase in upsampling
iterations, the network can further distinguish between the target and the background.
In the encoding process of the second U-shaped structure, FM (2,1) serves both as an
encoding and decoding component, enabling more accurate discrimination between the
background and the target. With an increase in downsampling iterations during the
encoding process, FM (4,1) is able to fully differentiate the background regions surrounding
the target. Comparing FM (0,2) and FM (0,3), although the rough shape of the target can
already be observed at the output of the first U-shaped structure, the output of the second
U-shaped structure is closer to the actual target.

3.2.4. Analysis of Centroid Localization Network

(1) Quantitative Analysis

As shown in Table 3, we compared the performance between three classical centroid
localization methods and our method. Our approach demonstrated the best localization
precision, outperforming even the suboptimal squared weighted centroid method by
0.2009 pixels.

Table 3. Comparison of four centroid localization methods.

Centroid Localization Methods Localization Precision (Pixels)

center of bounding box 0.6096
gray value centroid method 0.5775

squared weighted centroid method 0.5380
UCDnet (Ours) 0.3371

The solution method for the gray value centroid method is as follows: For image block
B, determine the center of the minimum bounding rectangle enclosing the target. Establish
a Cartesian coordinate system with this center as the origin. Then, calculate the centroid
using the following equations:

m00 = ∑
x,y∈B

I(x, y) (15)

m10 = ∑
x,y∈B

x× I(x, y) (16)

m01 = ∑
x,y∈B

y× I(x, y) (17)

C =

(
m10
m00

,
m01
m00

)
(18)

where I(x, y) represents the pixel value at position (x, y), and C represents the coordinates
of the centroid obtained on the Cartesian coordinate system established with the center of
the image block.
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The solution method for the squared weighted centroid method is as follows: For
image block B, determine the center of the minimum bounding rectangle enclosing the
target. Establish a Cartesian coordinate system with this center as the origin. Then, calculate
the centroid using the following equations:

m00 = ∑
x,y∈B

I2
(x,y) (19)

m10 = ∑
x,y∈B

x× I2
(x,y) (20)

m01 = ∑
x,y∈B

y× I2
(x,y) (21)

C =

(
m10
m00

,
m01
m00

)
(22)
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where I(x, y) represents the pixel value at position (x, y), and C represents the coordinates
of the centroid obtained in the Cartesian coordinate system established with the center of
the image block.

(2) Qualitative Analysis

We selected two images from the dataset and fed them into our UCDnet. We saved
the final centroid localization results. Then, we extracted the target pixel blocks from the
images, enlarged them eight times, and mapped our centroid localization results onto the
magnified images (as shown in Figure 15). The centroid localization precision achieved
sub-pixel-level precision.
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Figure 15. Centroid localization result image, with our detected results on the left and ground truth
on the right. The red dots indicate the centroids of the detected targets, and the green dots represent
the true positions of the centroids.

3.2.5. Discussion

Currently, numerous classical target detection algorithms have been applied in the
field of infrared weak small target detection. We selected five representative algorithms,
namely, MLCM, U-Net, HRNet, MTU-Net, and DNANet, for comparative experiments
with our proposed method and obtained outstanding results. The IoU of our semantic
segmentation results reached a leading level because of the proposed double U-shaped
structure with attention mechanism. Furthermore, we innovatively introduced a deep
learning-based approach for sub-pixel-level centroid localization, significantly improving
the centroid localization precision compared to existing methods. Extensive experiments
validated that our proposed algorithm exhibits favorable performance and robustness.

Additionally, to verify the applicability and generalization ability of our proposed
algorithm beyond the field of surveillance and reconnaissance, we evaluated our algorithm
on three different publicly available datasets from diverse fields. On an industrial field
dataset for motor magnetic tile defect detection, our algorithm demonstrated excellent
segmentation results even when facing weak texture information of motor magnetic de-
fects (see experimental results in the first row of Figure A2 in Appendix A). On a medical
field dataset for cell semantic segmentation [33,34], our algorithm accurately extracted
edges of irregularly shaped cells (see experimental results in the second row of Figure A2
in Appendix A). On an agricultural field dataset for olive fruit semantic segmentation,
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our algorithm achieved precise segmentation for small-sized olive fruits, remaining unaf-
fected by factors like crowding and occlusion (see experimental results in the third row
of Figure A2 in Appendix A). These supplementary experiments further demonstrate the
high robustness of our proposed algorithm. Our algorithm proves to be effective not only
on our simulated dataset but also on various datasets from other fields, showcasing its
excellent performance.

The proposed algorithm in this paper also has some limitations: (1) Point targets in
infrared images are prone to confusion with high-frequency noise and similar objects. The
method proposed in this paper focuses on fine segmentation and localization but requires
further improvement in false alarm removal. (2) Infrared weak small targets have low
signal-to-noise ratio and can easily be overwhelmed by background clutter. The algorithm
in this paper may experience missed detections when the target signal-to-noise ratio is
below 1. This is unacceptable for applications such as security monitoring and autonomous
driving, which demand high safety requirements. These limitations will be the focus of our
future work.

4. Conclusions

This paper presents a novel method called UCDnet for infrared weak small target
detection and centroid localization. The innovation of our proposed semantic segmenta-
tion subnet lies in the improved U-Net and DNAnet structures, with the integration of
attention modules. The double U-shaped backbone feature extraction network in our ap-
proach enables more accurate segmentation of target edges, while the addition of attention
modules improves the capturing of target positional information. The innovation of our
centroid detection subnet lies in the ability to overcome the constraint of unit pixel size
in the original image, achieving sub-pixel-level centroid localization and minimizing the
difference between predicted and ground truth centroid positions. Extensive comparative
experiments demonstrate the superiority of our proposed semantic segmentation and
centroid localization methods in terms of detection precision and robustness compared to
existing mainstream methods.

In the future, we plan to expand our research in three directions: (1) How to use
the motion information of targets in sequential images to reduce false alarms. The algo-
rithm proposed in this paper is based on single-frame image for target detection, which
may encounter challenges in removing false alarms in certain low-quality images or com-
plex scenes. We will explore the temporal characteristics of targets in sequential images,
combining spatial and temporal features to improve target discriminability. (2) How to
construct an integrated network for enhancement and detection to address the issue of
missed detections when the target is extremely weak. In our future work, we will embed
more efficient enhancement modules or super-resolution reconstruction modules into the
detection network to enhance target features and capture target details, aiming to achieve
or even surpass the human eye’s detection limit. (3) How to utilize multi-source image
information fusion for handling weak small targets [35]. The infrared images used in this
paper are obtained from thermal radiation imaging. Due to the technological limitations of
sensors, issues such as loss of target texture information, high noise, and low signal-to-noise
ratio may exist. In the future, we will develop a weak small target detection network based
on multi-source data, incorporating data from multiple platforms and payloads to achieve
stable and continuous detection and localization capabilities.
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Appendix A

In Appendix A, we provide additional technical details and more experimental results.

Appendix A.1. Simulation Details of Infrared Weak Small Target Dataset

The production process of the proposed infrared weak small target dataset is shown
in Figure A1. The overall steps include simulating background images, adding noise,
de-signing target motion trajectories, adding targets to the background, randomly cropping
image patches with targets, and generating semantic segmentation labels.
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Appendix A.2. Details of Network Architectures

In Table A1, we list the details of the Res_Attention block, Downsample block, Up-
sample_n block, and Multiply block used in our proposed network. These details include
kernel size, stride, padding, upsampling and downsampling ratios, among others.

Table A1. Constituent elements of each block in the proposed network architecture.

Block Layer Input
Channels

Output
Channels

Kernel
Size Stride Padding

Res_Attention

Conv2d in_channels out_channels 3 1 1

BatchNorm2d out_channels out_channels - - -

ReLU - - - - -

Conv2d out_channels out_channels 3 1 1

BatchNorm2d out_channels out_channels - - -

CBAM out_channels out_channels - - -

ReLU - - - - -

Downsample MaxPool2d in_channels in_channels 2 2 -

Upsample_n Upsample in_channels in_channels - n -

Multiply - 1, 1 1 - - -
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Appendix A.3. Experimental Results in Other Field

In Figure A2, we demonstrate the semantic segmentation results of our UCDnet in the
industrial field (top row), medical field (middle row), and agricultural field (bottom row).
The results reveal the good performance of our algorithm in these fields.
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