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Abstract: Climate change represents an important cause of subsidence, especially in coastal cities
affected by changes in surface water level and water table. This paper presents a complementary
study of Interferometric Synthetic Aperture Radar (InSAR) and Ground Penetrating Radar (GPR)
for the early detection of subsidence and sinkhole phenomena. The methodology was applied to a
coastal urban area in Galicia, northwest Spain (humid region), showing apparent signs of subsidence
and building settlement during the last two years. Two different InSAR methods are compared for
the period from June 2021 to March 2022: PSI (Persistent Scatterer Interferometry) and SBAS (Small
Baseline Subsets), and the average deformation velocities obtained resulted in −3.0 mm/yr and
−4.1 mm/yr, respectively. Additional GPR data were collected in January 2022 to validate the InSAR
results, which detected subsidence in agreement with the persistent scatters obtained from the PSI
method. This is crucial information to plan preventive maintenance.
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1. Introduction

Soil deformation represents an important issue for infrastructure, implying a major
hazard for people and property. The most dangerous and undetectable type of soil deforma-
tion are sinkholes [1,2]. As defined by [3], “these are karstic features formed by movement
of rocks and sediments into voids created by the dissolution of water-soluble rocks”. Un-
predictable and sudden collapses may then happen when the soil or rock abruptly breaks,
or generating subsidence if a gradual settling happens without abrupt rupture. These types
of failures have increased in number in recent decades. As an example, the Florida Depart-
ment of Environmental Protection reported 4159 sinkholes between 1909 and 2022 [4,5].
Climate change is among the major triggers of this increase, with an estimation of a 1 to 3%
increase in the number of sinkholes per 0.1 ◦C rise in mean global temperature [6].

Climate change is combined with human factors in the most populated coastal areas
to cause a dangerous effect called “sinking cities”: the main effect of climate change is
sea-level rise, a consequence of the global warming that provokes the melting of glaciers
and the polar ice caps, in addition to the expansion of sea water associated with the water
temperature increase. What is more, global warming provokes a change in the rain regime
and an augmentation in water evaporation, increasing the need for water consumption
by population and vegetation, and consequently reducing the recharging of the water
reservoirs and lowering the water table, especially in humid regions [7]. The withdrawal
of the water table produces material compaction, consequently provoking the shrinkage
of the soil [8]. On the other hand, human actions such as extraction of water, fuel, or gas,
mining, and overloading of cities due to unsustainable construction, provoke vertical land
motion, which exacerbates the effects of sea-level rise [7–9]. Both sea level rise and land
subsidence of coastal areas cause problems such as inundation, storm surges, high waves,
and erosion [9].
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As subsidence is a major problem, different methods for detecting this type of soil de-
formation are currently being used. Mitigating the hazards associated with land subsidence
requires knowledge of the spatial distribution of the ground deformation, which is usually
known only at certain point locations. The purpose of subsidence detection methods is to
determine the area affected by subsidence, subsidence velocities and accelerations, and the
causes of subsidence, as well as the evaluation of the preventive measures to be taken.

Traditionally, dynamic topographic techniques are used, which consist of the observa-
tion of control points at different times, by subtracting the corresponding DEMs (Digital
Elevation Models) [10]. In addition to traditional topography, photogrammetric methods
can also be applied to the evaluation of subsidence; these methods determine the geometric
properties of an object from images captured from different angles, thus creating a stereo-
scopic view, used for example in [11] together with leveling techniques. If GNSS stations
are available in the area, subsidence patterns can also be investigated. For example [12],
analyzed anthropogenically induced subsidence from 10 years of GNSS (Global Navigation
Satellite System) data, while [13] developed a real-time subsidence monitoring system using
GNSS data from a six-month period. In addition, current research is dealing with the applica-
tion of machine learning algorithms for the prediction of subsidence from GNSS time-series
data [14]. Machine learning algorithms are also being developed for the modeling and
prediction of land subsidence from a dataset of different types of data, including some of
the risk factors of subsidence: topography, geomorphology, hydrology, and lithology [15].

Regarding the use of remote sensing techniques to detect deformations, these are
divided into LIDAR (Light Detection and Ranging) [16], and RADAR (Radio Detection
and Ranging) techniques. The latter includes spaceborne radar, with the use of InSAR
(Interferometric Synthetic Aperture Radar) techniques [17–19]; but also, the GPR (Ground
Penetrating Radar), used in conjunction with InSAR, as in [20]. InSAR is the most exten-
sively used technique for the monitoring of land deformations, due to its capability of
measuring topography at large and local scales (from km to mm), and both as a standalone
technique [21], or combined with other techniques such as GNSS [22], which can also be
used for the calibration of the InSAR method [23].

The information achieved with spaceborne radar techniques is only partially equaled
using current field technologies, such as leveling or GNSS stations [24]. The precision
and accuracy of these systems are well known, but, on the other hand, they provide
deformation information only in correspondence with the device positions and exclusively
from the beginning of the field campaign. Moreover, their installation usually requires a
considerable investment in resources. On the other hand, the InSAR configuration allows
the investigation of entire systems in a relatively short time compared to current monitoring
systems, and does not require in situ installations, since it takes advantage of the reflecting
elements already present on the surface. Moreover, this method does not interfere in any
way with the usual activity in the study area.

The combination of GNSS and InSAR data has provided valuable insights for a better
understanding of various geodetic phenomena. It proved to be a powerful tool for studying
the relationship between crustal deformation and fault activity [25], earthquake ruptures
characteristics [26], and landslides (informing about deformation, strain and impact on the
terrain) [27]. The importance of combining GNSS and InSAR for validation purposes has
been highlighted [28] after evaluating the accuracy of InSAR results using GNSS analysis
techniques in areas with medium to high-grade deformation.

This work presents the application of InSAR to the characterization of land subsidence.
Two different processing techniques are applied, PSI (Persistent Scatterer Interferometry)
and SBAS (Small Baseline Subsets), with the aim of evaluating the capacities of each
technique for land subsidence detection and characterization at a local scale. The GPR
technique is used as a complementary method, providing more details for the complete
understanding of the occurring phenomena. The study is performed through its application
to a real case study, an area affected by land subsidence and sinking buildings in the city
of Pontevedra (NW Spain). This case study was selected as a representative city of the
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areas most potentially affected by land subsidence due to climate change: a coastal city in a
humid region that grew towards the coast by means of land refills.

Complementary InSAR and GPR Surveying

Table 1 compiles previous studies using both InSAR and GPR on sinking building
assessment, highlighting the advantages of the combination.

Table 1. Previous works combining GPR with InSAR to monitor subsidence in urban areas.

Ref. InSAR Findings GPR Findings Advantages of the Combination Limitations

[29]
(PSI tech.): deformation

values from −2.76 to
−4.77 mm/yr

(300/800 MHz):
subsurface anomalies and

shallow depression
(cavities, drains and

road fractures)

The subsidence identified with the
PSI technique is associated in the
GPR data with subsurface faults

(fractures, cavities, etc.), thus
providing extra information

Not reported

[30]

(PSI tech.):
average velocity in both

orbit tracks; vertical
velocity component (from

−6 to 2 mm/yr)

(400 MHz):
maps the shallow

subsurface morphology
showing depocenters

Both techniques are complementary:
InSAR maps the surface movements

of wide areas and GPR analyzes
the subsurface

Limitation in the penetration depth
of GPR. Some variables (vegetation,
orbits. . .) and assumptions (the north

component sensitivity, equal
incidence angle, etc.) with InSAR can

reduce the accuracy

[31]
(PSI tech.): several areas of
localized subsidence (from

−3 to −6 mm/yr)

(250 MHz): presence of
sinkhole activity

GPR was used as ground-truthing:
subsidence locations (InSAR) were

associated with sinkhole
presence (GPR)

The InSAR detection is limited to
sinkholes that present subsidence for

at least a longer period than the
repeat pass interval of the satellite,

also constrained by the relationship
between spatial resolution and

observed feature size

[32]

(PSI tech.):
1 mm/yr subsidence rate

on the flank of the
topography is low but

stable in its center

(250 MHz): ongoing
conical subsidence and
sediments raveling into

underlying voids

The use of both techniques allows for
optimizing the detection and

delineation of sinkhole structures

Resolving subsidence rates is more
difficult in grassy than in arid

settings. InSAR interpretation was
limited by spatial coverage. Using

lower frequency GPR antennas will
resolve the deeper structure

[33]

(PSI tech.): vertical
displacement from

different orbit tracks (up
to −9 mm/yr)

(100 MHz): weakened
sites, subsoil failures at the
level of the bearing layer,

tectonic activity

The joint use is very effective at
identifying displacement tendencies

in urbanized areas. (More reliable
results, failures sized and

detect tendencies)

Not reported

[34]

(PSI tech.):
karst stability and

backtrack historical
ground movements

(100 MHz):
anomalies associated with
voids (groundwater flow
within the karst system)

A better understanding of a karstic
flow system in urban areas

PSI limitations: convert phase shifts
into distance for sudden and

nonlinear movements and
discriminates between terrain

movement and target instability
GPR urban infrastructures make it

difficult for data collection
and interpretation

[35] (PSI tech.):
progressive subsidence

(180 MHz):
information from the
shallow subsurface

Both techniques complement each
other and detect new faults

Conductive materials and gardened
areas limit the GPR
depth investigation

[36]
(PSI tech.?):

rate values ranging from
4.4 to 17.3 mm/yr

(600/200 MHz): shallow
cavities, depth of the

rockhead and water table,
sinkholes and

edges definition

To determine or corroborate the
active nature of some of the

sinkholes and, in some cases,
improve the location of the

sinkhole edges

The loss of coherence, mainly related
to the presence of agricultural fields
and vegetation, reduce the density of

measurement points

[37]
(PSI tech.):

the highest subsiding area
resulted in −50 mm/yr

(200 MHz & 40/70 MHz):
faults and probable origin

The subsiding area identified with
the PSI technique is supported by the

fault detected by the GPR
Not reported
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2. Materials and Methods
2.1. Description of the Case Study

The case study is in the vicinity of the Forestry Engineering School (42.440250◦N
8.636861◦W, coordinates defined in WGS84) at the Xunqueira University campus (Figure 1)
belonging to the University of Vigo. It is in the city of Pontevedra, next to one of the
meanders of the Lérez River near the mouth of the Pontevedra estuary. The campus
was built in the 1990s [38] in a wetland area, as shown in the historical map of this zone
(Figure 1c).
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In the case of the buildings, they were anchored to firm foundations, so their safety
is assured. However, during the last two years, it was possible to observe defects in
pavements, sidewalks, and land roads in the area, such as potholes and subsidence. The
case of the Forestry Engineering School is remarkable, showing land subsidence and
subsequent rupture of its paved-around building foundations, as observed in Figure 2.

Moreover, the following maps in Figure 3 show the lithology (a) and risks (b) for
the area under investigation. This area is characterized by the lithological composition
resulting from the interaction of quaternary dendritic deposits over a marshland zone
and metamorphic rocks. The lithology in this region is diverse and presents a range of
geological formations. The quaternary dendritic deposits consist mainly of unconsolidated
sediments of small thickness (on the order of a few dm), made up of organic silt with
passages of fine sand, clay and gravel, which have been transported and deposited by the
ocean tides and floods. These deposits often exhibit stratification and variable compaction
and grading. These superficial deposits rest on a diverse substratum of granite, gneiss or
schist. Adjacent to the quaternary deposits, the metamorphic rocks emerge, thus revealing
the transformative effects of heat, pressure, and chemical alteration. The metamorphic
lithologies in the area include schists, gneisses, and marbles, with distinct foliation and
mineralogical characteristics [40].
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damages observed and their position in the Forestry Engineering School building (numbers 1 to 5).
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The settlement phenomena observed in the area surrounding the Forestry Engineering
School, built at the end of the 1990s, can be related to the coastal risk map developed by the
Climate Change American Organization (Figure 4, based on [42]). According to [43], the area
under study will be affected by sea-level rise in 30 years if the effect of climate change continues.
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2.2. Methodology
2.2.1. InSAR Data and Processing

Synthetic Aperture Radar (SAR) instruments are spaceborne active imaging systems
that provide images of the Earth’s surface using microwave and radio frequency elec-
tromagnetic radiation [44]. SAR products consist of complex-valued images, each pixel
containing amplitude and phase information [45].

Radar interferometry, or InSAR, is a technique that applies interferometric methods to
SAR images. The interferogram obtained from the coupling of two SAR images acquired
in different moments contains the phase difference between the received signals, which is
related to the path of the wave reaching a ground target, that could have moved in the time
interval between the acquisitions of the images [46]. Therefore, by comparing the images
of the surface at different times, changes over time may be detected and monitored. The
approach that converts the interferometric phase difference into surface displacement by
removing topography is called Differential Interferometry SAR, or DInSAR [45,46]. This
technique is widely used to measure natural geophysical phenomena, as well as to monitor
ground displacements caused by human activities [47].

The interferometric phase difference contains some unwanted phase components due
to topographic model inaccuracies, atmospheric artifacts, and orbital parameters, among
others. The following equation can be used to consider all unwanted artifacts, together
with the phase components due to deformation or displacement, and topography [48–50]:

∆φ = ∆φ_{disp} + ∆φ_{topo} + ∆φ_{artifacts} (1)

where ∆φ_{disp} is associated with the displacement in the LOS (Line Of Sight) direction,
which is linked to soil deformation; ∆φ_{topo} represents the contribution of the topogra-
phy; and ∆φ_{artifacts} includes all contributions due to errors and inaccuracies, including
inaccuracies of the topographic model. Therefore, subtracting the phase due to topography
and the component due to errors and inaccuracies, the deformation component is obtained.

The latter may limit the applicability of the technique, as the phase component due to
ground motion may be overshadowed by contributions due to variations in atmospheric
properties or errors in the determination of the orbital parameters or the surface elevation
model [46]. Moreover, changes in the scattering properties of the Earth’s surface with time
and with respect to the angle of incidence may add a noise phase component, which leads
to decorrelation phenomena. Therefore, decorrelation and atmospheric inhomogeneities
limit the application of DinSAR [46,51].

To overcome the limitations of conventional DInSAR, advanced InSAR techniques
were developed [51,52]. These techniques reduce sources of error by analyzing the time
series of SAR images and allow the extraction of the temporal evolution of the surface
deformation [46,49,53,54]. These advanced methods extract deformation signals only from
points with certain scattering properties, called persistent scatterers (PSs) and distributed
scatterers (DSs) [48]. PSs are ground objects that can maintain stable scattering properties
over long periods of time, while DS targets contain several small and random scatterers,
with none being dominant [55].

A remarkable PS technique is PSI [51], which identifies permanent scatterers and
operates on a time series of interferograms all formed with respect to a single master SAR
image. PSI makes it possible to associate deformation with a specific scatterer, rather than a
resolution cell of dimensions dictated by the radar system [46].

The SBAS algorithm is among the DS-based techniques [52], which uses a multi-master
interferogram stack aimed at reducing geometric and temporal decorrelation effects by
forming interferograms only between images separated by a short spatial and temporal
baseline (i.e., spatial and temporal distance between the two acquisitions) [55].

On one hand, the PSI method informs about critical points that could be associated
with subsidence or even forming sinkholes. This is crucial information for further analysis
with in situ techniques, in order to validate the InSAR results and to analyze the possible
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cause of the subsidence or critical points detected. However, the PSI method has some
limitations, such as, for example, uncertainties regarding the proper position of a PS, or
even the existence of a PS in the target area. Those factors are influenced by external
variables such as vegetation, coherence between images, master image, data contamination
and process. Due to these factors, it is important to compare PSI results with those obtained
with the SBAS method, since significant risk areas could not be properly detected. As the
SBAS method is less affected by external variables, it creates a matrix over the entire study
area, thus providing information on all areas, while the PSI method obtains scatters.

On the other hand, the SBAS method provides deformation information over an entire
radar resolution cell, i.e., the signal synthesized from a set of surface scatterers. This allows
the study and monitoring of large-scale deformation but prevents focusing on specific
reflectors. As no stable reflectors are required, SBAS is a technique applicable in rural or
mountainous areas, bare soil or rock. However, as a multi-reference network method, the
applicability of SBAS is generally restricted to datasets that satisfy the necessary baseline
and spatial coherence conditions. A dense network must be created with the optimal quality.

More theoretical background about the InSAR technique, and both PSI and SBAS
methods, can be found in [46].

Figure 5 was elaborated based on the review in [56]. Observing the graphics in
Figure 5b, it is possible to conclude that the Sentinel-1 satellite has been the most used and
that PSI was generally the technique chosen to monitor displacements in urban cities.
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In this paper, Pontevedra (Galicia, NW Spain) and its surroundings were investigated
using two different sets of Sentinel-1 C-band SAR images in order to derive land subsidence
information. In the case of infrastructure, X-band resolution is more convenient, but the
lack of data and free-access satellites in this band complicates its application. For this
reason, in this paper the Sentinel-1 is selected, as it has been proved as a band for the
detection of possible sinkhole movements [31].

Initially, a time series from January 2020 to March 2022 was considered to investigate
the evolution of vertical deformation (long-term study) in the area. The SBAS dataset
consisted of 126 SAR images from descending orbits, as summarized in Table 2. The PSI
dataset consisted of 125 SAR images from descending orbits too, as shown in Table 2. The
processing has been carried out by applying the SBAS and PSI techniques, respectively.
SAR images were downloaded from the Alaska Satellite Facility (ASF), as they are provided
by the European Commission (EC) as part of the Earth-observation Copernicus program.
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Table 2. Dataset and characteristics for both InSAR processing techniques.

Technique SBAS PSI

Satellite mission Sentinel-1A/1B
Geometry Descending

Frequency band C (5.6 cm)
Revisit period 6 days

Incidence angle (Forestry Engineering
School building) 37.6◦

Path 125 (frames: 448, 450)
Time coverage January 2020 to March 2022; 821 days

Number of scenes 126 125
Master image Not applicable 1 October 2021

PSI Processing

The PSI processing consisted of two different steps: (1) single master DInSAR pre-
processing using ESA SNAP [57], and (2) the PSI processing using StaMPS [58].

The data pre-processing was performed using ESA SNAP 8.0 (Sentinel Application
Platform) software, a multimission toolbox that also includes SAR and optical data process-
ing tools. The first activity consists of determining the master image, which is chosen by
optimizing the temporal distance and the perpendicular baseline.

Figure 6 shows the PSI network, where the thick black point represents the master
image, and smaller points are the slave images. The slave–master link represents the
interferogram, and the colormap of this link is associated with the average spatial coherence
between them, where the red color means low coherence and the blue color means high
coherence, setting the limit of acceptance at 0.6.
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The following tasks focus on the data preparation: splitting the satellite images,
creating an interferogram-co-registration combo for each master-slave pair, and exporting
to StaMPS process to apply the PSI technique).
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After the pre-processing, the data were processed with StaMPS, a free package devel-
oped for research purposes, which incorporates PSI and SBAS methods to measure ground
displacements from a time series of SAR acquisitions [59].

The processing consists of 7 steps which are 7 StaMPS code functions that filter and
process the data until reliable results are obtained (Table 3). Each step is defined by different
parameters with default values that can be adjusted depending on the case study. The
values of the training document [60] were implemented. In addition, atmospheric and
orbital corrections are also performed using the TRAIN (toolbox for reducing atmospheric
InSAR noise) extra package. Finally, a reference point located at 8.690775◦W, 42.519278◦N
(all coordinates defined in WGS84) was selected to obtain the final values. This reference
area was chosen for mid-stage data neutrality.

Table 3. Evolution of persistent scatters during StaMPS processing.

Initial State Stamps (Third Step) Stamps (Fourth Step)

10,989
stable-phase pixels 10,921 PS selected 1684 PS kept after

dropping adjacent pixels
1650 PS after

dropping noisy pixels

The processing obtained from the PSI technique is satisfactory for three reasons. First,
the master–slave coherence is acceptable, as seen in Figure 6 (a minimum coherence of 0.6).
This coherence is due to the possible deviation from the baseline, the similarity of orbits, the
environmental conditions, and the temporal distance between image acquisition. Second,
the maximum error values estimated in the area are 0.4 rad, 0.05 rad/m and 0.5 rad
associated with tropospheric, spatial and atmospheric corrections, respectively. These
parameters are acceptable [46]. The spatially correlated DEM estimated error is around
the hundredth radian/meter unit; the orbit phase and atmosphere error are less than two
radians in the worst area of the interferograms. The phase tropospheric error (that is
stable in A Xunqueira) was corrected using a linear tropospheric correction. Finally, the
limit adjustment of the deformation velocity map associated with the reference point is
0.4 mm/yr. The interferogram area is around 4.4 km2.

SBAS Processing

The dataset characterized in Table 2 has been processed using the SBAS method, as
implemented in the Miami InSAR time-series (MintPy 1.3.2) software [55], to invert a
network of interferograms and retrieve surface displacement through time.

The HyP3 workflow pre-processing [61] is followed in order to generate the stack of
differential interferograms that will be used to input MintPy. This pre-processing workflow
will prepare the SAR images to be used in SBAS interferometry. The pre-processing
resulted in a stack of multilook interferograms, which are also clipped so that the same
area is represented in all of them.

The processing in MintPy is divided into two stages for the calculation of the time
evolution of the surface deformation. In the first stage, the interferogram network is
inverted to obtain the raw phase time series, and reliable pixels are selected based on a
coherence threshold. The second part of the processing consists of separating the different
phase contributions from the raw phase time series to derive the displacement series. The
different processing steps may be consulted in [55].

Our selected network of interferogram pairs is based on baseline thresholds of 60 days
and 131 m, as observed in Figure 7. From 126 SAR acquisitions covering the period from
January 2020 to March 2022, 917 differential interferograms were computed following the
HyP3 workflow. Average spatial coherence is greater than 0.399 for all interferograms, with
a maximum coherence of 0.88.
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Figure 7. Selected network of interferograms for SBAS processing. Colormap based on average
spatial coherence.

In order to reduce the computational time, a subset area between longitudes 8.59◦W
and 8.83◦W and latitudes 42.413◦N and 42.576◦N, approximately, is subjected to processing.
The reference point used was the same as that for the PSI method.

The closure phase is defined as the cyclic product of the unwrapped interferometric
phases of a triplet of interferograms, and its integer ambiguity, as defined in [55], is equal to
zero for a triplet without unwrapping errors. Calling the number of triplets with non-zero
integer ambiguity Tint, Figure 8a shows the spatial distribution of Tint and Figure 8b shows
the histogram of its values, where the occurrence of potential unwrapping error, i.e., pixels
with a non-zero value, may be assessed. In our case, Figure 8b shows no major peak with
Tint > 0, meaning no coherence unwrapping errors in the dataset. Moreover, pixels in the
area of study (green box in Figure 8a) have Tint = 0 (dark blue in Figure 8a), and are free of
unwrapping errors.
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corresponding to the map (a) extension, showing the number (#) of pixels versus the number (#) of
triplets with non-zero integer ambiguity.

The root mean square (RMS) of the residual phase (the component that can neither be
corrected nor be modeled as ground deformation), is used to characterize the noise level.
A SAR acquisition is marked as noisy if its RMS value is larger than three times the median
absolute deviation, according to the workflow defined in [55]. This procedure suggests
that the following dates should be omitted: 10 May 2021 and 7 September 2021. Reliable
pixels are defined as pixels with temporal coherence greater than 0.7, according to [55].
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The area of interest (Pontevedra and its surroundings) happens to be in a zone of high
temporal coherence.

The computed raw phase time series is corrected by subtracting the phase contri-
butions not related to deformation. This allows the average velocity at each pixel to be
calculated as the slope of the line that best fits the series of displacements. In particular,
and following [55], the tropospheric delay is estimated using Global Atmospheric Models,
provided by the ERA5 dataset, and PyAPS 0.3.1 software; then, the topographic residual
caused by a DEM error is estimated based on the proportionality with the perpendicular
baseline time-series, and removed (in the case of study, Copernicus GLO-30 Public DEM
is used); finally, the phase component that cannot be corrected is used to characterize the
noise level, and a SAR acquisition is marked as noisy if its RMS value is larger than three
median absolute deviations.

2.2.2. GPR Data Acquisition and Processing

GPR is a geophysical technique widely used to locate and map settlements and
sinkhole formations without altering the foundation soil structure. The method allows for
the identification of soil discontinuities, and the electromagnetic signal is reflected at the
interfaces between adjacent media with sufficient dielectric contrast. The strength of the
reflected echo, or amplitude, is proportional to the change in the magnitude of the dielectric
constant. More theoretical background can be found in [62].

In comparison with other NDT (non-destructive testing) methods, the GPR provides
high-resolution images of the subsoil, and it has the advantage of covering a wide area
in a relatively short period of time with a reduced effort [63]. GPR studies focused on
the assessment of the structural stability of buildings mainly include the inspection of
foundation floor systems, damage in pavements, backfill soil analysis and condition status,
and ground subsidence and settlement phenomena [64–73].

The GPR study was carried out in January 2022 using a ProEx system from the com-
pany Malå Geoscience, with 500 MHz and 800 MHz center frequency antennas (Figure 9).
Five GPR profile lines were gathered around the building of the Forestry Engineering
School. The data acquisition parameters selected were: 1 cm of trace-interval distance
and a total time window of 95 ns (composed of 656 samples per trace) for the 500 MHz
antenna, and 1 cm of trace-interval distance and a total time window of 61 ns (composed
of 912 samples per trace) for the 800 MHz antenna. The GPR system was mounted on a
survey cart equipped with an odometer wheel to measure the profile lengths and to control
the distance between traces.
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The GPR recorder signals were then processed with ReflexW v.9.5 software using
the processing sequence described in Table 4. The signal propagation velocity used for
migration was previously estimated using the hyperbola fitting method.

Table 4. Filters and settings used for GPR data processing.

Filters
Setting

500 MHz 800 MHz

Subtract-mean (dewow) Time window: 2 ns Time window: 1.25 ns
Gain function Linear: 1.44 and Exponential: 1.44 Linear: 2 and Exponential: 2
Background removal by default (total time window)

Bandpass (Butterworth) Lower: 305 MHz
Upper: 773 MHz

Lower: 522 MHz
Upper: 1563 MHz

Migration (Kirchhoff) Velocity (hyperbola fitting): 0.1 m/ns

3. Results
3.1. PSI Results

The results obtained with the PSI method, for the time series from January 2020 to
March 2022, are shown at the following scales: (a) global and (b) specific area.

The global vision is shown in Figure 10. Figure 10a presents the heat map around
the city of Pontevedra. The results show the areas with higher subsidence density, which
correspond to areas such as the port (highlighted into a black dashed line box) (normal due
to the variability of a port, activity and tides), a new construction area (highlighted with a
green dashed line box) or the area of study (A Xunqueira) (marked with the red location
icon). Moreover, Figure 10b represents the displacement velocity histogram of the area of
the interferogram, showing a density peak in −0.45 mm/yr and the massive dominance of
negative values.
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Figure 10. (a) Subsidence heat map around Pontevedra city visualized in QGIS, where the port
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and (b) histogram of velocity deformation around Pontevedra city, where the colors are associated
with the different rates of velocity deformation.
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Figure 11 shows the PSI results of the specific area of the Forestry Engineering School
building. As observed in Figure 11a, the eight scatters obtained in this zone present different
velocity trends (elevation in blue and subsidence in red), with low velocity deformation
rates (maximum of 1.0 mm/yr and a minimum of −0.8 mm/yr). Taking into account the
randomness of the location of the scatters, the area of influence of the PS is represented
in Figure 11a. The visual failures identified in Figure 2 are located in similar areas to the
scatters identified by the PSI method. Moreover, Figure 11b presents the mean temporal
evolution of the scatters related to the Forestry Engineering building, including the linear
trend and slope. The slope indicates a deformation velocity of −0.2 mm/yr. That velocity
is not alarming, but tests with a long temporal spectrum (2 years in this study) must be
filtered to obtain real data. In this case, the temporal evolution is stable and valid since
96.8% of the points are in a wide displacement range of 10 mm.
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Figure 11. PSI results at the Forestry Engineering School building: (a) scatters obtained where red
points are negative velocities and blue points are positive velocities for the period January 2020
to March 2022, and (b) mean displacement evolution of the scatters related to the Forestry
Engineering building.

Considering the two-years velocity deformation in the area, a slight subsidence was
observed. Therefore, the temporal displacement (Figure 11b) was analyzed to find the
maximum stable subsidence in the temporal spectrum. Finally, these dates are from June
2021 to March 2022: it is consistent with the surface defect dates (2021–2022) and permits a
comparison with the GPR results.

3.2. SBAS Results

According to Figure 12a, the average velocity in the area of interest is close to zero
(−0.4 mm/yr) for the period from January 2020 to March 2022, and with negative values
in most of the total area. Based on these results, considering the surface defect dates and
the maximum stable subsidence spectrum obtained from the PSI method, a second time
series was assumed. A total of 278 interferograms from 39 acquisition dates of the same
data for the period from June 2021 and March 2022 were used. As shown in Figure 12b, the
analysis of this shorter period allowed for highlighting a spatial pattern of subsidence in
the city of Pontevedra, located along the Lérez riverbed and the “Marismas da Xunqueira
de Alba” (marshlands).

In both time series, high temporal coherence has been obtained in the area of interest,
due to the fact that it is located in an urban area, so that coherence can be maintained
over long periods of time. The regions dominated by vegetation suffer from decorrela-
tion phenomena over time, which explains the areas of lower coherence (masked out in
Figure 12).
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The trend for the velocity values was analyzed through the generation of velocity
histograms, using the grid of data points shown in Figure 13. The location of the Forestry
Engineering School is indicated with a black circle. The histograms (Figure 14) show
another difference that can be perceived between both time series: the magnitude of the
linear velocities found by this method shows more pronounced negative velocities for the
whole area of the city of Pontevedra for the shorter time period. In the case of using the
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long time series, this zone is characterized by a velocity deformation close to zero, although
mainly negative, as can be seen in the velocity histogram in Figure 14. The more frequent
value of subsidence velocity (in the LOS direction) is near –6 mm/yr for the period June
2021 to March 2022, while the long time-series results in an estimation for the average
velocity with a mode value at the interval [−1, 0] mm/yr.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 24 
 

 

period June 2021 to March 2022, while the long time-series results in an estimation for the 
average velocity with a mode value at the interval [−1, 0] mm/yr. 

 
Figure 13. Velocity map of the points used for computing the velocity histogram, from SBAS pro-
cessing for the period from June 2021 to March 2022. The black circumference indicates the location 
of the Forestry Engineering School building. Points appearing in the water are due to artifacts, so 
they have not been considered for the study. 

 
Figure 14. Histogram of velocity values at points near the area of interest for the period from January 
2020 to March 2022 (red) and from June 2021 to March 2022 (blue). 

The displacement time series for both SBAS scenarios are plotted in Figure 15. In the 
noise evaluation stage of the processing, noisy SAR acquisitions are identified. These ac-
quisitions are excluded in the velocity estimation [55]. For this case, the excluded dates 
are 22 January 2020, 9 May 2020, 14 June 2020, 14 July 2020, 25 August 2020, 24 October 
2020, 11 November 2020, 29 December 2020, 3 February 2021, 15 February 2021, 2 August 
2021, and 24 December 2021. A linear regression of the displacement series was calculated 
(Figure 15, black line), yielding an average velocity of −4.1 ± 2.4 mm/yr for the period from 
June 2021 to March 2022. Instantaneous displacements of about ±1 cm at 12-day intervals 
have also been observed. On the other hand, the linear long-term velocity computed for 
the entire period is −0.20 ± 0.44 mm/yr, which can be considered negligible. 

Figure 13. Velocity map of the points used for computing the velocity histogram, from SBAS
processing for the period from June 2021 to March 2022. The black circumference indicates the
location of the Forestry Engineering School building. Points appearing in the water are due to
artifacts, so they have not been considered for the study.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 24 
 

 

period June 2021 to March 2022, while the long time-series results in an estimation for the 
average velocity with a mode value at the interval [−1, 0] mm/yr. 

 
Figure 13. Velocity map of the points used for computing the velocity histogram, from SBAS pro-
cessing for the period from June 2021 to March 2022. The black circumference indicates the location 
of the Forestry Engineering School building. Points appearing in the water are due to artifacts, so 
they have not been considered for the study. 

 
Figure 14. Histogram of velocity values at points near the area of interest for the period from January 
2020 to March 2022 (red) and from June 2021 to March 2022 (blue). 

The displacement time series for both SBAS scenarios are plotted in Figure 15. In the 
noise evaluation stage of the processing, noisy SAR acquisitions are identified. These ac-
quisitions are excluded in the velocity estimation [55]. For this case, the excluded dates 
are 22 January 2020, 9 May 2020, 14 June 2020, 14 July 2020, 25 August 2020, 24 October 
2020, 11 November 2020, 29 December 2020, 3 February 2021, 15 February 2021, 2 August 
2021, and 24 December 2021. A linear regression of the displacement series was calculated 
(Figure 15, black line), yielding an average velocity of −4.1 ± 2.4 mm/yr for the period from 
June 2021 to March 2022. Instantaneous displacements of about ±1 cm at 12-day intervals 
have also been observed. On the other hand, the linear long-term velocity computed for 
the entire period is −0.20 ± 0.44 mm/yr, which can be considered negligible. 

Figure 14. Histogram of velocity values at points near the area of interest for the period from
January 2020 to March 2022 (red) and from June 2021 to March 2022 (blue).

The displacement time series for both SBAS scenarios are plotted in Figure 15. In
the noise evaluation stage of the processing, noisy SAR acquisitions are identified. These
acquisitions are excluded in the velocity estimation [55]. For this case, the excluded dates
are 22 January 2020, 9 May 2020, 14 June 2020, 14 July 2020, 25 August 2020, 24 October
2020, 11 November 2020, 29 December 2020, 3 February 2021, 15 February 2021, 2 August
2021, and 24 December 2021. A linear regression of the displacement series was calculated
(Figure 15, black line), yielding an average velocity of −4.1 ± 2.4 mm/yr for the period from
June 2021 to March 2022. Instantaneous displacements of about ±1 cm at 12-day intervals
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have also been observed. On the other hand, the linear long-term velocity computed for
the entire period is −0.20 ± 0.44 mm/yr, which can be considered negligible.
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Figure 15. Displacement time series at the location of the Forestry Engineering School building from
the SBAS processing for the period from January 2020 to March 2022 (red line) and from June 2021 to
March 2022 (blue line). The black line illustrates the linear regression model.

3.3. PSI-SBAS Comparison and Additional GPR Analyses

The displacement time series of the Forestry Engineering building obtained from
each technique (PSI-SBAS) are presented in Figure 16. From Figure 16a, the time-series
displacement between the results from both techniques all along the time acquisition can
be observed. In addition, the linear regression models with the slope are displayed in order
to quantify results. The slope (in units [mm/yr]) for the period January 2020 to March 2022
obtains subsidence values of −0.2 (PSI) and −0.4 (SBAS). Furthermore, Figure 16b focuses
on the period June 2021 to March 2022 where the velocity deformation obtained was
−3.0 mm/yr with the PSI method, and −4.1 mm/yr with the SBAS method.
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The results obtained with both PSI-SBAS methods have shown similar tendencies in
(i) deformation trend, with slight subsidence in the area from January 2020 to March 2022
and higher subsidence from June 2021 to March 2022; and (ii) displacement range values
(with a mean error of 2.43 mm and a medium difference of 0.26 mm).

Moreover, to quantify and analyze the similarities and differences between PSI and
SBAS time series, two tests were carried out: (i) The Student-t analysis showed a t-statistic
of −0.76, which suggests a small difference between both groups. This hypothesis was
confirmed with a p-value of 0.44, which was higher than the limit of 0.05. (ii) The dynamic
Time Warping (DTW) average distance between PSI-SBAS measurements of 1.65 mm
reveals the mean cumulative distance between both techniques.

With the aim of analyzing a possible relationship between climate change and the
InSAR results, some weather parameters (temperature, humidity and precipitation) were
analyzed. The statistical measure Spearman’s rank correlation coefficient was obtained
(Table 5), where positive correlations were observed between the InSAR results and tem-
perature: 0.19 for PSI and 0.24 for SBAS. In both cases, this hypothesis was validated with a
p-value < 0.05. Conversely, a negative correlation was observed between humidity and PSI
(−0.21) with a p-value of 0.029. Non-correlation was validated for the precipitation factor
with both techniques, and for the humidity factor with the SBAS results.

Table 5. Correlation between climate change factors and InSAR techniques.

SBAS|PSI

Temperature [◦C] Humidity [%] Precipitation [mL]

Spearman
coefficient

Correlation 0.19|0.24 0.09|−0.21 0.14|−0.16
p value 0.047|0.011 0.340|0.029 0.140|0.090

All these results increase the accuracy of the analysis, but further investigation is
needed to confirm the interpretations achieved and their relationship with the in situ
failures observed in Figure 2. In this paper, the GPR method is used as a complementary
technique to obtain extra information (e.g., extent and probable origin of the problem)
aimed to provide more reliable results.

Figure 17 shows the processed GPR data produced by the five profile lines conducted
around the Forestry Engineering School building. The scatters obtained from the PSI
method with the velocity deformation for each PS during the period June 2021 to March
2022 are also represented. Figure 17a presents the 500 MHz data for profile line 1, showing
the identification of two possible forming sinkholes (reflection patterns highlighted in red
circles). It is necessary to remark that the possible sinkhole interpreted at the end of the
radargram in Figure 17a (marked as 1) is coincident with the visual failure number 1 in
Figure 2b,c, and converges with the subsidence scatter (−4.8 mm/yr) area of influence
obtained with the PSI method.

Figure 17b displays the 500 MHz data obtained for profile line 2, showing the inter-
pretation of a potential forming sinkhole that correlates with the visual failure number
2. The scatter associated is in agreement with GPR and visual analysis, nonetheless, the
deformation value does not support this assumption.

Figure 17c includes the 500 MHz and 800 MHz data produced by profile line 3, in
which it is possible to interpret a cavity formation and backfill spalling that is consistent
with the visual failure number 3. In this case, the scatter associated is close to the visual
failure and the sinkhole detected from the radargram.

Figure 17d shows the 500 MHz data produced by profile line 4, highlighting the
interpretation of an anomaly that could be associated with the visual failure number 4. The
800 MHz data produced for the damaged area (in a dashed yellow line box) is also included.
The scatter associated is in agreement with the location and kind of failure, because the
aspect of the damage on the surface is a bump.
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Finally, Figure 17e illustrates the 500 MHz data obtained for profile line 5, including
the interpretation of potential inner failures, one of which has a spatial distribution that
certainly may coincide with the visual failure number 5. Furthermore, the 800 MHz data
produced for this damaged area (in a dashed pink line box) is shown. In this case, the PS
also has a relation with the GPR and visual analysis, showing a coincident location and
similar information about the kind of damage (slight subsidence).
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4. Conclusions

This paper presents the complementary use of different radar techniques. First, two
different InSAR techniques, PSI and SBAS, were applied to assess the applicability of each
method to the detection of land subsidence in urban areas. Second, the GPR technique
was used to provide additional information to the InSAR interpretations and to obtain
complementary data such as evidence of building settlements and sinkhole formation. The
main conclusions of this work are:

• For the period from January 2020 to March 2022, and for the global area of Pontevedra
city, the average velocities obtained with the PSI and SBAS methods were −0.2 mm/yr
and −0.4 mm/yr, respectively. In both cases, the area presents a massive dominance
of negative values that mean a slight sinking effect.

• For the same period, the PSI results in the area of the Forestry Engineering School
building have revealed scatters with different velocity trends, showing maximum and
minimum deformation rates of 1.0 mm/yr and −0.8 mm/yr, respectively. However,
a drawback of the PSI method was revealed, which refers to the fact that analyses
with long temporal spectrums, such as 2 years in our case, motivate over-filtering.
Observing the time series, 96.8% of the measurements were in a displacement range of
10 mm. To overcome this limitation, and taking into account the errors and orography
of the zone, a temporal spectrum of one year (from June 2021 to March 2022) was
additionally processed.

• Thus, for the period from June 2021 to March 2022, a higher pattern of subsidence
was detected with values of −3.0 mm/yr and −4.1 mm/yr for PSI and SBAS, respec-
tively. Instantaneous displacements of about ±1 cm at 12-day intervals have also been
observed with the SBAS method. All the values are within the detection threshold
considered for InSAR [74].

• Overall, the PSI and SBAS methods have shown a good match, with similar tendency
and displacement range values. The fact that both methods display similar results,
with similar initial data, reinforces the validation of the use of SAR techniques for
infrastructure analyses focusing on subsidence.

• Although both InSAR techniques have provided similar results, it should be high-
lighted that the PSI method provides extra information (critical points, such as PSs
with high subsidence rate).

• Regarding the complementary GPR method used, the radar data collected in January
2022 allowed for the identification of internal failures around the Forestry Engineering
School building. From the reflection patterns produced, it was possible to estimate the
extent and depth (edges delineation) of the cavity’s formations.

• The internal damages interpreted from the GPR data showed a good agreement
with the PS obtained for this area and with the visible damages identified from
visual inspection (location and kind of failure (subsidence or elevation)), thus pro-
viding crucial information, and supporting more appropriate decision making and
preventive maintenance.

Aiming to improve the accuracy and range of the InSAR processing, the authors’ rec-
ommendations for future works are to incorporate the use of corner reflectors to ensure PS
in some specific areas, clustering of the velocity results for PSI technique, the use of X-band
images, and the use of new advanced InSAR algorithms (SqueeSAR, JSInSAR). In addition,
new methodological approaches will be tested for both methods, such as the analysis of
both satellite orbit directions to obtain the vertical component of the displacement, and
the combination of InSAR with GNSS and/or leveling techniques for the calibration of the
results and the correct positioning of the reference point.
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