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Abstract: Limitations in the current capability of monitoring PM2.5 adversely impact air quality
management and health risk assessment of PM2.5 exposure. Commonly, ground-based monitoring
networks are established to measure the PM2.5 concentrations in highly populated regions and
protected areas such as national parks, yet large gaps exist in spatial coverage. Satellite-derived
aerosol optical properties serve to complement the missing spatial information of ground-based
monitoring networks. However, satellite remote sensing AODs are hampered under cloudy/hazy
conditions or during nighttime. Here we strive to overcome the long-standing restriction that
surface PM2.5 cannot be obtained with satellite remote sensing under cloudy/hazy conditions or
during nighttime. In this work, we introduce a deep spatiotemporal neural network (ST-NN) and
demonstrate that it can artfully fill these observational gaps. We quantified the quantitative impact
of input variables on the results using sensitivity and visual analysis of the model. This technique
provides ground-level PM2.5 concentrations with a high spatial resolution (0.01◦) and 24-h temporal
coverage, hour-by-hour, complete coverage. In central and eastern China, the 10-fold cross-validation
results show that R2 is between 0.8 and 0.9, and RMSE is between 6 and 26 (µg m−3). The relative
error varies in different concentration ranges and is generally less than 20%. Better constrained
spatiotemporal distributions of PM2.5 concentrations will contribute to improving health effects
studies, atmospheric emission estimates, and air quality predictions.

Keywords: PM2.5; air pollution; neural network; full-coverage

1. Introduction

The negative impact of ambient particles on humans and nature has become a global
concern [1]. Aerosols play a role in shaping weather and climate systems [2] through their
ability to absorb and scatter radiation, as well as their influence on cloud dynamics [3,4],
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and particles with a diameter less than 2.5 µm (PM2.5) are small enough to enter deeply
into human lungs, posing the greatest short-term and long-term risks to health [5]. PM2.5
can be created either from direct emissions or indirect sources resulting from complicated
chemical reactions [6,7], which makes its composition complex [8]. This is also the reason
why multiple countries are increasingly raising their attention to the regulation of PM2.5
emissions and identification of its potential sources [9,10]. In addition, it can stay in the
boundary layer for a few days and in the free troposphere for a few weeks [11–13]. It
exits the atmosphere through precipitation, deposition, and other chemical reactions [14].
Simultaneously, under the influences of atmospheric diffusion and transmission, the diurnal
variation of PM2.5 can range from several µg m−3 to many hundreds µg m−3 within
several hours, and appreciable differences in PM2.5 concentrations can occur within several
kilometers spatially [15–17].

Therefore, an accurate description of the spatiotemporal distribution characteristics
of PM2.5 is crucial. The spatiotemporal distribution of PM2.5 is commonly obtained from
ground sampling instruments or inferred from satellite remote sensing. Over the past sev-
eral years, China has made remarkable progress in monitoring air quality, with the number
of surface monitoring sites exceeding 1600 across the country in 2020 [18]. These sites are
mainly concentrated in urban regions, while rural and rural-urban fringes, home to half of
China’s population, still lack systematic observation. Although the density of monitoring
sites within urban areas is higher than that in rural areas (Table S1), some essential sources,
especially point ones, can still be overlooked. Satellite aerosol optical properties are applied
to complement the missing spatial information of monitoring networks. For example, the
Himawari-8 launched by the Japan Meteorological Agency provides aerosol optical depth
(AOD) at a 5-km spatial resolution every 10 min. Although satellite data is collected, only
indirect indications of ground-level PM2.5 concentrations are available. Aerosol optical
depth (AOD) reflects the vertical distribution of aerosol extinction from the Earth’s surface
to the top of the atmosphere. In contrast, ground-based instruments solely detect PM2.5
concentrations in proximity to the ground. When the long-range transmission of particles
occurs above the ground, particulates do not gather around the ground level, and high
AOD does not always coincide with high PM2.5 concentrations [19]. Due to different char-
acteristics of aerosol hygroscopic growth at different heights, satellite AOD and ground
PM2.5 vary due to their differences in seasonal attributes. For instance, in the summer of
North China Plain, aerosols between 500 and 1000 m display a clear peak, resulting in
differences between satellite observations of aerosol optical thickness and ground-based
monitoring of PM2.5 concentrations [20]. Furthermore, satellite observations are limited to
cloud-free and haze-free scenes.

Currently, researchers make numerous efforts to derive ground-level PM2.5 concentra-
tions with satellite AOD and some observation results. The Gridpoint Statistical Interpola-
tion (GSI) Three-Dimensional Variational (3DVAR) data assimilation system assimilates
atmospheric variables from diversified approaches, including satellites, radars, and weather
balloons, into the model. By solving a system of equations that minimize the cost function,
the 3DVAR method is applied to adjust the initial conditions of the model (which may con-
tain errors) to match observational results. Based on the derivation, the optimal adjustment
of the initial parameters can be clarified. This system is usually adopted to link the changes
in AOD to aerosol chemical compositions [21,22]. This approach is computationally expen-
sive, and the performance can be degraded by the uncertainties in the operator itself [23].
Attempts to statistically infer ground-level PM2.5 concentration from satellite AOD are also
proposed [24,25]. Although spatiotemporal gaps were filled with predictions from chemical
transport models or with AOD observed by multiple satellite sensors [24,25], predictions
were obtained at relatively low temporal resolution (daily/monthly) [24–35]. Furthermore,
errors in this approach may arise due to uncertainties in chemical transport modeling or
unfavorable weather conditions such as cloudiness or haze. In addition, errors may also
stem from uncertainties in the data or model system [24,25]. The method of monitoring
AOD by geostationary orbit satellites relies on passive remote sensing using solar radiation,
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and can only monitor AOD during daylight hours [36–38]. Improved predictions [39,40]
suggested using a day-night band sensor (DNB), yet hourly variations remained unclear. A
few studies addressed this issue by including temporal predictors, which could indicate the
diurnal pattern of PM2.5 [41,42]. However, the horizontal resolution of most of the input
variables was seriously lower than the prediction, and these algorithms exhibited biases
stemming from the limited data coverage of AOD retrievals under cloud cover, ice-covered
surfaces, or during nighttime. Heavy haze can also be incorrectly classified as clouds in
AOD retrievals [43]. For example, our statistical analyses suggest that the annual spatial
coverage of satellite AOD is only 33% in North China, and even less in other concerned
regions in China (Table S2). Better methods are thus needed to overcome these limitations,
particularly for areas often impacted by thick clouds and severe haze pollution [44–46]. In
this study, we construct a deep spatiotemporal neural network (ST-NN) model to derive
ground-level PM2.5 concentrations with inputs of satellite AOD, meteorological variables,
and geographical information.

This work is structured as follows: In Section 2, existing materials and methods are
introduced. After that, Section 3 describes the results with the ST-NN model. It obtains a
high spatial and temporal resolution (0.01◦ and hourly) surface PM2.5 even during nighttime
and under cloudy or hazy conditions; it has conducted a rigorous verification and extensive
discussion of the results.

2. Materials and Methods

We built a deep learning model to improve estimates of ground-level PM2.5 concen-
trations, particularly for regions without sampling sites, and for conditions (cloudy, hazy,
nighttime, etc.) where satellite retrievals are not available. Our research area is concen-
trated in the Middle East of China (Figure S3), with a time span of four years from 2017
to 2020. In Section 2.1, we introduced the input data of the model, in Sections 2.2 and 2.3,
we introduced the model structure and training verification methods, and in Section 2.4,
we introduced a sensitivity analysis method to quantitatively analyze the impact of input
data on the results, and to visualize the relationship between input variables and target
output variables.

2.1. Model Configuration Datasets
2.1.1. Datasets Description

The Chinese National Environmental Monitoring Center (CNMEC) network (http://
www.cnemc.cn/, accessed on 1 January 2023) provided us with hourly ground-level PM2.5
observations, which we used as the label and validation data. The measurements were
obtained using the β X-ray method and the vibration balance method.

For the input datasets, the daily MODerate Resolution Imaging Spectroradiometer
(MODIS) 3 km aerosol products [47] (https://doi.org/10.5067/MODIS/MOD04_3K.061,
accessed on 1 January 2023) and the hourly 0.05◦ × 0.05◦ Himawari-8 AOD products are
used [48] (https://doi.org/10.2151/jmsj.2018-039, accessed on 1 January 2023).

The original MODIS products were mapped onto regional grids of 0.05◦ × 0.05◦

resolution to ensure that the input data have the same grid center. Considering the diurnal
variation of the solar zenith angles, only daytime satellite data (defined as 00:00–09:00 UTC)
were used in this study. The reason for using two different types of satellite aerosol optical
thickness is that the Himawari-8 satellite aerosol is effective in capturing the daily variation
of aerosols [49], while the MODIS aerosol product has an aerosol optical thickness in
different bands to capture information on the properties of aerosols and more accurate
numerical results [47].

We use some geographic information data to explore its potential impact on PM2.5.
These inputs to the neural network include land cover types (MODIS land cover product
at 0.05◦ × 0.05◦ resolution, yearly), the normalized difference vegetation index (MODIS,
0.05◦ × 0.05◦, monthly), the enhanced vegetation index (MODIS, 0.05◦ × 0.05◦, monthly),
road network (originally meter level, www.openstreetmap.org; Last access: 10 July 2020),

http://www.cnemc.cn/
http://www.cnemc.cn/
https://doi.org/10.5067/MODIS/MOD04_3K.061
https://doi.org/10.2151/jmsj.2018-039
www.openstreetmap.org
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point of interest data (POI), elevation data (1 km × 1 km, the Resource and Environment
Science Data Center, RESDC, http://www.resdc.cn; Last access: 1 January 2021), and popu-
lation/gross domestic product data from RESDC. These datasets, including road network,
points of interest (POI), elevation, etc., were resampled to a uniform grid resolution of 0.01◦.
The resulting datasets were georeferenced to ensure they share a common grid center.

Meteorological variables are important factors affecting atmospheric aerosols [50] and
meteorological conditions to heavy pollution episodes within the Beijing-Tianjin-Hebei
region were larger than 50% from 2013 to 2017 [51]. Meteorological conditions accounted
for 48% of PM2.5 variations in Eastern China from 1998 to 2016 [52]. The weather fields
(0.05◦ × 0.05◦, hourly) simulated by the Weather Research and Forecasting (WRF) model
version 4.0 with three nested domains [53,54] (https://www.mmm.ucar.edu/weather-
research-and-forecasting-model; Last access: 15 May 2020). The initial conditions and
boundary conditions of the meteorological fields were derived from the National Centers
for Environment Prediction’s (NCEP) 6-h final operational global (FNL) data with a spatial
resolution of 0.25◦ × 0.25◦.

The boundary field parameters were set at 26 mandatory levels from 1000 millibars to
10 millibars. These parameters include surface pressure, sea level pressure, geopotential
height, temperature, sea surface temperature, soil values, ice cover, relative humidity, u-
and v-winds, vertical motion, vorticity, and ozone. The parameters simulated by boundary
field and WRF we used are shown in Tables 1 and S3. In order to evaluate the validation
results of the WRF model and ground station, validation was carried out. Figure S1 shows
the verification results of the main meteorological variables (monitoring of coincidence
between ground meteorological stations and demand variables). The R of temperature and
pressure is above 0.95, and the slope is close to 1. The correlation coefficient R between the
wind speed simulated by the model and verified by ground meteorological stations is 0.65.
The main reason for the difference between the two is that wind speed has strong local
variability. The simulated value represents the average wind speed within a grid, while
the observed value represents the result at a specific location. Descriptions and features of
these considered datasets are listed in Tables 1 and S4–S6.

Table 1. Descriptions of considered variables.

Product Unit Variable Definition Spatial Resolution Temporal
Resolution

AOD Aerosol optical depth 0.05◦ × 0.05 1 h
Tempc ◦C Temperature 0.05◦ × 0.05◦ × 12 L 1 h

RH % Relative Humidity 0.05◦ × 0.05◦ × 12 L 1 h

HPBL m Planetary Boundary
Layer Height 0.05◦ × 0.05◦ 1 h

P Hpa Pressure 0.05◦ × 0.05◦ × 12 L 1 h
U m/s Wind Speed (U) 0.05◦ × 0.05◦ × 12 L 1 h
V m/s Wind Speed (V) 0.05◦ × 0.05◦ × 12 L 1 h

DEM m Digital Elevation Model 0.01◦ × 0.01◦ Annual
POI Point of Interest 0.01◦ × 0.01◦ Annual

Traffic Network Traffic Network 0.01◦ × 0.01◦ Annual
GDP ¥/km2 Gross Domestic Product 0.01◦ × 0.01◦ Annual
TPOP people/km2 population density 0.01◦ × 0.01◦ Annual

Land Cover
Type Land Cover Type 0.05◦ × 0.05◦ Annual

EVI Enhanced Vegetation
Index 0.05◦ × 0.05◦ Monthly

NDVI Normalized Difference
Vegetation Index 0.05◦ × 0.05◦ Monthly

2.1.2. Datasets Selection

The abundance of real-world data sources presents a challenge. To address this
challenge, it is necessary to leverage prior research efforts and employ effective data
filtering techniques to select appropriate input data. Such measures serve to mitigate the
complexity of modeling and enable the achievement of desired outcomes within acceptable

http://www.resdc.cn
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
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computational cost constraints. First, we conduct data preselection and select data by
checking the correlation between the input data variables and our target output (ground
PM2.5 concentration). All input features were used to examine the potential relationship
with PM2.5.

We employed the Maximal Information Coefficient (MIC) [55] to examine the correla-
tion between variables (Table S7), which can detect both linear and nonlinear relationships
among variables, but it involves high computational complexity. We also tested the Pearson
correlation coefficient (Table S7), which is an effective tool for assessing the linear corre-
lation between variables and has been widely used in this type of research [32,56,57]. If
continuous variables have linear correlation, they are correlated, and linear correlation
is a necessary but not sufficient condition for correlation. We use contingency tables to
calculate the chi-square statistic to test the correlation and independence between discrete
variables [58,59]. For variables such as roads, POI, etc., we consider their values to be
constant over time within the time scale of the study. First, we use the k-mean method
to cluster them for reducing dimensions. We classify the annual average data of CNEMC
PM2.5 according to WHO Global Air Quality Guidelines [60]; and estimate the indepen-
dence and correlation of variables by calculating the chi-square statistic between variables.
Only those parameters that pass the significance test (α < 0.05) were selected (Table S7).

2.1.3. Datasets Filter

For CNEMC PM2.5 data, we remove null data. Secondly, we also tested the perfor-
mance of the model under different data filtering rules (Table S10).

All hourly data at a specific monitoring site were transformed into z scores, and then
the transformed data (Zi) were removed if they met one of the following conditions: (1) the
absolute Zi was larger than 4 (|Zi| > 4), (2) the increment of Zi from the previous hourly
value was larger than 9 (|Zi − Zi − 1| > 9), or (3) the ratio of the z score to its centered
moving average of order 3 (MA3) was larger than 2 (3Zi/(Zi − 1 + Zi + Zi + 1) > 2) [61].
For missing satellite AOD data, we use null values.

2.2. Data Preprocessing and ST-NN Model Configuration

Figure S2 displays the architecture of the deep learning ST-NN model. The in-
put data includes satellite AOD, and meteorological and geographic information data
(Tables 1 and S3). The central grid of all input data is the CNEMC site label location.

For the data of UTC 4:00~09:00, we use the previous four hours Himawari-8 AOD,
the past days Himawari-8 AOD (daytime AOD of the past two days), and the past week
Himawari-8 AOD (daily average) to formulate the influencing factors. For other times,
we use the past days Himawari-8 AOD (daytime AOD of the past two days) and the
past week Himawari-8 AOD (daily average) to formulate the influencing factors. MODIS
AOD values retrieved at three bands were used for the past week’s results. First, feature
extraction (nonlinear transformation) is performed on each data layer, and then data fusion
is performed. The data fusion process can be expressed as:

Z f usion =
c

∑
i=1

Ki ⊗ XAODHimawari−8current
+

c

∑
i=1

Ki ⊗ XAODHimawari−8closeness

c

∑
i=1

Ki ⊗ XAODHimawari−8period
+

c

∑
i=1

Ki ⊗ XAODMODIS

where ⊗ is convolution and Ki is a learnable parameter.
Meteorological data were arranged as time series of the bottom model level and the

vertical features at the current moment t0 to include the influences of temporal and spatial
evolution. For meteorological data and geographic information data, we use the same
method to extract the data features and then perform data fusion. For data with different
spatial resolutions, we use the upper sampling layer in the feature extraction process to
make them have the same spatial size before data fusion.

We mainly use the Inception-Resnet block and pooling layers for feature extraction,
which has been proven to be able to quickly and effectively mine the potential features of
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multidimensional data (more details in Figure S2) [62]. PM2.5 concentrations were then
obtained by optimizing the Log-Cosh loss function below.

Loss =
1
n

n

∑
i=1

log(cosh(ypredict
i − ytrue

i )) (1)

where ypredict
i means the model predicted value and the ytrue

i represents the observations.

For small differences, the log-cosh loss performances are similar as

(
ypredict

i −ytrue
i

)2

2 , and for

huge differences (at the beginning of model training), it is closer to abs
(

ypredict
i − ytrue

i

)
− log(2).

We initialized all the layers with the built-in Keras glorot uniform initializer as 0, and
the biases were initialized with 0. Due to the symmetry of the data, tanh was used as the
activation function. We trained the networks for 64 epochs with a batch size of 4, and SGD
(Stochastic Gradient Descent) optimizer with an exponential decay of the learning rate α as:

α =

{
0.001 epoch <= 32
0.001× exp(0.1× (32− epoch)) epoch > 32

(2)

2.3. Training and Testing

Based on the number of samples, dimension of time, and dimension of space, the
entire dataset (one year) was randomly sorted into ten sections, with nine sections for
training and the rest for testing [63].

A 10-fold cross-validation (10-CV) has been proven to be a reasonable means to
evaluate results, such as Table References cited in Table S9. We have a large dataset to
avoid overfitting. Compared with other studies, our hourly full coverage ground PM2.5
concentration prediction has greatly increased the amount of data. The sample size exceeds
1 million in each study area and year (Tables S11 and S12). Furthermore, we compared
the results under different training and test proportions and showed that the 10-CV was
reasonable in this study (Table S16). The shape of the input dataset is shown in Figure S2
and Table S3. For sample-based cross-validation, we randomly grouped all the data; for
spatial-based cross-validation, we randomly grouped the data by site location; and for
temporal-based cross-validation, we randomly grouped the data by time. The testing data
does not participate in the model training process. The proposed model was implemented
in Python 3.7 (https://www.python.org/, accessed on 1 January 2023) with a neural
network library named Keras (https://keras.io/guides/, accessed on 1 January 2023) and
TensorFlow as the backend (https://www.tensorflow.org/, accessed on 1 January 2023).

2.4. Sensitivity Analysis

The neural network model is generally considered a black box model, and we open the
black box model through sensitivity analysis and visualization to analyze the quantitative
impact of each input variable on the ground PM2.5 concentration [64].

For M input variables {Xa: a ∈ (1, . . ., M)}, each input variable Xa was divided into L
levels, and Xaj denotes the jth level of Xa. For continuous variables, the L level is evenly
divided into 10 parts according to the value range of input variables, and for classified
variables, it is equal to the number of channels. N samples from the testing dataset were
then selected randomly to replace Xa values with Xaj , and the mean responses of PM2.5
(ŷaj ) were documented. With the spatial feature considered, the sensitivity of PM2.5 to a
continuous variable factor (AOD, meteorological variables, etc.) was examined by varying
the factor Xa through its range with L levels but keeping the spatial pattern fixed. The Xaj

was given as:
Xaj = Xa −mean(Xa) + Lj (3)

https://www.python.org/
https://keras.io/guides/
https://www.tensorflow.org/
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For classified factors, such as land use type and traffic networks, sensitivity analysis
was conducted in the manner of unified feature type:

Xaj [N, m, n, j] =
channels

∑
j=0

Xa[N, m, n, j] (4)

where m and n denote the location in spatial coordinates, while j represents the location in
category dimension.

Four metrics were calculated to evaluate the relative importance of input variables,
namely range (Sr), gradient (Sg), variance (Sv), and Average Absolute Deviation (AAD)
(SAAD) [64]. For model inputs Xa, evaluation metrics were calculated with equations below:

Sr = max(
_
y aj

: j ∈ {1, . . . , L})−min(
_
y aj

: j ∈ {1, . . . , L}) (5)

Sg = ∑L
j=2

∣∣∣_y aj
−_

y aj−1

∣∣∣/(L− 1) (6)

Sv = ∑L
j=1 (

_
y aj
− yaj

)
2
/(L− 1) (7)

SAAD = ∑L
j=1

∣∣∣_y aj
− ỹaj

∣∣∣/(L− 1) (8)

where ya and
_
y a denote the mean and median of the responses. The relative importance

(ra) can be described as:

ra = ςa/
M

∑
i=1

ςi (9)

where ςa means the sensitivity measure for Xa (e.g., range). In this study, the relative
importance (ra) was defined as a vector

→
r = (r1, r2, . . . , rM).

The influence of errors in input data on predictions of PM2.5 concentrations was
explored with the equation below:

input_dataA[l, i, j, m] = input_data[l, i, j, m]× (1 + relative_error) (10)

where l, i, j, m represents the dimensions of input data (l: the batch size, i: latitude, j:
longitude, m: channels), and relative error means the uniform distribution of upper and
lower bounds of error.

3. Results
3.1. ST-NN Model Reconstructs Observed Spatiotemporal (Both Daytime and Nighttime) Features
of PM2.5

Our ST-NN model operated on three major data types, namely AOD, geographical
factors, and spatiotemporal distributions of meteorological conditions (details are docu-
mented in the Section 2). It was built to improve the predictions of ground-level PM2.5,
particularly for regions without sampling sites, and for conditions (cloudy, hazy, nighttime,
etc.) when satellite retrievals are not available. In this study, we focused on the most
populated and concerned regions, North China. We also demonstrated that the proposed
method can be easily applied to other parts of China including East China, South China,
the Sichuan Basin, and the heavily polluted Shaanxi province (regions marked in Figure S3
and Table S8). The performance of the ST-NN model was cross-validated with respect to
sampling selection, temporal variability, and spatial distribution. As displayed in Figure 1,
our ST-NN model accurately captured the observed spatiotemporal variability of daytime
PM2.5, with regression slopes close to 1 and intercepts close to 0; the R2 is above 0.8.
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Figure 1. Density scatterplots of cross-validation with respect to sampling selection, temporal
variability, and spatial distribution. (A) daytime, sample-based 10 cross-validation; (B) daytime,
temporal-based 10 cross-validation; and (C) daytime, spatial-based 10 cross-validation; (D–I): spatial-
based 10 cross-validation at different diurnal time slots (both daytime and nighttime). The fitting line
is in purple, and the 1:1 standard line is the black dotted line.

Spatial variations of AOD at the past four hours, t−3~t0, were used as near-moment
predictors for daytime PM2.5. Daytime AOD values in the past two days and the past week
were also used to formulate influencing factors across time. Multiple validation metrics,
including R2, root mean square error (RMSE, µg m−3), and mean absolute error (MAE,
µg m−3), were calculated and listed in Figure 1 and Tables 1–4. R2 values with respect
to sampling selection, temporal variability, and spatial distribution in North China were
generally above 0.85, RMSE was less than 26 µg m−3 and MAE was less than 16 µg m−3

(Figure 1), indicating the applicability of the model under various meteorological and
geographical conditions. Its applications to other years and over other regions in China
achieved similar good performance, and R2 value reached even 0.90 when it is applied to
Shaanxi Province for the year 2019 (Table 2). The root mean square error (RMSE) values
were below 23 µg m−3, as reported in Table 3. The mean absolute error (MAE) values
were also below 16 µg m−3, as shown in Table 4. Additionally, the slope values were
found to be close to 1, as demonstrated in Table 5. We tested the relative uncertainty of the
model (Figure S16). We find that the model validates worse in scenarios with lower and
higher surface PM2.5 concentrations, mainly due to the large observational uncertainty at
low PM2.5 concentrations and there is a small amount of data under high concentration
conditions (Table S17).

Considering the potential spatial-temporal relationship between various variables
and ground PM2.5 under different conditions [9,11] and the lifetime of aerosol [10] (several
days), daytime observed variations of AOD were used in the prediction of nighttime PM2.5
(details documented in the Section 2). The capability in predicting the diurnal features of
PM2.5 was demonstrated in Figure 1D–I. Similar values of validation metrics were found
for different time windows. R2 values were generally above 0.80, and RMSE values were
below 26 µg m−3 for North China. Similar performances were found for other regions
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also, and the performance of the model in predicting nighttime PM2.5 did not exhibit a
significant degradation from daytime (Table 2). Despite that satellite AOD retrievals are not
available during nighttime, our ST-NN model provides a reasonably reliable prediction of
PM2.5 during nighttime. This is mainly attributed to the advantage of ST-NN in learning the
dynamic transport and dissipation of particles under complex influences of meteorology,
terrain, etc., which was exemplified by a haze episode occurring in North China in 2017
(Figure 2). From Figure S4, we can see that the characteristics of the PM2.5 distribution in
Beijing, PM2.5 concentrations are influenced by topography and southwest transmission.
The data are influenced by meteorological and aerosol data at 0.05◦. However, it can still be
differentiated on a scale of 0.01◦.

Table 2. R-square values of cross-validation of the model with respect to spatial distribution.

2017 2018 2019 2020

Day Night Day Night Day Night Day Night

North China 0.86 0.83 0.82 0.84 0.87 0.85 0.84 0.88
East China 0.81 0.82 0.86 0.85 0.83 0.86 0.86 0.85

South China 0.83 0.84 0.82 0.83 0.83 0.85 0.82 0.80
Sichuan Basin 0.84 0.85 0.82 0.80 0.89 0.89 0.87 0.83

Shaanxi Province 0.85 0.84 0.89 0.81 0.90 0.87 0.88 0.88

Table 3. RMSE of cross-validation with respect to spatial distribution.

2017 2018 2019 2020

Day Night Day Night Day Night Day Night

North China 19.77 22.59 19.92 19.86 16.53 18.44 16.46 13.99
East China 16.15 16.51 13.09 14.04 13.19 12.13 9.88 9.47

South China 11.11 12.81 10.38 11.38 9.52 11.41 6.00 8.96
Sichuan Basin 14.80 17.52 13.90 18.51 10.28 11.86 8.03 10.74

Shaanxi Province 20.15 22.79 15.47 18.88 15.14 17.13 12.01 12.33

Table 4. MAE values of cross-validation of the model with respect to spatial distribution.

2017 2018 2019 2020

Day Night Day Night Day Night Day Night

North China 11.75 15.02 11.91 12.15 8.94 10.86 8.93 8.24
East China 9.54 10.41 8.68 9.27 8.76 8.17 6.94 6.51

South China 6.82 7.84 6.77 8.22 6.53 7.34 4.14 6.01
Sichuan Basin 9.27 10.32 9.41 11.37 6.69 8.04 5.74 7.47

Shaanxi Province 12.48 13.96 9.98 11.97 9.15 10.48 7.80 8.03

Table 5. Slop values of cross-validation of the model with respect to spatial distribution.

2017 2018 2019 2020

Day Night Day Night Day Night Day Night

North China 1.03 0.97 0.99 0.99 0.99 0.98 0.99 1.04
East China 1.07 1.00 0.97 1.05 0.96 1.00 0.98 1.04

South China 1.02 1.06 1.03 1.00 1.00 1.01 0.98 0.96
Sichuan Basin 1.01 1.00 1.01 1.03 1.03 1.04 1.04 1.02

Shaanxi Province 1.02 1.03 1.01 1.00 0.98 0.99 1.02 0.98
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In addition to cross-validation, independent validation of this ST-NN model was
conducted with PM2.5 concentrations observed at sites that were not included in the
model training. The variability of the PM2.5 concentrations at these independent stations
were also accurately captured by our model, with R2 values greater than 0.8, RMSE less
than 24 µg m−3, and MAE less than 15 µg m−3 (Figure S5). Independent validation was
conducted also with respect to the diurnal variation of PM2.5. As indicated in Figure S6, the
diurnal pattern of PM2.5 over multiple independent stations across China was reproduced
by the ST-NN model. The R2 values greater than 0.8, RMSE less than 24 µg m−3, MAE less
than 14 µg m−3 (Figure S6).

3.2. Temporal and Spatial Block Cross-Validation

To better assess the generalization of our model, additional spatial block cross-validation
tests were carried out [63]. The East China region was selected for mask testing, and sites
within the designated area were used as the validation dataset (see Figure S7). Our results
show that as the mask area increases, the model’s performance progressively worsens (see
Table S13), but it still captures pollution events (see Figure S8). Even in North China, the
most polluted region of China, the model produces good results under different weather
conditions (see Figure S9). Furthermore, we evaluated the model’s ability to capture PM2.5
pollution in spatial block cross-validation using accuracy and precision metrics. Our results
indicate that the accuracy rates were greater than 80%, and more than 75% of the sites
had precision greater than 60% (see Table S15). This is mainly due to the increased spatial
heterogeneity between the training and testing sites, resulting in a gradual reduction of
characteristic data that can represent the target region in the training set. Figure S10 and
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Table S14 show the validation results of time extrapolation, from which it can be seen that
the model has a certain level of generalization on the timeline.

3.3. ST-NN Model Improves Prediction of PM2.5 below Clouds and during Severe Haze

A prominent advantage of our ST-NN model is its competence in improving the
prediction of PM2.5 below clouds and during severe haze. Figure 3 displays satellite images
during various episodes in different seasons when the North China region was obscured
by clouds. In cloudy conditions, satellites fail to monitor ground-level aerosol pollution,
while our ST-NN can fill these observation gaps and provide a complete distribution of
PM2.5 under cloudy conditions. Compared against ground-level observations, satisfactory
performance was found (Figure 3), with R2 values exceeding 0.82 in most cases. PM2.5
hot spots in South Hebei and Shanxi as observed by the ground-level network were also
reproduced by ST-NN. Figure S11 shows the overall relative error of cross-validation of the
model under different cloud coverage.
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Figure 3. Performance of the ST-NN model at several cloudy moments (clouded data randomly
selected from the results of time-based cross-validation). Left to right columns display true color
images from Himawari-8 (five moments, (a1): 2017/2/19 04:00 UTC; (b1): 2017/3/17 04:00 UTC;
(c1): 2017/5/22 04:00 UTC; (d1): 2017/10/8 06:00 UTC; (e1): 2017/11/9 07:00 UTC), ST-NN model
predicted PM2.5, at corresponding moments (a2–e2), CNEMC observed PM2.5 at corresponding
moments (a3–e3), and the scattered validation (a4–e4).
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We further explored how cloudy conditions would influence the prediction of PM2.5
concentrations. Figure 4 illustrates the predicted PM2.5 with full coverage and with cloudy
conditions removed for four metropolitan clusters in China. The MODIS Collection 6.1
Cloud mask products were used to track the cloudy conditions in this ST-NN model. Over
the study period, 60% of the data in North China were affected by clouds. Heavy haze in
China can also be misclassified as a cloud by the retrieval algorithm [43]. As a result, the
influences of clouds on the prediction of PM2.5 differ greatly across regions and seasons
(Figure 4). Meteorological conditions have varying impacts on the concentration of PM2.5
(fine particulate matter) across different regions (Figures S12 and S15). In North China
and the Sichuan Basin region, mean PM2.5 concentrations with cloudy periods removed
exhibit lower values than the full coverage annual mean (Figure 4c,o). On the contrary,
negative differences were identified for South China (Figure 4k), suggesting different
driving factors for these regions. In cloudy scenes, PM2.5 concentrations exhibited lower
values when relative humidity (RH) > 60% in South China (Figure S12c). This could be
related to cloud-precipitation-related wet removal of air pollutants. Conversely, PM2.5
concentrations in North China were biased low using only cloud-free scenes in North
China, as indicated with lower satellite-observed AOD in cloud-free scenes (Figure 5a–d).
Such underestimation mainly occurred during wintertime (Figure 5).
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Figure 4. ST-NN model predicted annual mean PM2.5 concentrations in 2017 and validation under
cloudy conditions in 2017. ST-NN model predicted full coverage annual mean (a,e,i,m) for North
China, East China, South China, and Sichuan Basin, respectively); predicted annual mean with
MODIS marked cloudy conditions removed (b,f,j,n); the differences between predictions with full
coverage and those with MODIS marked cloudy conditions removed (c,g,k,o); Cross-validation
with respect to spatial distribution under conditions at stations that were not considered in training.
(d,h,l,p) show the validation results under different cloud regions.
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The CNEMC surface measurements further indicated that PM2.5 concentrations were
biased low in cloud-free scenes in North China, but biased high in South China, consistent
with our ST-NN predictions (Table 6). Over the entire study period, 83% of the data in
winter in North China were marked as cloudy, higher than those in other seasons (60%)
(Table S2). This is mainly related to the occurrences of snow/ice or severe haze [43].
Figure 4d,h,l,p further justified that ground-level PM2.5 under cloudy conditions could be
well predicted by our ST-NN model in four metropolitan regions, with high correlation
coefficients and low errors. Cross-validation also suggested that our ST-NN model can give
valid results under clouds (Figure S11). Different regions are affected differently by cloud
cover, with warmer and more humid regions such as Eastern and Southern China, where
errors increase as cloud cover increases, while in dryer regions such as Northern China,
the effect of cloud cover has little impact on the results, possibly indicating a potential
relationship between surface PM2.5 concentrations and cloud formation processes.

Table 6. CNMEC measured and ST-NN predicted PM2.5 (µg m−3) concentrations in 2017.

CNEMC
Annual Mean

CNEMC Cloud
Filtered Mean

ST-NN Annual
Mean

ST-NN Cloud
Filtered Mean

North China 58.30 43.57 33.84 29.58
East China 48.57 44.33 38.49 40.75

South China 38.27 46.14 29.77 35.94
Sichuan Basin 46.88 36.48 25.80 24.63

Shaanxi Province 51.15 40.47 33.54 30.23
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3.4. ST-NN Model Offers Better Regional Representation of PM2.5

As the CNEMC stations are concentrated in urban areas (Figure S13), using only
CNEMC data to estimate regional PM2.5 concentration would result in an overestimation.
As indicated in Table 7, mean PM2.5 concentrations at CNEMC stations agree better with
the mean over densely populated areas, but are higher than the mean over sparsely pop-
ulated areas and therefore also higher than the mean over the entire region. This further
emphasizes that CNEMC observations might not be able to reflect the pollution in the
suburbs and accurately show the overall pollution condition in a region.

Table 7. ST-NN model estimated PM2.5 (µg m−3) concentrations under different population densities.

North
China East China South

China
Sichuan

Basin
Shaanxi
Province

CNEMC 58.65 48.65 38.71 46.11 54.08
Populated Regions
(>500 people/km2) 53.40 43.20 31.31 38.55 46.38

Moderately
populated

(<500 people/km2)
29.43 36.36 27.72 24.36 32.04

All areas 34.12 38.53 28.11 25.80 33.52

4. Discussion

Several studies [24–35,37] have explored the prediction of ground-level PM2.5 con-
centrations using statistical methods, as summarized in Table S9. These studies have
utilized multiple data sources to extract potential features and estimate near-surface PM2.5
concentrations. However, most of these studies have provided low temporal resolution
results (daily) and lack full spatiotemporal coverage. One longstanding challenge in using
satellite aerosol optical depth (AOD) data has been the inability to constrain surface PM2.5
concentrations under cloudy conditions, during nighttime, or severe haze [21].

The previous research on full coverage of PM2.5 achieved good results. Zhang [65] used
XGboost to obtain R2~0.87, Tang [42] used Two Stage RF to obtain R2~0.86 validation results,
and Xiao [25] used Two Stage RF to obtain R2~0.81 validation results. The spatiotemporal
full coverage PM2.5 results obtained by the ST-NN model are superior to most previous
studies summarized in Table S9. At the same time, it has a better level of generalization in
both time and space.

In our previous work, we used an atmospheric physical and chemical model to
simulate meteorological fields with higher spatiotemporal resolution (0.05◦ and hourly)
compared to previous studies (0.125/0.25◦ and 3/6 h), and we applied spatiotemporal
neural networks to fully extract the spatiotemporal features of the data and the spatiotem-
poral correlations of aerosol itself. As a result, we obtained 24-h full-coverage results. The
main influencing factors for PM2.5 in different regions of China vary, and meteorological
factors play an important role in different regions. However, different regions have dif-
ferent sources of pollution, and their performance under the influence of meteorological
conditions varies. In the north, hygroscopic growth is an important factor contributing to
PM2.5 pollution, while in the south, wet deposition reduces PM2.5 concentration, and the
impact of wind fields on PM2.5 pollution is significantly affected by pollution sources and
topography. The complex terrain increases the deviation of input meteorological data, and
the uneven distribution of national monitoring stations results in spatial data heterogeneity
(Table S1). This leads to differences in the validation accuracy of different stations. Further-
more, as the satellite aerosol optical depth has the highest weight, the quality of data varies
in different regions (reference). These factors contribute to the production of result errors,
and we have quantitatively analyzed their impact (Figure S17). Our ST-NN model relies on
the regional transport features of air pollution, and thus it may be challenging to track very
small point sources.
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5. Conclusions

In this study, we fully used the spatiotemporal features of aerosol and simulated
the dynamic evolution of aerosols under complex influences of meteorology, terrain, etc.
Without night and hazy/cloud data has been overcome here with an advanced statistical
method. The capability of the built ST-NN model in predicting PM2.5 below clouds and dur-
ing nighttime is mainly due to the consideration of the spatiotemporal variation influencing
meteorological/geographical factors and the dynamic evolution of aerosols. We select the
input data through the correlation test based on the existing data at the beginning. Of
course, such as the real-time emissions of some factory vehicles, building construction, etc.
will also affect the ground PM2.5 concentration. Sampling selection, temporal variation, and
spatial distribution-based cross-validation demonstrated that the method presented here is
skilled in providing reliable ground-level PM2.5 concentrations with high spatial resolution
(0.01◦) and 24-h temporal coverage, which is challenging especially for heavily polluted
regions. Independent validations were also conducted for cloudy conditions and night time,
and no degradation of performance was found. We examined the importance of satellite-
observed AOD in the prediction of PM2.5 during both daytime and nighttime using four
sensitivity measures [64], namely range Sr, gradient Sg, variance Sν, and average absolute
deviation from the median SAAD. These four sensitivity parameters measure the impact of
input variables on the results. Sr is sensitive to changes in the data range, Sg is sensitive to
changes in data gradient, Sv is sensitive to data variance, and SAAD is more stable. We use
sensitivity analysis and visualization to open the black box model of neural networks [64].
We evaluated the impact of each input parameter on the results. AOD accounts for more
than 30% of the weight throughout the day, and the relative significance exhibits slightly
higher values during nighttime (Table 8), emphasizing the importance of AOD observations
in nighttime predictions. Land cover type and meteorological variables also play important
roles in the dynamic evolution of PM2.5 in North China and other regions, as illustrated in
Figure S14. The effects of the key variables on surface PM2.5 concentrations are given in
Figure S15. However, the model tends to better capture moderately polluted conditions,
as the relative errors exhibit relatively larger values when observed PM2.5 concentrations
are above 350 µg m−3 or below 20 µg m−3 (Figure S16). The relatively poor capability of
our ST-NN model in capturing these extremely low or high values is mainly attributed
to the rarity of these conditions and the small sampling size (North China: 0.34‰, East
China: 0.059‰, South China: 0.068‰, Sichuan Basin: 0.048‰, Shaanxi Province: 0.25‰).
This is also the limitation of the data model. The lack of sample size in a specific case leads
to a certain deviation in the extreme case estimation of the model space to the real-world
space. Similar uncertainties of the model might be raised by the errors in model input
data. Random errors were added to the input data to explore how they would influence
the errors of predicted PM2.5. Similarly, the quality of AOD data was essential within a
very broad range of uncertainty (Figure S17). When errors of other inputs grow (>20%), the
accuracy of prediction would also be significantly degraded (Figure S17). We also examined
how the input data quality control process would affect the accuracy, and a negligible role
was found (Tables S10 and S11). During the development of ST-NN models for different
regions in China, the loss function decreased similarly, while the decreasing speed and
convergence values varied among regions due to differences in the size and feature of
data (Figure S18). We noticed that the performance of the model varied across regions
and seasons, which might be also related to the distinct spatiotemporal features of PM2.5
(Figure S19), and the associated meteorological/geographical characteristics in different
regions. The uneven distribution of CNEMC sites might also play a role (Figure S13).
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Table 8. The importance of AOD in the prediction of PM2.5, as indicated with sensitivity measures
(Rr, Rg, Rν, and RAAD).

00:00–06:00
(UTC)

06:00–12:00
(UTC)

12:00–18:00
(UTC)

18:00–24:00
(UTC) Day Night

Rr 0.34 0.31 0.33 0.32 0.34 0.36
Rg 0.42 0.39 0.41 0.40 0.42 0.44
Rv 0.36 0.27 0.32 0.30 0.35 0.39

RAAD 0.36 0.31 0.33 0.32 0.35 0.37

In the future, we expect to obtain more accurate and higher resolution meteorological
and satellite remote-sensing data. Additionally, with further exploration of the relationship
between clouds and aerosols [22], we also anticipate effectively correlating observed cloud
information with aerosols to improve results. As the most concerning PM2.5 pollution
events continue to accumulate over time, the increasing sample size of observed pollution
events will make simulation more accurate, and generate additional samples of pollution
events through the use of generative adversarial networks. Currently, the selection of
training and testing sets is based on random sampling, but the uneven distribution of na-
tional monitoring stations themselves results in greater bias in results in certain geographic
conditions. In the future, we will select training and sample sets based on geographic
features to make the training sets more representative.
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