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Abstract: Hyperspectral images possess a continuous and analogous spectral nature, enabling the
classification of distinctive information by analyzing the subtle variations between adjacent spectra.
Meanwhile, a hyperspectral dataset includes redundant and noisy information in addition to larger
dimensions, which is the primary barrier preventing its use for land cover categorization. Despite
the excellent feature extraction capability exhibited by convolutional neural networks, its efficacy is
restricted by the constrained receptive field and the inability to acquire long-range features due to the
limited size of the convolutional kernels. We construct a dual-stream self-attention fusion network
(DSSFN) that combines spectral and spatial information in order to achieve the deep mining of global
information via a self-attention mechanism. In addition, dimensionality reduction is required to
reduce redundant data and eliminate noisy bands, hence enhancing the performance of hyperspectral
classification. A unique band selection algorithm is proposed in this study. This algorithm, which
is based on a sliding window grouped normalized matching filter for nearby bands (SWGMF), can
minimize the dimensionality of the data while preserving the corresponding spectral information.
Comprehensive experiments are carried out on four well-known hyperspectral datasets, where the
proposed DSSFN achieves higher classification results in terms of overall accuracy (OA), average
accuracy (AA), and kappa than previous approaches. A variety of trials verify the superiority and
huge potential of DSSFN.

Keywords: hyperspectral images classification; dual-stream; self-attention; pyramidal residual
convolution; feature fusion; band selection

1. Introduction

With the advancement of space-borne remote sensing, the spectral resolution of satel-
lite images has increased greatly. Compared to conventional remote sensing data, hyper-
spectral data offer a higher spectral resolution and more detailed feature information [1].
Various picture elements of different wavelengths can be subdivided and identified in
spectral space based on factors such as spectral brightness, spatial structural attributes,
or other information [2,3], as shown in Figure 1. Therefore, it is utilized extensively in
urban planning [4], environmental monitoring [5], precision agriculture [6], forestry moni-
toring [7], ocean exploration [8], disaster monitoring [5,9], geological exploration [10], and
even military applications [11]. Due to the limitations of the imaging technology, the sensor
must generate a significant amount of redundant data in order to ensure an adequate
exposure time and a reasonable energy for each band when developing hyperspectral
data cubes, which adds to the storage and processing costs of the device [12]. During the
analysis of hyperspectral data, not all bands are processed simultaneously. Instead, an ideal
band combination is chosen, and band selection (BS) becomes necessary to preserve crucial
information [13,14].
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Figure 1. Hyperspectral data structure. 

With minimal inter-band correlation and considerable spectral variability, the goal of 
band selection methods is to choose a subset of the original spectrum data based on spec-
ified criteria. These techniques not only resolve the potential dimensional catastrophe [15] 
brought on by the Hughes phenomenon, but they also maintain the physical significance 
of the original spectral bands and improve the interpretability of the resultant low-dimen-
sion features [16]. On the basis of their respective methodologies, hyperspectral band se-
lection methods can be categorized as ranking-based, clustering-based, and search-based 
[17]. Methods based on sorting can pick subsets with a high degree of relevance. The clus-
tering-based method may reduce data redundancy, while the combined approach can 
lessen the influence of noise bands on subsets of data. Sun et al. [18] proposed an adaptive 
band hierarchy (ADBH) clustering method and employed a band-based ranking strategy 
(E-FDPC). Wang et al. [19] introduced a fast neighborhood grouping BS method (FNGBS) 
that employs a coarse-to-fine grouping strategy for band clustering, minimizes redun-
dancy, and ranks bands using the product of local density and information entropy. By 
the efficient band selection method, the original data’s spectral information is kept with 
greater interpretability and representativeness, thereby enhancing classification perfor-
mance [20]. 

Classification is based on the fact that each pixel in the hyperspectral image (HSI) 
corresponds to a spectral curve representing optical and physical characteristics. The ini-
tial hyperspectral feature classification systems relied on empirical, subjective manual fea-
ture analysis. The support vector machines (SVM) [21] and k-nearest neighbors (K-NNs) 
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With minimal inter-band correlation and considerable spectral variability, the goal of
band selection methods is to choose a subset of the original spectrum data based on specified
criteria. These techniques not only resolve the potential dimensional catastrophe [15]
brought on by the Hughes phenomenon, but they also maintain the physical significance of
the original spectral bands and improve the interpretability of the resultant low-dimension
features [16]. On the basis of their respective methodologies, hyperspectral band selection
methods can be categorized as ranking-based, clustering-based, and search-based [17].
Methods based on sorting can pick subsets with a high degree of relevance. The clustering-
based method may reduce data redundancy, while the combined approach can lessen the
influence of noise bands on subsets of data. Sun et al. [18] proposed an adaptive band
hierarchy (ADBH) clustering method and employed a band-based ranking strategy (E-
FDPC). Wang et al. [19] introduced a fast neighborhood grouping BS method (FNGBS) that
employs a coarse-to-fine grouping strategy for band clustering, minimizes redundancy,
and ranks bands using the product of local density and information entropy. By the
efficient band selection method, the original data’s spectral information is kept with greater
interpretability and representativeness, thereby enhancing classification performance [20].

Classification is based on the fact that each pixel in the hyperspectral image (HSI)
corresponds to a spectral curve representing optical and physical characteristics. The
initial hyperspectral feature classification systems relied on empirical, subjective manual
feature analysis. The support vector machines (SVM) [21] and k-nearest neighbors (K-
NNs) [22] methods are two examples of machine learning techniques that were used for
hyperspectral classification in the early stages of research. These methods are computation-
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ally straightforward and do not take advantage of the abundance of spatial information
present in hyperspectral data, so they did not produce satisfactory classification results.
Following the success of deep learning in computer vision, numerous deep learning clas-
sification approaches have been implemented in the hyperspectral image classification
field. Chen et al. [23] classified hyperspectral pictures using stacked self-encoders, which
marked the introduction of methods based on deep learning to the field of hyperspectral
image classification. With its superior performance, convolutional neural networks (CNNs)
are gradually becoming the method of choice for hyperspectral image categorization. The
exiting research shows that feature extraction from shallow to deep plays a crucial role in
the classification of hyperspectral images. CNNs often outperform other deep learning
algorithms in feature extraction, primarily because their local connectivity and shared
weight features enable them to learn spatial features while preserving the original structure
and drastically lowering the number of network parameters [24]. In the early use of CNNs
methods, only 1D [25], 2D [26], and 3D [27] convolutional neural networks were utilized for
hyperspectral classification. Although the accuracy that can be attained with such simple
forms of the approaches is restricted, this study presents ideas for future research on how to
more effectively employ CNNs methods. Recent research has concentrated on determining
how to use CNNs networks to effectively handle information in both spectral and spatial
dimensions [28,29].

A traditional neural network typically consists of a single method for data processing,
which can be conceptualized as a single stream. Dual-stream [30] neural networks were
initially applied to human behavior recognition, wherein they were capable of concurrently
processing two or more separate kinds of data. Xue et al. [31] used dual-stream network
fusion to extract time-series features of different lengths and locations. Wan et al. [32]
designed a parallel architecture to acquire independent spatial and channel dimensional
information in order to generate more precise image captioning. This dual-stream con-
cept is introduced to hyperspectral classification tasks in an effort to leverage the hidden
information in the original data more efficiently. Zhang et al. [33] employed a 1-D CNN
to extract spectral characteristics and a 2-D CNN to extract spatial-spectral features and
then combined the features using a weighting mechanism to obtain excellent classification
accuracy. Combining a CNN and a stacked denoising self-encoder, Hao et al. [34] suggested
a dual-stream depth architecture. Using spectral picture components and spatial blobs, the
categorization outcomes were predicted. Song et al. [35] developed a deep feature fusion
network (DFFN) that fully exploits the complementarity between layers. To summarize
these methodologies, researchers are continually attempting to determine how to combine
spectral and spatial information more effectively. To extract spatial and spectral features,
Cui et al. [36] developed a two-channel network structure. It also included a self-calibrating
convolution module to capture the domain correlation of the context as the features were
being extracted.

Despite the numerous CNN dual-stream hyperspectral image classification networks
that have been proposed, these networks still suffer from the drawbacks of CNN models.
For example, this method centers the network on sampling points and produces a patch
of a fixed size while ignoring the scale information of HSI, where different features have
different scales, and using the same size local patch inevitably results in poor classification
of some feature categories. Because of this, the visual attention mechanism enables the
network to choose the critical feature information on its own, reduces the impact of the
irrelevant spatial information of the central pixel, and performs well in improving the final
results of image classification. To effectively extract features, a 3D convolutional adaptive
attention module for extracting joint spectral-spatial characteristics was initially developed
in [37]. With the goal of extracting correlations and common spatial features in spectrum
bands for the spectral and spatial attention components, respectively, Li et al. [38] proposed
combining a spectral attention channel with a spatial attention channel. By merging various
attention modules, Zhong et al. [39] were able to predict the relationships between spectral
and spatial locations. The concept of integrating self-attention and adversarial attacks
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into hyperspectral image classification was initially proposed by Xu et al. [40], resulting in
enhanced network robustness. Qing et al. [41] employed an improved three-dimensional
multi-attention mechanism to concurrently handle the spatial spectral characteristics of
hyperspectral images. Xia et al. [42] used a self-attentive approach to adaptive spatial
feature fusion, a structure that employs a “divide and conquer” idea to reduce the number
of model parameters and computations.

The attention mechanisms employed in hyperspectral classification approaches are
integrated into the spectral and spatial information extraction network through stacking.
Additionally, the multiscale extraction module is utilized to expand the perceptual field
and deepen the layers of the CNN. However, this may result in a potential decline in
performance. In light of this, we suggest a dual-stream classification network that leverages
the self-attentive mechanism to capture spatial feature associations between the central
pixel and its surrounding pixels. Furthermore, the network utilizes a residual pyramid
structure to fully exploit the long-range correlation of spectral information for multi-scale
feature extraction. Finally, the network achieves hyperspectral image classification through
weighted fusion. The following are the primary contributions of this paper:

• A dual-stream hyperspectral classification network, DSSFN, is proposed. In compar-
ison to the previous joint spectral-spatial network, not only does the self-attentive
mechanism fully exploit the characteristics of hyperspectral data, but the pyramidal
residual structure also achieves multi-scale feature extraction without deepening the
network depth to generate high-quality feature discrimination results.

• To remove duplicate information in the original data, a novel sliding window-based
band grouping method is adopted, and the matching filtering (MF)-based band sorting
strategy is enhanced to further eliminate the influence of noisy bands and produce a
more representative subset of bands.

The proposed method exhibits satisfactory hyperspectral image classification per-
formance on four public datasets, which is highly competitive with other state-of-the-art
methods. The remainder of this paper is organized as follows. Section 2 introduces the
related basic approaches. Section 3 describes the dual-stream convolutional neural network
and the self-attentive feature extraction module. Section 4 presents the experimental results
and a discussion on the public dataset. Section 5 gives the conclusion.

2. The Basic Approach

This section presents an overview of the primary methodologies pertinent to the
proposed approach, which are crucial for comprehending the entire network’s feature
extraction process.

2.1. Hyperspectral Image Classification Based on CNNs

The hyperspectral data collected increasingly comprehensive information as imaging
techniques advanced, producing greater data quantities and making data processing more
challenging. Traditional classification methods can extract effective spectral features, but
the linear simplicity of these models makes it challenging to deal with the complex spectral
properties of classification [24]. In addition, misconceptions about high-dimensional and
conventional space sometimes lead to a misinterpretation of HSI and inappropriate choices
of data processing techniques [43]. As a subfield of machine learning, deep learning
benefits from deeper networks, more sensors, and more neuron architectures. CNNs
have the capability to accommodate various input data types, including one-dimensional
(1D) vector data, two-dimensional (2D) planar data, and three-dimensional (3D) patterns.
Unlike traditional neural networks, CNNs do not restrict the size of the input data, thereby
enabling the network to learn from data of varying dimensions. These three characteristics
are simultaneously present in hyperspectral data, with a 1D vector of data reflecting the
value of a particular wavelength band above each pixel. Intercepting a 2D image enables
the processing of each pixel’s surrounding class characteristics. 3D stereo data are the
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raw information of hyperspectral images. Figure 2 depicts the principle of the 1D,2D,3D
convolution kernel for processing data of different dimensions.
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Early 1D-CNN algorithms do not examine the spatial relationship of pixels and
merely extract features based on spectral information, followed by end-to-end tuning.
This method [24] requires more training samples and is challenging to implement in order
to obtain the desired outcomes. CNNs are able to handle 2D images without altering the
data’s original structure. Therefore, Liu et al. [44] recommended the use of 2D-CNN and
demonstrated that the classification accuracy for hyperspectral images is much greater
than that of 1D-CNN. Many traditional CNN designs, including AlexNet [45], have also
been utilized for hyperspectral image categorization. However, the majority of CNN-based
algorithms continue to extract spatial and spectral characteristics individually, making in-
sufficient use of spatial and spectral correlation data. Li et al. [46] proposed using 3D-CNN
in the classification of hyperspectral images, which can comprehend local variations in
space and spectra and categorize them using crucial discriminative information. There
remains potential for further optimization by employing a singular convolutional approach
for classification. Hamida et al. [47] employed a fusion of 2D CNN and 3D CNN techniques,
resulting in enhanced performance. However, the task of choosing the ideal number of
network layers remains challenging. The effectiveness of image feature extraction is com-
promised when the neural network is either excessively deep or shallow. Therefore, the
exploration of methods for optimizing the benefits of CNNs has become a prominent topic.

2.2. Band Selection Methods with Hyperspectral Images

The band selection methods can efficiently reduce the dimensions of hyperspectral
data cubes while maintaining the pertinent feature information. The similarities between
non-adjacent bands are typically less than those between neighboring bands because of the
properties of hyperspectral data.

Several early band selection methods were developed to identify combinations of
bands that preserved the best information. These methods included distance measures [48],
information-theoretic approaches [49], and eigenanalysis methods [50]. One approach
utilizes a divergence measure for hyperspectral band selection, requiring the computation
of scatter for all band subsets. However, this task becomes considerably challenging when
confronted with numerous bands in hyperspectral images [49]. Principal Component
Analysis (PCA) is a method used for eigenanalysis in which the objective is to convert
the original waveform data into a novel set of linear transformations that exhibit no
correlation among themselves. To keep enough feature values, the feature amounts are
ordered in descending order. Although the pixel information of hyperspectral images is
preserved in this manner, the similarity and correlation between nearby spectra are not
considered. In [51], spectral subsets are chosen by thresholding, which is substantially
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correlated with the classification performance, and hyperspectral data are separated by
correlation generation curves of adjacent spectral bands. Through the application of a
dynamic planning approach, the data were divided to produce the same performance
improvement [52]. The clustering method selects all cluster centers and combines closely
related bands into a single subset. However, this method disregards the data content [53,54].
In contrast to clustering methods, sorting methods quantify and rank the physical data
of frequency bands. To produce subsets, the frequency bands with greater weights are
selected [55,56]. Clustering- and sorting-based approaches by themselves frequently result
in redundant band information. The integration of sorting and clustering methodologies
facilitates the reduction in dimensionality in high-dimensional datasets [57].

For the neural network calculation to choose the hyperspectral subsets with more
information and a lower correlation between bands, the data after dimension reduction
will be advantageous. The selection of spectral subspace bands begins with the subdivi-
sion of subspaces, and the number and expression of subspaces are critical to the final
outcome. Mathematical calculations can be employed to determine a strong correlation
using coefficients.

2.3. Self-Attention in the Transformer

The previously mentioned convolutional neural network approaches for hyperspectral
data feature extraction include flatness and learning consistency. These networks cannot
fully take advantage of the medium- and long-range information in the spectrum dimension
due to their low capacity for continuous spectral data. A CNN relies largely on the size of
the convolution kernel to extract features; therefore, dilated convolution [58] is developed
to pursue a bigger perceptual field. Nevertheless, the performance attained in this manner
is restricted and cannot handle regions with arbitrary shapes.

The integration of the “attention mechanism” [59] imbues machines with human-like
perceptual capabilities, enabling them to learn and identify the most pertinent regions
within hyperspectral data. When applying this approach to neural networks, retrieved
features can be better characterized. The self-attentive mechanism-based structure of
Transformer is adaptable and easy to generalize. Transformer was initially implemented
for natural language processing (NLP). The spectral vectors resemble the distribution of
semantic vectors for words. The spatial classification of hyperspectral data requires the use
of neighboring pixels inside the input region [60–62].

The principles of the self-attention mechanism and the multi-head attention mecha-
nism are depicted in Figure 3.
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Dosovitskiy et al. [63] introduced Vision Transformer (ViT) for image classification,
which progressively analyzes picture patches using a self-attention (SA) transformer en-
coder with positional embedding. Transformer, which applies the ViT structure to the
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classification of hyperspectral images, has a global feature domain and thus collects more
global background information. This is accomplished through a multi-headed self-focus
mechanism. Transformer can be used to classify HSIs in multiple ways. He et al. [64]
created a spatial spectral converter that uses a CNN to record spatial information and ViT
to extract spectral relationships. For capturing at greater distances, Qing et al. [65] added a
position encoding vector and learnable embedding vector to the network. Hong et al. [60]
proposed the SpectralFormer structure, which is also capable of learning spectral local
sequence information from adjacent bands of hyperspectral pictures in order to group
the spectral structure. In general, the success and adaptability of transformers’ structures
rely greatly on the application of the multi-headed attention mechanism. The weighted
total of sensory fields can be represented by both convolution and self-attention methods.
Convolution ensures the most robust response of local features and decreases the model’s
complexity, while the self-attention method can directly capture global information and cal-
culate weights by normalizing pairwise information. The combination of the self-attention
mechanism and convolutional network can facilitate the preservation of desired hyperspec-
tral characteristics and also reduce the computational expenses [66] associated with the
model simultaneously.

2.4. Pyramidal Residual Networks

For the vast majority of deep convolutional neural networks [67,68], the dimension
of the feature map grows as its size decreases. Nevertheless, it is exceedingly difficult to
train very deep convolutional neural networks using hyperspectral data. This is due to
the unavoidable loss of information caused by the elimination of gradients, which makes
propagation less effective and accuracy plummet.

The appearance of ResNet [67] resolves this issue. A residual block is comparable to
a top-down connection between each layer and a jump connection between units. Each
module in ResNet has the same structure and completes the aggregation at the output
layer. Thus, each block carries out an identical feature extraction operation. And yet, this
residual structure of preserving the dimensions is not the most effective; for example, the
PyramidNets [69] employs a structure that gradually increases the channel dimensions. In
the pyramidal residual units, zero-padded identity-mapping short-cuts [67] are employed
because establishing too many 1 × 1 convolution blocks can have a negative impact on
performance. The various widths of each rectangular module in Figure 4 stand in for
various input feature map dimensions for the current module.
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According to the experimental results in references [68,69], the pyramid residual
network attempts to progressively expand the dimension of the feature map rather than
doubling it over a residual unit. This equally shares the burden of expanding the feature
map. Comparing PyramidNet to the pre-activated ResNet, the overall performance is
enhanced. The PyramidNet has a greater test accuracy with the same settings, indicating
its superior generalization ability compared to existing deep neural networks. This method
has no parameters and a decreased likelihood of overfitting than other forms of short-
cuts, resulting in enhanced generalization capabilities. The main concept is to concentrate
attention by gradually increasing the dimension of the feature map, as opposed to down-
sampling by drastically increasing the dimension of the feature map on each residual unit.
The connection between the several residual modules creates a pyramid structure with the
feature map’s dimension continuously growing. In conclusion, it is ideal for extracting
hyperspectral data features.

3. DSSFN: High-Performance Feature Extraction

In this section, the nearest neighbor grouped normalized matching filter, the dual-
stream convolutional neural network, and the self-attentive mechanism are described in
detail. Figure 5 illustrates the proposed DSSFN network.
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3.1. Sliding Window Grouped Normalized Matched Filter

Suppose X = {Xk | X1, X2, X3, X4 . . . . . . .Xn, k = 1, 2, 3 . . . . . . , n} is a hyperspectral
image to be processed, where n is the total number of bands and Xk is the vector of the
k band. In order to derive characteristic spectral bands, an initial subspace comprising
m relevant bands, ranging from band X1 to the Xm, is defined. The representative bands
within this subspace are then identified based on their deviation from the mean band,
which serves as a statistical parameter for measuring inter-spectral similarity. This can be
mathematically expressed as:

XRMSE =

√
(Xi − Xav)

2

N
(1)

where Xi represents each band, Xav represents the average band, and N denotes the quantity
of pixel points present on every band feature map. XRMSE is the correlation coefficient with
the average band, and the smaller the correlation coefficient, the stronger the correlation. In
the first subspace, the representative band is selected as Xi, and then the second subspace
is selected as m bands from Xi+1 to Xi+m, and the similarity between bands is calculated
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as described previously, and so on, until all bands have been traversed. A considerable
number of trials demonstrate the existence of an optimal value range for m. It is appropriate
to set m to 5 as the sliding band group’s window size. Figure 6 depicts the dimension
reduction algorithm’s procedure.
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After the first stage of coarse dimension reduction is completed by nearest neigh-
borhood subspace band selection, the second stage of dimension reduction consists of
automatically removing poor bands from the scene using multiple target matching filtering
(MF) weights. Relative to the direct normalization of the original data, the subsets normal-
ized after coarse dimension reduction are more conductive to band distinction because
they dramatically minimize inter-spectral disparities.

Assuming that the reduced-dimensional xk
ij represents each target pixel of band k, the

corresponding formula for calculating the weight wk
ij can be expressed through the MF

detector as:
wk

ij = κK−1
(

xk
ij −mk

)
(i = 1 . . . . . . W; j = 1 . . . . . . H; k = 1 . . . . . . n)

(2)

where mk is the mean value of each pixel in the k band, and i and j denote the coordinate
position of this pixel in the k band.

κ =
1[

(xk
ij −mk)

TK−1
(

xk
ij −mk

)] (3)

where K is the covariance matrix, and κ represents the normalization constant. The weights
of each band are obtained by calculating the mean of the absolute weight vectors.

|wk|mean =
1

WH

WH

∑
ij=1
|wk

ij| ∈ RBi×1 (4)

where |wk|mean denotes the corresponding weight vector of band k, and WH represents the
width and height of the feature map. The bands with greater weights are deemed to have a
stronger signal-to-noise ratio and image quality, whereas the bands with lower weights
may contain potentially degraded information. The desired number of bands is therefore
determined by the weight ordering.

3.2. Dual-Stream Convolutional Neural Network

To enhance the fusion of spatial and spectral attributes in hyperspectral data, we
introduce a dual-stream neural network for feature extraction. This network comprises a
spectral stream, which processes a 1D spectral curve, and an image stream that performs
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spatial feature extraction using a reduced-dimensional processed image as the input. The
dual-stream network offers a unique advantage in that it enables the utilization of distinct
and non-shared structures and parameters in each of its branches, with no interference from
back propagation. This enables the extraction of features with varying dimensions from a
single-source dataset, which can subsequently be fused to produce complementary features,
resulting in a significant enhancement of recognition rates. In addition, it may employ
different types of inputs for feature extraction, which is versatile, leverages the benefits of
the network structure, and can improve the network model’s understanding of the features.
In the spatially based classification method, the raw hyperspectral data stream in the model
is initially preprocessed by using the dimension reduction methods mentioned above.
From the original images, pixels and neighboring regions are extracted as input modules
for convolutional neural network processing to derive spatial feature representations. We
present a residual network with a pyramidal structure, inspired by [70], in which each
pyramidal residual block is constructed of three convolutional cells of varying sizes. The
main concept is to gradually increase the number of channels on each cell by gradually
increasing the feature mapping dimension, as opposed to quickly raising the feature
mapping dimension through downsampling. When the depth of the leftover cells increases,
additional feature mappings can be retrieved, allowing a more robust spatial feature
representation to be learned from the image blocks. In addition, a batch normalization layer
(BN) [71] is added to the pyramid residual network to improve the network generalization
ability and prevent the occurrence of overfitting. To create a pyramid-like structure in
Figure 5, P1, P2, and P3 indicate three cascaded residual units with progressively more
feature map channels per unit. The cascaded pyramidal residual network cannot be
classified effectively using hyperspectral data that have been directly translated. After
band selection, we continue modifying the pyramid residual block structure to increase the
accuracy of the classification of the hyperspectral data. Specifically, we have introduced a
self-attention mechanism to replace one of its constituent layers, which has been found to
significantly improve the effectiveness of the classification process. Further elucidation of
the self-attention module is presented in the subsequent section. The network for spatial
feature extraction consists of a stack of three identical pyramid residual modules, each of
which can be characterized as BN1–CONV1–BN2–CONV2–BN3–SA–RELU, where SA is a
self-attention module. Labelled numbers are used to distinguish between convolutional
layers of various sizes and batch normalization layers. The output of the entire residual
network module for a pyramid can be stated as:

Y = Relu{zero(Pi) + [BN(Pi) ∗Wi + bi]} (5)

where zero( ) is the constant jump mapping with zero padding, Wi is the weight matrix, and
bi is the convolutional layer bias.

The spectral-based classification approach varies from the spatial feature extraction
network in that the dimensions of the convolution kernels for the spectral stream are
1D-CNN, and for the spatial stream, they are 2D-CNN. After the final pyramid residual
module, the average pooling layer is configured for the final downsampling operation,
which is then delivered to the fully connected layer to finish the classification task.

3.3. Self-Attention Mechanism

Due to the typical constraint on the size of each convolution kernel within the network,
every operation is limited to a small region surrounding a specific feature point. As a result,
capturing distant features becomes a challenging task. Self-Attention is adopted to retrieve
global features more quickly by directly computing the relationship between any two-pixel
spots in the feature map, hence addressing the aforementioned flaws. Figure 7 depicts the
implementation sequence of the self-attention mechanism described in this article.
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Imagine the constituent pieces of the input source information as a set of <Key, Value>
data pairs and then calculate the similarity between the Query and each Key value for
a given element of the target information. The weight coefficients of the Value values
corresponding to each Key are determined, and then the Values are weighted and totaled
to provide the final Attention values. Self-Attention is a specialized attention mechanism
that computes attention on the sequence itself and gives different weight information to
distinct elements in order to determine the sequence’s link. Self-attention can effectively
improve the representation of global features with fewer parameters.

Spatial and spectral self-attention modules are created by linking this characteristic
with pyramidal residual networks. In the spatial self-attention module, patch is first
fed into two 1×1 convolution layers to produce two new feature maps B and C for
{B, C} ∈ RC×H×W , respectively, and then we change its size to RC×N , N = H ×W be-
ing the total number of input pixels. Subsequently, a matrix multiplication operation is
conducted between the transpose of C and B, followed by normalization to obtain the
spatial self-attention weight distribution S ∈ RN×N .

sji =
exp
(

Bi · Cj
)

∑N
i=1 exp

(
Bi · Cj

) (6)

where sji denotes the influence of the i position on the j position, and the more similar
the features of the two positions, the stronger the correlation between them. At the same
time, we input the feature map A to the convolution layer, generate a new feature map
D ∈ RC×H×W , and change its size to RC×N . Then, matrix multiplication is performed
between D and the transpose of S, yielding a result of size RC×H×W , which is fed into a
weight parameter ω at the end of the module. The outcome of the multiplication operation
is then multiplied with ω and added to A. The formula is as follows:

E = ω
N

∑
i=1

(
sjiDi

)
+ Aj (7)

where ω is initialized to 0 and is engaged in the learning and updating of the network.
From the formula, it is known that E is the weighted sum of the features computed for all
locations and the original features of the input. Thus, it has global contextual relations and
selectively aggregates contextual information according to the spatial self-attentive weight
distribution matrix.
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In spectral attention, the input of the module is A ∈ RC×H×W . Unlike the spatial
self-attention mechanism, the self-attention distribution is calculated directly from the
original features. This involves transforming the size of A into RC×N and multiplying A
with its transpose. The weight distribution X ∈ RC×C is obtained by normalization. The
formula is as follows:

Xji =
exp
(

Ai · Aj
)

∑c
i=1 exp

(
Ai · Aj

) (8)

where Xji calculates the effect of the i spectrum on the j spectrum.
A matrix multiplication is performed between the transpose of X and A, resulting in a

matrix of size RC×H×W , which is then multiplied by a weight parameter and added pixel
by pixel to A to generate the final matrix representing the spectral self-attention weight
distribution, as given in Equation (9).

Ej = ρ
C

∑
i=1

(
xji Ai

)
+ Aj (9)

where ρ gradually learns the weights from 0 as the network is updated.
Modeling the lengthy dependencies between the feature maps yields the last feature

of each channel, which is the sum of all spectral channel features weighted with the
original features. It can assist in enhancing the discriminative quality of the characteristics.
Therefore, the spectral self-attention module does not employ the convolutional layer
to embed features before calculating the weight distribution of the relationship between
two spectral channels. In Section 4, the experiments and validation will be presented
and discussed.

3.4. Fusion Weighted Mechanism

While extracting features, the entire image is sliced into small portions and sent to
the network for training. The independent extraction of each pixel slice is warranted due
to the limitations of the fully connected layer employed in the neural network, which
fails to incorporate positional information present in the convolutional layer. The single-
label output generated upon the input of an image to the network precludes a pixel-
level classification of the entire image. Thus, the discrete extraction of each pixel slice
is deemed essential. The exiting research of dual-stream convolutional neural network
fusion [72] demonstrates that fusing the recognition results to identify the proper rate is
superior to fusing them in the process. Multiple fusion with full connectivity and the final
convolutional layer is one of the better methods; however, the estimated parameters will
be doubled, and the accuracy will increase by just 1.7%. In this research, we emulate the
notion of integration learning in machine learning by using several weak-based learners
for dataset learning and then merging the learners to obtain a higher performance by
fusing the recognition results. The spectral and picture channels are learned independently,
and the identification rate is enhanced by employing a weighted fusion method based on
their properties.

An adaptive feature combination technique is presented in this paper, which aims to
efficiently integrate pixel and channel features. The output of the fully connected layer is
the feature vector obtained after two branches, whose length is equal to the number of data
categories. Taking inspiration from reference [73], the approach we adopt for the fusion
weighting of two-stream networks involves the use of score weighting. Separately, the
weight matrices Wse and Wsa for spectral and spatial dimensions are learned, corresponding
to the joint scoring of features Sse and Ssa to obtain the resultant vector S. This procedure
can be stated as:

Sse = Fse ∗Wse (10)

Ssa = Fsa ∗Wsa (11)
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If Sse and Ssa are directly summed, the different importance of the two parts is not
emphasized. This is equivalent to feature splicing with an equal weight, which does
not demonstrate good performance and may have harmful repercussions. During the
process of training the network, a number of parameters are gathered in order to adaptively
determine the ratio of the space to the spectrum. This can be viewed as an improved variant
of feature stitching, and the processed model will have a more robust data representation
than channel stitching and feature weighting. The process of adaptation can be described
as follows:

S = α ∗ Sse + β ∗ Ssa (12)

α and β are represented here as the reciprocal of the loss values produced during
network training by the cross-loss entropy loss function. The loss value is the distance
between the predicted value and the previous label. The smaller the loss value, the closer
the distribution of the two variables, and the greater the model’s performance.

To optimize the above-given model, a suitable objective function is needed. Cross
entropy is commonly used loss function for the classification problems. Here, we also use
the cross entropy as a loss function of DSSFN for the classification of HSI. The loss function
for cross entropy is given as follows:

Loss = − 1
M

M

∑
m=1

C

∑
c=1

ym
c log(ym

c ) (13)

where y and y are the truth and predict labels, respectively. C is the number of classes, and
M is the number of samples in a minibatch. The parameters in the model are updated by
backpropagation and stochastic gradient descent.

In the experiments, the training and test sets are chosen by seeding the fixed spectral
flow with the spatial flow at random. In addition, the spectral dimension is trained using
the spectral profile of each pixel point, and the spatial dimension is focused on the target
pixel using the same training sample and comparable loss.

4. Experimental Results

In this section, the proposed method is qualitatively and quantitatively evaluated
using four hyperspectral public datasets, including the Salinas Scene (SA), Pavia University
(PU), Kennedy Space Center (KSC), and Indian Pines (IP) datasets.

4.1. Dataset Description

Salinas Scene (SA): This dataset was collected by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) [74], over the Salinas Valley, California, USA. It includes 224 spectral
bands with 512 × 217 pixels. After removing the bands with a low signal-to-noise ratio
(SNR), 204 bands with a spatial resolution of 3.7 m/pixel remain. There are a total of sixteen
classes of features covered.

Pavia University (PU): The dataset was collected by the Reflection Optical System
Imaging Spectrometer (ROSIS) [75], over the urban region surrounding the University
of Pavia in northern Italy. It includes 115 spectral bands with 610 × 340 pixels. It fea-
tures a spatial resolution of 1.3 m/pixel and a spectral resolution of 4 nm in the range of
0.43~0.86 µm. There are a total of nine classes of features, and after deleting 12 noisy bands,
the classification of this paper is based on the remaining 103 bands.

Kennedy Space Center (KSC): The dataset was collected by the NASA Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) [74] over the Kennedy Space Center in
Florida, USA. It boasts a spatial resolution of 18 m/pixel and a spectral resolution of 10 nm
in the range of 0.4~2.5 µm. There are thirteen feature classes available. After deleting the
absorbance and poor SNR bands, the classification of this work is based on the remaining
176 bands.

Indian Pines (IP): The dataset was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) [75] sensor over the Indian Pines Proving Ground in northwest
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Indiana. It consists of 224 spectral bands and 145 × 145 pixels. It has a spectral resolution
of 10 nm, a range of 0.4~2.5 µm, and a spatial resolution of 20 m/pixel. There are sixteen
feature classes available, and after deleting 20 bands spanning the absorption region and
4 zero bands, 200 bands are used for categorization.

Figure 8 depicts the pseudo-color composites of the mentioned four public datasets
and their corresponding ground reference data.
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4.2. Parameter Settings

Experiments are conducted on a Linux system with Python 3.8 and four NVIDIA
GeForce RTX 3090 GPUs in order to evaluate the performance of the proposed DSSFN
model. As quantitative evaluation measures for the proposed method, we use the category
accuracy, overall accuracy (OA), average accuracy (AA), and kappa coefficient (κ). The size
of the spatial input, depth of the convolutional block, percentage of training set samples,
number of spatial self-attention feature extraction layers, and learning rate are all analyzed,
as they have an impact on the training progress and classification performance of the
trained DSSFN network.

A specific percentage of samples is randomly chosen from each category individually
to form the training set, while the remaining samples are designated as the test set. A
spectral patch is comprised of a curve associated with each individual pixel point. When we
make the spatial patches, the region surrounding the pixels of the labeled samples is divided
into patches. In contrast to the prevalent random approach employed in hyperspectral
classification, our methodology involves utilizing neighboring sliced pixel points as training
data. In the context of training a model, the utilization of completely random sampling
often results in the exposure of certain test samples to the model. This phenomenon may
lead to excessively positive outcomes when evaluating the test dataset. Furthermore, the
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use of completely random sampling is not feasible in practical scenarios. The difference
arises due to the typical practice of selecting training and test samples from separate
locations [76].

For each combination of the aforementioned hyperparameters, the model with the
best classification performance on the test set is retained on each dataset for a comparison
with other experimental methods. A batch size of 16 is utilized, and each experiment is run
for 300 iterations, given the number of training samples. Figure 9 shows the classification
precision of OA values on each dataset based on different hyperparameter settings.
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4.3. Experiment Results

This section compares the performance of the DSSFN model with a number of contem-
porary leading approaches, including SSRN [77], HSN [78], S3EResBOF [79], HSI-BERT [80],
ASSMN [81], RSSAN [82], DAGCN [83], and SSFTT [84], all of which utilize open-source
base code and find their optimal parameters in the relevant articles. After five rounds,
the average results and standard deviations were recorded. The measure of algorithm
performance is the metrics of the average results, and the standard deviation recorded in
multiple experiments is used as a reference for robustness verification. The following is a
brief introduction of these models.

(1) SSRN: The original 3D data cubes are input in the end-to-end network, and the
spectral residual blocks and spatial residual blocks continuously learn the feature infor-
mation in the hyperspectral images, connecting each 3D convolutional layer by residual
block mapping.

(2) HSN: Using 3D convolution in the spectral dimension and 2D convolution in the
spatial dimension. Compared to using only 3D convolution, hybrid convolutional networks
lower the complexity of the network.
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(3) S3EResBOF: A squeeze-and-excitation (SE) residual network for raw hyperspectral
data feature extraction. To increase classification performance, each residual module is
coupled with other 3D convolutional layers via an SE module.

(4) HSI-BERT: With a flexible input structure and strong generalization capability,
global dependencies among pixels of hyperspectral data are represented via global percep-
tual fields. It is primarily composed of a multi-head attention process, in which various
heads learn different feature information and encode the context in order to gain distin-
guishing traits.

(5) ASSMN: Utilize spectral feature extraction and spatial feature extraction networks
to process hyperspectral data. On the spectrum side, Long Short Time Memory (LSTM)
is employed to perceive multiscale spectral information. Using the convolutional LSTM
(ConvLSTM) model, spatial contextual information that was previously disregarded is
successfully extracted in the spatial sub-network.

(6) RSSAN: Utilizing the original 3D hyperspectral cube as input data, the features
of spectral spatial feature learning are optimized by stressing the selection of important
spectral bands for the classification and the suppression of worthless bands from the
original input data.

(7) DAGCN: A framework convolutional network built on the deep attention graph is
intended to extract deep abstract features and investigate the intrinsic correlations between
HSI data by constantly changing the attention graph adjacency matrix to accommodate
changes in each feature graph.

(8) SSFTT: The development of an information extraction module is accomplished by
means of the integration of 3D and 2D convolution techniques. Furthermore, Gaussian-
weighted feature markers are introduced to optimize the performance of the module. The
resulting modified features are then employed in the training of the transformer module.

Comparison experiments are conducted on each dataset, and quantitative metrics and
visualization results are provided for each method. The label of the dataset is denoted
as (a), while the labeled pixel classification results of the comparison methods are repre-
sented as (b)–(i). The whole-image classification results of our method are indicated as
(j). Figures 10–13 show the classification maps obtained by different methods. Tables 1–4
present the quantitative results (averaged over five experiments) of different methods.
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Figure 10. Classification maps for the IP with compared methods. (a) GroundTruth. (b) SSRN.
(c) HSN. (d) S3EResBOF. (e) HSI-BERT. (f) ASSMN. (g) RSSAN. (h) DAGCN. (i) SSFTT. (j) DSSFN.
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Figure 11. Classification maps for the KSC with compared methods. (a) GroundTruth. (b) SSRN.
(c) HSN. (d) S3EResBOF. (e) HSI-BERT. (f) ASSMN. (g) RSSAN. (h) DAGCN. (i) SSFTT. (j) DSSFN.
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The third experimental scenario is the dataset from the University of Pavia, with 5% 
randomly picked as the training set and a 15 × 15 data size. Considering that a large sliding 
window introduces excessive data smoothing problems. The classification results are 
depicted in Figure 11. The fused attention technique presented in this research is superior 
to HSI-BERT in its ability to reliably extract useful spatial location data and avoid the 
interference of wrong pixel points. The fully extracted spectral characteristics also play a 
significant role in enhancing the classification performance of the proposed approach in 
this research. For the IP and KSC datasets, our technique outperforms HSI-BERT, RSSAN, 
and DAGCN by 2%. However, there is no substantial improvement in the metrics OA, AA, 
and KAPPA on the PU dataset, mostly because the PU dataset has sufficient training 
samples for all methods to be trained evenly. This shows that our classification algorithm 
can produce more accurate results with less training data. 
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size is merely 11 × 11, and our proposed method earns the highest OA, AA, and KAPPA 
scores compared to all other methods. The next best approach is DAGCN, which is unable 
to accomplish deep feature extraction using attention networks employing 3D convolu-
tion and 2D convolution, as evidenced by the representation of the results. In the dataset, 
Class 8 is “Grap untrained” and Class 15 is “Vineyard untrained”. Based on the results of 
the visualization, it is evident that many of the methods in these two categories are highly 
perplexing due to the similarity of their feature characteristics. Due to the hyperspectral 
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on the same features as a result of environmental influences, making it difficult to separate 
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Figure 13. Classification maps for the SA with compared methods. (a) GroundTruth. (b) SSRN.
(c) HSN. (d) S3EResBOF. (e) HSI-BERT. (f) ASSMN. (g) RSSAN. (h) DAGCN. (i) SSFTT. (j) DSSFN.

Table 1. Classification results of the proposed method and other leading methods on the IP
dataset (%).

SSRN HSN S3EResBOF HSI-BERT ASSMN RSSAN DAGAN SSFTT DSSFN

OA 94.16 ± 0.01 95.75 ± 2.87 97.02 ± 0.79 97.75 ± 0.00 98.30 ± 0.51 95.17 ± 0.76 96.86 ± 0.36 97.47 98.77 ± 0.26
AA 92.67 ± 0.01 92.56 ± 4.91 95.08 ± 2.59 90.13 ± 0.02 99.09 ± 0.36 92.54 ± 1.87 95.80 ± 0.87 96.57 97.76 ± 0.54

KAPPA 93.37 ± 0.06 95.17 ± 3.24 96.61 ± 0.91 97.43 ± 0.01 97.03 ± 0.59 94.49 ± 1.99 96.42 ± 0.41 97.11 98.81 ± 0.11

1 100 87.91 94.79 72.68 99.23 87.10 92.78 95.12 100
2 98.12 93.64 96.41 96.06 96.48 90.89 94.34 97.67 95.59
3 98.46 94.97 96.52 97.62 98.68 90.88 96.68 98.87 97.61
4 97.04 89.64 95.88 97.28 99.71 81.82 97.56 91.55 95.1
5 97.16 95.12 95.18 97.51 98.88 98.81 95.95 96.32 98.63
6 98.88 96.97 98.77 81.37 99.97 98.43 98.42 99.54 97.69
7 41.94 87.62 76.98 62.40 98.75 94.74 90.00 100 100
8 99.89 99.13 99.82 100 100 98.50 99.81 100 100
9 33.33 71.81 98.41 38.89 100 71.43 94.00 88.89 97

10 99.16 95.26 96.37 97.21 98.2 94.40 92.59 97.71 93.62
11 86.37 97.30 97.54 99.35 97.29 97.73 98.21 98.69 98
12 79.73 93.51 95.99 95.08 99.23 93.72 96.36 98.13 95.88
13 98.53 96.70 96.80 98.80 99.52 100 99.46 97.28 96.1
14 99.74 98.31 98.44 99.51 99.45 99.21 99.12 99.91 98.9
15 89.55 94.76 98.55 99.14 100 87.73 97.41 98.84 97.02
16 86.24 88.30 84.87 91.81 100 95.31 90.12 95.54 95.35
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Table 2. Classification results of the proposed method and other leading methods on the KSC
dataset (%).

SSRN HSN S3EResBOF HSI-BERT ASSMN RSSAN DAGAN SSFTT DSSFN

OA 98.41 ± 0.02 96.52 ± 0.83 92.91 ± 5.12 97.69 ± 0.00 98.44 ± 0.45 93.04 ± 0.51 97.20 ± 0.57 93.82 ± 4.76 98.9 ± 0.23
AA 97.15 ± 0.02 94.40 ± 1.32 92.25 ± 4.05 95.89 ± 0.04 98 ± 0.36 90.33 ± 0.62 95.40 ± 0.17 89.60 ± 8.46 97.93 ± 1.01

KAPPA 98.23 ± 0.02 96.12 ± 0.93 92.11 ± 5.70 97.42 ± 0.01 98.27 ± 1.44 93.30 ± 1.71 96.89 ± 0.64 93.10 ± 5.38 98.7 ± 0.29

1 100 96.68 94.94 99.94 97.09 98.61 97.04 99.50 99.08
2 94.00 93.89 88.71 99.63 96.91 88.05 92.81 88.51 94.02
3 90.99 90.21 80.73 89.48 93.88 90.07 97.64 62.00 98.04
4 95.26 79.39 76.42 76.99 93.25 91.23 93.96 68.81 88.47
5 97.66 85.06 84.61 83.19 98.15 89.79 82.52 85.12 80
6 98.84 92.61 94.69 98.06 97.73 85,75 90.05 71.37 100
7 89.86 93.76 98.27 100 98.85 93.57 91.61 65.00 92.38
8 100 98.38 87.17 99.33 98.98 93.03 97.77 93.62 100
9 100 99.73 99.49 100 99.72 98.35 99.32 84.27 98.85

10 100 99.73 95.50 100 99.97 87.20 99.67 94.95 98.51
11 96.32 99.94 99.95 100 100 98.23 99.73 98.99 100
12 100 97.91 98.78 99.96 99.47 96.74 98.14 93.30 100
13 100 99.86 100 100 100 97.69 99.98 99.99 100

Table 3. Classification results of the proposed method and other leading methods on the PU
dataset (%).

SSRN HSN S3EResBOF HSI-BERT ASSMN RSSAN DAGAN SSFTT DSSFN

OA 99.52 ± 0.01 98.69 ± 1.40 97.68 ± 1.43 99.17 ± 0.00 96.26 ± 1.08 98.65 ± 0.31 99.44 ± 0.02 99.21 99.83 ± 0.02
AA 99.13 ± 0.01 98.36 ± 1.70 96.63 ± 1.80 99.79 ± 0.00 98.12 ± 0.32 97.93 ± 0.56 99.28 ± 0.02 98.69 99.26 ± 0.15

KAPPA 99.36 ± 0.02 98.24 ± 1.89 96.92 ± 1.88 99.05 ± 0.00 95.06 ± 1.4 98.22 ± 0.45 99.26 ± 0.02 99.15 99.78 ± 0.06

1 99.85 99.17 98.71 99.90 96.8 99.16 99.70 99.33 99.19
2 99.97 99.31 99.86 100 94.06 99.36 99.74 99.92 99.96
3 97.26 97.22 92.03 99.63 97.95 95.17 98.34 98.29 98.21
4 97.19 96.66 89.14 99.08 99.21 98.09 99.09 98.49 99.83
5 99.53 99.78 99.10 100 100 99.36 100 99.53 100
6 100 98.69 98.73 99.99 97.92 99.43 99.60 100 99.88
7 99.71 99.25 99.25 99.98 99.54 94.95 99.13 99.13 98.66
8 99.19 96.09 96.35 99.76 97.68 96.55 97.91 98.05 99.76
9 99.46 99.11 96.47 99.81 99.94 99.40 100 95.44 99.79

Table 4. Classification results of the proposed method and other leading methods on the SA
dataset (%).

SSRN HSN S3EResBOF HSI-BERT ASSMN RSSAN DAGAN SSFTT DSSFN

OA 96.62 ± 0.98 98.90 ± 1.60 98.37 ± 0.30 99.56 ± 0.089 98.44 ± 0.36 97.28 ± 2.42 99.04 ± 0.02 96.47 ± 0.56 99.67 ± 0.34
AA 98.49 ± 0.38 99.29 ± 1.04 99.16 ± 0.31 99.84 ± 0.022 99.36 ± 0.05 98.42 ± 1.11 99.39 ± 0.01 97.57 ± 0.35 99.36 ± 0.75

KAPPA 96.23 ± 1.08 98.77 ± 1.78 98.18 ± 0.70 99.42 ± 0.13 98.26 ± 0.26 96.97 ± 2.73 98.93 ± 0.02 96.07 ± 0.62 99.64 ± 0.28

1 100 99.99 99.93 100 100 99.98 100 99.92 99.95
2 99.98 99.93 100 100 100 99.69 100 99.99 99.97
3 100 99.95 99.97 100 99.89 99.72 100 ± 0.00 99.99 100
4 99.52 98.82 97.75 100 100 98.34 99.87 96.45 96.2
5 99.63 99.73 99.75 99.92 99.3 98.58 99.57 98.86 97.18
6 100 99.85 99.96 100 100 99.76 100 99.86 99.14
7 100 99.85 99.99 99.96 100 99.63 99.89 98.94 99.49
8 95.57 97.44 98.09 98.48 95.51 95.26 98.34 92.64 99.68
9 100 99.97 100 100 100 99.72 100 99.98 99.58
10 97.45 98.50 99.57 99.93 99.62 97.68 99.63 97.99 98.63
11 98.24 97.93 99.80 100 100 100.00 98.97 99.98 98.79
12 99.87 99.62 99.92 100 100 99.96 100 97.61 100
13 99.75 99.95 99.62 100 100 99.24 99.66 94.4 99.78
14 99.93 99.70 99.67 100 100 96.35 98.54 95.17 99.43
15 85.83 97.48 92.63 99.26 96.21 90.76 96.33 89.92 99.5
16 100 99.94 99.97 99.97 99.3 100.00 99.39 99.48 100

In the first experimental scenario, the Indian Pines Scene is utilized to evaluate the
performance of several classification techniques. 10% of the randomly selected ones are
used as training samples, and the spatial dimension of the input data is 15 × 15. Compar-
ing the experimental results of all models, the classification accuracy of classes 1, 7, and
9 deteriorates significantly. The overall number of samples for these three groups of data in
the dataset is lower, as are the training samples. The better classification accuracy of the
DSSFN classification method based on spectral and spatial patches demonstrates the ad-
vantages of combining spectral and spatial information. On the one hand, the self-attention
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mechanism is more advantageous than the attention-based classifier for the extraction
of global information. It demonstrates that attention offers a solid foundation for deep
learning networks and that mining the perceptual field significantly improves performance.
On the other hand, raising the network’s depth confirms that the aggregation of multi-layer
characteristics results in improved performance characterization. Overall, the classification
results of DSSFN are superior to those of other evaluated networks, and there is a signif-
icant performance gain in comparison to the recently open-source SOTA hyperspectral
classification, with a 3% and 2% improvement over HSN and SSTFF, respectively.

In the second experimental scenario, the training sample proportion of KSC is set as
15%, and the spatial dimension input data size is 15 × 15. Raising the size of patches can
capture more peripheral information and enhance the classification accuracy, but at the
expense of the training pace of the model; therefore, 15 × 15 is chosen after careful analysis.
According to the classification results, the DSSFN model has the highest accuracy. Due to
the rather sparse feature distribution of the KSC dataset, the OA of RSSAN and S3EResBOF
is not particularly high. The KSC dataset exhibits a low level of label information, with
only 10% of the pixel points containing labeled data. This issue arises from the neural
network’s inability to extract profound features, resulting in the occurrence of local optima
and overfitting. The utilization of the residual pyramid structure, which incorporates layer
hopping connections, can enhance the capacity of the network to extract concealed features
without necessitating an increase in the layer count. This, in turn, leads to an improvement
in the overall efficiency of the network. This demonstrates that our proposed DSSFN
network model has superior robustness in sparse data scenarios and outperforms other
state-of-the-art methods.

The third experimental scenario is the dataset from the University of Pavia, with
5% randomly picked as the training set and a 15 × 15 data size. Considering that a large
sliding window introduces excessive data smoothing problems. The classification results
are depicted in Figure 11. The fused attention technique presented in this research is
superior to HSI-BERT in its ability to reliably extract useful spatial location data and avoid
the interference of wrong pixel points. The fully extracted spectral characteristics also play
a significant role in enhancing the classification performance of the proposed approach in
this research. For the IP and KSC datasets, our technique outperforms HSI-BERT, RSSAN,
and DAGCN by 2%. However, there is no substantial improvement in the metrics OA,
AA, and KAPPA on the PU dataset, mostly because the PU dataset has sufficient training
samples for all methods to be trained evenly. This shows that our classification algorithm
can produce more accurate results with less training data.

The final experimental scenario is the SA dataset, in which 10% of the labeled samples
are selected as the training set and the other samples are used for validation. The input
size is merely 11 × 11, and our proposed method earns the highest OA, AA, and KAPPA
scores compared to all other methods. The next best approach is DAGCN, which is unable
to accomplish deep feature extraction using attention networks employing 3D convolution
and 2D convolution, as evidenced by the representation of the results. In the dataset, Class
8 is “Grap untrained” and Class 15 is “Vineyard untrained”. Based on the results of the
visualization, it is evident that many of the methods in these two categories are highly
perplexing due to the similarity of their feature characteristics. Due to the hyperspectral
data, various features may exhibit the same spectral features and different spectral curves
on the same features as a result of environmental influences, making it difficult to separate
them without simultaneously deriving spatial and spectral features. In addition, the
residual pyramid structure and self-attention mechanism employed in this research can
expand the receptive field for target pixel classification.

4.4. Discussion of Validity
4.4.1. Discussion of the Efficiency of the Self-Attention

In order to determine the efficacy of the strategy for adding the self-attention module
to the network, we conduct ablation experiments on all four datasets. M-att represents
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the spatial information flow with the addition of the self-attention module, whereas M-o
represents the spatial information flow without the self-attention module. In the ablation
experiments, all groups use the same training and test samples, and the OA, AA, and
KAPPA on the IP dataset are +1.05%, +2%, and +1.19%, respectively; those on the PU
dataset are +0.4%, +0.66%, and +0.53%, respectively; those on the SA dataset are + 0.88%,
+0.43%, and +1.02%, respectively; and those on the KSC dataset were +0.43%, +0.27%, and
+0.47%, respectively. The results demonstrate that utilizing the self-attention mechanism
resulted in varying degrees of performance enhancement across all four datasets. Although
adding the attention module increases the time of network iterations, the number of
parameters, and the computation of the final model, it assists in refining the features and
semantic content of the images, which is useful for hyperspectral image classification. The
advantage of this strategy is that the self-attentive mechanism provides a better balance of
accuracy and efficiency, which is difficult to achieve when optimizing the model for both
accuracy and speed, as shown in Table 5.

Table 5. Classification results of the proposed self-attention with four datasets (%).

IP PU SA KSC

OA AA KAPPA OA AA KAPPA OA AA KAPPA OA AA KAPPA

M-att 99.4 99.19 99.31 97.95 97.31 97.28 99.51 99.55 99.49 99.21 98.44 99.12
M-o 98.35 97.19 98.12 97.55 96.65 96.75 98.63 99.12 98.47 98.78 98.17 98.65

4.4.2. Discussion of the Validity of the Band Selection Method

The proposed sliding window grouping band selection method is contrasted and vali-
dated. The original IP dataset images, MVPCA downscaling [85], FDPC [86], EFDPC [55],
and FNGBS [19] band selection methods, as well as the resulting [15,20,25,30,35] band
images, are categorized accordingly. Moreover, a comparative analysis was conducted
on the classification results generated by these models. Figure 14 illustrates the achieved
classification outcomes.
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MVPCA quantifies the difference of each band by ranking and selects the band with a
higher ranking. The approach based on principal component analysis can focus the majority
of the information on the first few principal component bands. However, the remainder of
the principal components include a great deal of noise, and the selection of an excessive
number of principal components might result in the introduction of noisy bands and an
alteration of the classification findings. Methods for band selection incorporate sorting and
clustering, such as FDPC and EFDPC. Nonetheless, when performing clustering processes,
we typically consider spectra to be disordered, neglecting contextual information between
bands. The subset of bands is determined by the local density and information entropy.
However, the number of groupings must be predetermined, which is inapplicable to
hyperspectral datasets with distinct bands. Additionally, the spatial structure information
of each band is underutilized. As demonstrated previously, the correlation grouping-based
SWGMF dimension reduction method described in this study can retrieve high-quality
spectral information inside each band subgroup without introducing noise, hence providing
efficient feature extraction from hyperspectral data.

4.4.3. Discussion of the Validity of Dual-Stream Networks

To further test the efficacy of the proposed new framework’s various branches and
modules, we conducted comparative experiments while leaving the training set and other
experimental parameters intact. There are three distinct models: SPE is the categorization of
an image based on spectral data, SPA is the classification based on spatial data, and Fusion
is the experimental outcome following information fusion. Table 6 lists the outcomes of the
comparative tests conducted on the four datasets. Relative to the individual information
sources, the merged OA findings exhibit varying degrees of performance enhancement.
The improvement is 16.14% and 1.21% on the IP dataset, 4.5% and 0.01% on the PU
dataset, 6.95% and 0.02% on the SA dataset, and 15.04% and 0.17% on the KSC dataset,
respectively. By 1D convolution, the emphasis is on spectral features, while through
2D convolution, the emphasis is on spatial features. The fused network can improve
the network’s ability to learn discriminative features and achieve greater classification
precision. Integrating the spatial-spectral network feature weights and capturing the
interaction between features can boost the expression of fused features and improve the
classification performance of hyperspectral images. The efficacy of the branch SPA, which
is utilized for the extraction of spatial information, and the branch SPE, which is employed
for the extraction of spectral information, exhibits variations across different datasets.
This phenomenon may be attributed to gaps in the datasets resulting from variations in
their collection methodologies. Moreover, in the context of the PU and SA datasets, the
weighted fusion decision is enhanced by incorporating the feature extraction results from
their corresponding branches. It is important to acknowledge that the precision of SPA is
already significantly elevated, thereby limiting the possibility of additional improvement
through fusion.

Table 6. Classification results of the proposed dual-steam networks with four datasets (%).

IP PU SA KSC

SPE SPA Fusion SPE SPA Fusion SPE SPA Fusion SPE SPA Fusion

OA 82.63 97.56 98.77 95.33 99.82 99.83 92.87 99.8 99.82 83.86 98.73 98.9
MIOU 63.59 89.55 92.79 89.43 99.44 99.47 92.49 99.33 99.38 61.66 95.94 96.11
FWIOU 71.02 95.29 97.76 91.31 99.65 99.67 87.6 99.61 99.64 75.24 97.59 97.93
KAPPA 80.18 97.22 98.81 93.83 99.76 99.78 92.05 99.78 99.8 82.01 98.59 98.78

5. Conclusions

A dual-stream self-attention fusion network (DSSFN) for effective hyperspectral image
classification with spatial and spectral fusion is proposed in this paper. On the basis of a
sliding window grouped normalization matched filter for neighboring bands (SWGMF)
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band selection method, representative bands are selected to increase the extraction of effec-
tive information while minimizing redundancy across bands. The dual-stream network
at once extracts information in spatial and spectral dimensions and classifies them after
weighted fusion, which improves the capacity of the network to apply the extracted infor-
mation with the data. The self-attention mechanism significantly captures hyperspectral
image features at a distance through boosting the strength to study the correlation between
the target pixels and the surrounding information. The residual structure in the pyramid
structure mitigates the gradient vanishing problem and improves the ability to extract
deep concealed features without increasing the network depth. As a consequence, the
classification accuracy of the model is enhanced while its complexity is decreased. The
proposed model is subjected to multiple experiments conducted on four publicly available
datasets, all of which yield satisfactory classification results. A comparative analysis is then
performed with some existing open-source methods, all of which exhibit substantial perfor-
mance improvement. By demonstrating the potential of the self-attention mechanism in
the Transformer structure, this paper provides a powerful tool for processing hyperspectral
images, and future work will include further optimization of the network to combine CNN
with Transformer for rapid and efficient feature extraction and image classification.
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