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Abstract: Polarimetric synthetic aperture radar (PolSAR) is an important sensor for earth observation.
Multi-temporal PolSAR images obtained by successive observations of the region of interest contain
rich polarimetric–temporal–spatial information of the land covers, which has wide applications.
Speckle filtering becomes a necessary pre-processing for many subsequent applications. Currently, it
is common to filter multi-temporal PolSAR data by directly using a speckle filter developed for single
SAR or PolSAR data. The cross-correlation between different time series contains rich information in
multi-temporal PolSAR images. How to utilize complete polarimetric–temporal–spatial information
becomes a large challenge to achieve more satisfied performances of speckle reduction and details
preservation simultaneously. This work dedicates to this issue and develops a novel speckle filtering
approach for multi-temporal PolSAR data by multi-dimensional information fusion. The core idea
is to establish an adaptive and efficient strategy of similar pixel selection based on the similarity
test of multi-temporal polarimetric covariance matrices. This similar pixel selection scheme fuses
the complete information of multi-temporal PolSAR data. The sensitivity of the proposed scheme
is demonstrated with several typical and challenging texture patterns. Then, an adaptive speckle
filter is established specifically for multi-temporal PolSAR data. Intensive comparison studies are
carried out with airborne UAVSAR datasets and spaceborne ALOS/PALSAR datasets. Quantitative
investigations in terms of the equivalent number of looks (ENL) and the figure of merit (FOM) indexes
demonstrate and validate the superiority of the proposed method.

Keywords: multi-temporal; polarimetric synthetic aperture radar (PolSAR); speckle filter;
information fusion; similarity test; similar pixel selection

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) which can obtain complete polarimetric
information becomes important in earth observation [1,2]. With the rapid development of
PolSAR technology, a large number of PolSAR images of the same scene at different times
have been accumulated so far. Plenty of successful applications have been achieved with
multi-temporal PolSAR data, including land cover classification [3,4], change detection [5,6],
urban damage level mapping [7–9], and so on.

However, as a coherent imaging system, PolSAR images are seriously affected by
the speckle phenomenon due to the random summation of backscattered signals within
resolution cells [1]. The existence of the speckle effect makes multi-temporal PolSAR image
interpretation and utilization more difficult. Speckle filtering is a necessary pre-processing
step for almost all practical applications using multi-temporal PolSAR images. The purpose
of speckle reduction is to greatly smooth the speckle effect while well preserving the image
details and scattering mechanisms. In principle, there are two key stages for speckle
filtering: adaptive selection of a sufficient number of similar pixels and generation of an
unbiased estimator [10]. Several unbiased estimators have been already available [1]. The
challenge lies in how to adaptively locate similar pixels according to various imaging scenes.
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A large number of speckle filtering approaches have been proposed for multi-temporal
SAR images [11–16]. Multi-temporal PolSAR image speckle filtering is seldom studied
independently. Instead, it is common to filter multi-temporal PolSAR data by directly using
a speckle filter developed for single SAR or PolSAR data. Boxcar filter is a commonly
used method by averaging pixels within a moving window without any pixel selection
scheme. Refined Lee filter is an improvement of the boxcar filter by incorporating eight
edge-aligned windows to locate similar pixels [17,18]. IDAN filter is an intensity-driven
method by introducing a region-growing technique for similar pixel collection [19]. Sigma
filter and its extended versions select similar pixels by examining the intensity variance of
local pixels [20,21]. Only pixel candidates within a given sigma range are determined and
this method gains better performance on speckle reduction and details preservation. The
nonlocal filtering concept was also adopted for PolSAR image speckle filtering [22,23]. It
can consider similar pixel selection over a large search area and can collect more pixels for
sample averaging. Other representative speckle filters can be found in [24–26].

The majority of the above approaches generally rely on only intensity information of
each polarization channel of single PolSAR data for similar pixel selection. It is known that
the polarimetric phase and cross-correlation between two channels contain rich information
for similar pixel characterization [27–31]. The neglect of these valuable sources may lead
to inaccurate selection of similar pixel candidates and may degrade final speckle filtering
performance. Model-based decomposition [32,33], which is a powerful tool for PolSAR
scattering mechanism interpretation, was utilized for similar pixel selection, and a speckle
filter was developed thereafter [34]. Recently, the H/A/Alpha-Wishart PolSAR classifier
also was utilized for similar pixel selection [35]. However, since the decomposition results
are not unique in terms of different scattering models and model inversion schemes, similar
pixel selection will also be affected. In addition, a similarity test of PolSAR covariance
matrices developed in [36] shows good sensitivity to various land covers. This similarity
test utilizing the full acquisition information was introduced for similar pixel selection and
speckle filtering [10]. Promising speckle filtering performance was achieved. In order to
further optimize the process of similar pixel selection, the adaptive clustering method and
similarity test were combined to solve the problem of excessive smoothing caused by the
excessive selection of similar pixels [37]. Additionally, a multi-temporal multidimensional
(MTMD) filter [38] based on temporal statistics to reduce the speckle by using all elements
of the polarimetric matrices is developed for multi-temporal PolSAR images. However, the
MTMD filter has the problem of insufficient utilization of information.

The cross-correlation between different time series contains rich information in multi-
temporal PolSAR images. This work is dedicated to developing a novel speckle filtering
approach for multi-temporal PolSAR data by multi-dimensional information fusion. This
approach will utilize the polarimetric–temporal–spatial information acquired by multi-
temporal PolSAR in terms of multi-temporal polarimetric covariance matrices for similar
pixel characterization and selection.

The remainder of this paper is organized as follows. Section 2 introduces multi-
temporal polarimetric covariance matrix formulation and the corresponding statistical
distribution. Section 3 describes the proposed speckle filter. Experimental and comparison
studies are carried out in Section 4 using airborne UAVSAR and spaceborne ALOS/PALSAR
datasets, respectively. Conclusions are given in Section 5.

2. Multi-Temporal Polarimetric Covariance Matrix Formulation and Its Distribution
2.1. Multi-Temporal Polarimetric Covariance Matrix

For polarimetric imaging radar, under the reciprocity condition, the fully polarimet-
ric data on a horizontal and vertical polarization basis can be represented as a three-
dimensional polarimetric scattering vector:

k =
[
SHH

√
2SHV SVV

]T
(1)
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where SHV is the backscattered coefficient from vertical polarization transmission and
horizontal polarization reception. Other terms are similarly defined. The superscript T is
the transpose.

The polarimetric covariance matrix can be expressed as:

C3 =
〈

kkH
〉
=

C11 C12 C13
C21 C22 C23
C31 C32 C33

 (2)

where kH is the conjugate transpose of k, 〈·〉 indicates sample average.
Compared with the single PolSAR image, multi-temporal PolSAR image can offer

rich scattering information, including polarimetric information, and temporal and spatial
information, shown in Figure 1. Rich scattering information can improve performance for
speckle filtering.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 21 
 

 

2. Multi-Temporal Polarimetric Covariance Matrix Formulation and Its Distribution 
2.1. Multi-Temporal Polarimetric Covariance Matrix 

For polarimetric imaging radar, under the reciprocity condition, the fully polarimet-
ric data on a horizontal and vertical polarization basis can be represented as a three-di-
mensional polarimetric scattering vector: 

T

HH HV VV2S S Sk  =    (1)

where HVS  is the backscattered coefficient from vertical polarization transmission and 

horizontal polarization reception. Other terms are similarly defined. The superscript T  
is the transpose. 

The polarimetric covariance matrix can be expressed as: 

11 12 13
H

3 21 22 23

31 32 33

C C C
C C C
C C C

C kk
 
 = =  
  

 (2)

where Hk  is the conjugate transpose of k , ⋅  indicates sample average. 
Compared with the single PolSAR image, multi-temporal PolSAR image can offer 

rich scattering information, including polarimetric information, and temporal and spatial 
information, shown in Figure 1. Rich scattering information can improve performance for 
speckle filtering. 

 
Figure 1. The 3D scattering information of multi-temporal PolSAR. 

In order to utilize the scattering information of multi-temporal PolSAR data, by splic-
ing three-dimensional polarimetric scattering vectors of different time series, the multi-
temporal polarimetric scattering vectors are constructed as 

T

1 2 ... iv k k k =    (3)

where ik  is the polarimetric scattering vector of the thi  time series. 
Inspired by the idea of polarimetric interferometry SAR (PolInSAR) matrix construc-

tion [39], a multi-temporal polarimetric covariance matrix (MTPCM) is defined as 
H

MTPCMM vv=  (4)

Take three PolSAR image time series for example, the multi-temporal polarimetric 
covariance matrix with the size of 9 × 9 can be obtained 

1 12 13
H H H

2 1 2 3 21 23

3 31 3

MTPCM

2

   
    = =    
      

11

22

33

k C Ω Ω
M k k k k Ω C Ω

k Ω Ω C
 (5)

Figure 1. The 3D scattering information of multi-temporal PolSAR.

In order to utilize the scattering information of multi-temporal PolSAR data, by
splicing three-dimensional polarimetric scattering vectors of different time series, the
multi-temporal polarimetric scattering vectors are constructed as

v =
[
k1 k2 ... ki

]T (3)

where ki is the polarimetric scattering vector of the ith time series.
Inspired by the idea of polarimetric interferometry SAR (PolInSAR) matrix construc-

tion [39], a multi-temporal polarimetric covariance matrix (MTPCM) is defined as

MMTPCM =
〈

vvH
〉

(4)

Take three PolSAR image time series for example, the multi-temporal polarimetric
covariance matrix with the size of 9 × 9 can be obtained

MMTPCM =

〈k1
k2
k3

[kH
1 kH

2 kH
3

]〉
=

C11 Ω12 Ω13
Ω21 C22 Ω23
Ω31 Ω32 C33

 (5)

where C11, C22, and C33 are the standard Hermitian polarimetric covariance matrices of
three polarimetric SAR data time series, respectively. Ωij is a 3 × 3 complex polarimetric-
interferometric phase correlation matrix. MMTPCM is a Hermitian matrix.

The multi-temporal polarimetric covariance matrix contains not only the polarimetric
information of the single PolSAR image, but also the interferometric phase relationship
between different polarization channels in the two PolSAR image time series. Using
MTPCM to carry out similar pixel selection can balance polarimetric information and
interferometric information. It is expected to distinguish the difference of terrain phase in
pixels with similar polarization characteristics and can reduce the dependence on additional
data such as the digital elevation model (DEM).
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2.2. Statistical Distribution

Generally, complex Gaussian distribution is used to describe the statistical character-
istics of PolSAR data, which is normally valid from coarse-resolution to fine-resolution
data over homogeneous areas [1,2]. Similarly, it can be considered that the constructed
multi-temporal polarimetric scattering vector v follow the multivariate complex Gaussian
distribution with mean zero and covariance matrix C, denoted as v ∈ NC(0, C), and the
distribution function [1] is

f (v) =
1

π3|C| exp
(
−vHC−1v

)
(6)

where the covariance matrix is C = E
[
vvH], C−1 is the inverse of C, and |·| denotes

the determinant.
Then, let X = nC, the matrix X follows a complex Wishart distribution X ∈WC(p, n, C),

and the distribution function of X is

f (X) =
|X|n−p exp

[
−Tr

(
C−1X

)]
K(n, p)|X|n

(7)

where Tr(·) denotes the trace of the matrix, p is the dimension of the vector v, n is the
number of looks, and

K(n, p) = πp(p−1)/2
p

∏
j=1

Γ(n− j + 1) (8)

Γ(·) is the gamma function.

3. Adaptive Speckle Filter Development
3.1. Multi-Temporal Polarimetric Covariance Matrices Similarity Test

Usually, a binary hypothesis statistic test can be adopted for the similarity test of two
covariance matrices following the Wishart distribution according to [36]. For complex
Wishart distributed multi-temporal polarimetric covariance matrices XMTPCM and YMTPCM,
as

XMTPCM ∈WC(p, nX, CX), YMTPCM ∈WC(p, nY, CY). (9)

Under the assumption that CX = CY, the likelihood ratio QMTPCM for two multi-
temporal polarimetric covariance matrices [36] becomes:

QMTPCM =
(nX + nY)

p(nX+nY)

nX
pnX nY

pnY

|XMTPCM|nX |YMTPCM|nY

|XMTPCM + YMTPCM|nX+nY
. (10)

Then, let nX = nY = N. A similarity test indicator ln QMTPCM can be derived as

ln QMTPCM = N(2p ln 2 + ln|XMTPCM|+ ln|YMTPCM| − 2 ln|XMTPCM + YMTPCM|). (11)

It can be proved that ln QMTPCM = 0 when XMTPCM = YMTPCM, whereas in other cases
ln QMTPCM < 0. The larger the difference between XMTPCM and YMTPCM, the smaller the
value of ln QMTPCM. In this vein, the similarity between the different matrices can be tested
by the similarity test indicator ln QMTPCM. Note that the similarity test of multi-temporal
polarimetric covariance matrices is usually carried out within a L× L moving window for
the full-scene data (L= 15 in this work).

3.2. Similar Pixel Selection

The requirement for filtering PolSAR images is to select a sufficient number of similar
pixels for averaging while preserving image details. However, selecting appropriate similar
pixels is a significant challenge for PolSAR image speckle filtering. With a L× L moving
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window and similarity test indicator ln QMTPCM, the similar samples around the selected
pixels can be determined by a predefined threshold, as{

ln QMTPCM ≥ thMTPCM similar pixel
ln QMTPCM < thMTPCM different pixel

. (12)

According to [36], the threshold for multi-temporal PolSAR data can be determined as

thMTPCM = −E
√

p/n (13)

where E is an adjusting parameter which balances the speckle reduction and detail preser-
vation. p is the dimension of the multi-temporal polarimetric scattering vector, and n is
the number of looks. For a given number of looks n and p, with a larger value of E, more
pixels will be selected as similar pixels.

3.3. Sensitivity Analysis and Demonstration

To evaluate the effectiveness of the similarity test indicator ln QMTPCM for similar pixel
selection, three typical areas which are, respectively, mixture-feature, crop-line, and weak-
feature area are selected from airborne UAVSAR datasets, as shown in Figures 2–4. The
sizes of the selected areas are all 70 × 70 pixels and three random samples are chosen from
them. The SPAN and Pauli images are shown on the far left of Figure 2, with red arrows
indicating the selected samples. The selected samples are all located at the edges of different
scattering signatures. A similarity test of multi-temporal polarimetric covariance matrices
is applied within a 15 × 15 moving window with each considered pixel at the center. The
Pauli images within a 15× 15 window are shown in Figure 2. For comparison, the similarity
test indicator ln Q [10] and ln QMTPCM between the considered pixel and surrounded pixels
are also calculated. Note that ln QMTPCM is calculated from three PolSAR image time series,
while ln Q is calculated from a single PolSAR image. With a predefined threshold, similar
pixel samples can be determined. The threshold of ln Q is set as −0.3 according to [10], and
the threshold of ln QMTPCM is chosen as −0.95 for this demonstration in this study. The
similarity test indicator ln Q, the proposed ln QMTPCM, and the corresponding mask images
are shown in Figure 2. The mask images show the determined similar pixel samples (in
white color).

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. Similar pixel selection for mixture-feature area. 

 
Figure 3. Similar pixel selection for crop-line area. 

 
Figure 4. Similar pixel selection for weak-feature area. 

It can be observed that the similarity test indicators lnQ  and MTPCMlnQ  are sensi-
tive to various land covers and can effectively characterize their texture characteristics. It 
is clear that lnQ  can well capture the local texture for each considered pixel. However, 
for weak scattering areas, lnQ  can produce a large number of false alarm pixels, which 
can lead to over-filtering. Correspondingly, the proposed MTPCMlnQ   can effectively 

Figure 2. Similar pixel selection for mixture-feature area.

It can be observed that the similarity test indicators ln Q and ln QMTPCM are sensitive
to various land covers and can effectively characterize their texture characteristics. It is
clear that ln Q can well capture the local texture for each considered pixel. However, for
weak scattering areas, ln Q can produce a large number of false alarm pixels, which can
lead to over-filtering. Correspondingly, the proposed ln QMTPCM can effectively suppress
local false alarms. Since the similarity test indicator is sensitive to local texture signatures,
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similar pixels can be collected in a larger moving window, which is also associated with
the nonlocal filtering concept.
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Figure 4. Similar pixel selection for weak-feature area.

In detail, Figure 2 shows a mixture-feature area. The area contains two homogeneous
regions, located in the upper left and lower right corners, respectively. In addition, the
two homogeneous regions are separated by three oblique lines. Three samples are selected
from the first oblique line, the second oblique line, and the homogeneous region in the
lower right corner. For the pixel on the first oblique line, most of the other pixels in its
neighborhood are selected as similar samples. Furthermore, because the third oblique line
has the same scattering characteristics as the first oblique line, some pixels from the third
oblique line are also selected as similar samples. For the pixel on the second oblique line,
all similar pixels are selected as similar samples, which form an oblique line distribution.
For the pixel in the homogeneous region in the lower right corner, most of the pixels in its
neighborhood, which are also in the homogeneous region, are selected as similar samples.

Figure 3 shows a crop-line area. The crops are evenly distributed in straight lines in
this area. Three pixels are selected, two of which are located on the boundary lines between
the two types of land covers, and one is located in the middle of the two boundary lines.
For the pixels on the boundary lines, most of the pixels in their neighborhoods are selected
as similar samples. For the pixel in the middle of the two boundary lines, most of the pixels
in its neighborhood and outside the neighborhood, which are also crops, are selected as
similar samples, and the similar samples are distributed in a straight line.
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Figure 4 shows a weak-feature area. The area contains a weak edge. All three pixels
selected for this area are located on the weak edge. It can be seen that most of the pixels in
the neighborhood, which are also weak edges, are selected as similar samples, with only a
few other pixels being mistakenly selected.

Above all, the proposed ln QMTPCM is sensitive to various land covers and can ef-
fectively characterize their texture characteristics. Most similar pixels can be effectively
selected by threshold processing. Compared with ln Q, the similarity measure of multi-
temporal polarimetric covariance matrices can effectively improve the selection accuracy of
similar pixels.

3.4. Proposed MTPCM Speckle Filter

Note that the determinant of the multi-temporal polarimetric covariance matrix needs
to be calculated when calculating the similarity test indicator. In order to avoid the deter-
minant of the multi-temporal polarimetric covariance matrix being zero, it is necessary
to conduct a rough estimation of the multi-temporal polarimetric covariance matrix. The
boxcar method with a 3 × 3 window is selected in this work. Otherwise, after obtaining
similar pixels through a similarity test, an unbiased estimator needs to be constructed to
obtain the final filtering result. Sample average is exploited as an unbiased estimator, as

Ĉ3 =
1
M

M

∑
i=1

C3i (14)

where C3i is the original PolSAR context covariance matrix of selected similar pixels. M is
the number of selected similar pixels. It should be noted that any other unbiased estimators
can be exploited for speckle reduction.

Based on the multi-temporal polarimetric covariance matrix and similarity test, a novel
adaptive speck filtering scheme is established for multi-temporal PolSAR images, and this
scheme is named MTPCM for short. The flowchart of the proposed MTPCM speckle filter
scheme is shown in Figure 5. Firstly, the multi-temporal polarimetric covariance matrix is
constructed based on original multi-temporal PolSAR data. Secondly, the similarity test
is carried out to select similar pixel masks within a moving window. Lastly, the speckle
filtered data are available by sample average of all the similar pixels.
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4. Experimental Studies

The airborne multi-temporal PolSAR datasets from UAVSAR and the spaceborne
multi-temporal PolSAR datasets from ALOS/PALSAR are used to verify the performance
of the proposed method. The boxcar method, refined Lee method [17], improved Sigma
method [40], IDAN method [19], and SimiTest method [10] are selected for comparison. The
moving window size is 9 × 9 for the boxcar method, refined Lee method, and improved
Sigma method, while the maximum sample size is 50 for the IDAN method. Preliminary
analysis shows that the filtering performance is better when the Sigma value is 0.9. There-
fore, a Sigma value of 0.9 is adopted in this study. The threshold of the SimiTest method
is set as −0.3 according to [10], while the threshold of the proposed method is −0.95.
A 15 × 15 moving window is selected to carry out filtering experiments for the SimiTest
method and the proposed MTPCM method. The refined Lee method, improved Sigma
method, and IDAN method are implemented through the PolSARpro software.

The quantitative evaluations are carried out with the equivalent number of look (ENL)
index and edge detection for speckle filtering performance. The ENL is usually exploited
to analyze the filtering effect of homogeneous regions [1,41] and is defined as

ENL =
mean(|p|)2

var(|p|) (15)

where |p| represents the amplitude of pixels in the homogeneous region. mean(·) is to
calculate the mean, while and var(·) is to calculate the variance.

Edge detection can be exploited to investigate the image details maintenance perfor-
mance for different speckle filtering methods. In this work, the ratio of average (ROA)
edge detector [42] with a 5 × 5 moving window is used to detect the image. The figure of
merit (FOM) is exploited for quantitative evaluation of the edge detection effect [41] and is
defined as

FOM =
1

max
(

Nground−truth, Ndetection

)Ndetection

∑
n=1

1
1 + αd2

n
(16)

where Nground−truth and Ndetection, respectively, represent the number of edge pixels in
the ground-truth and the number of edge pixels in the detection result. d2

n represents the
nearest Euclidean distance between the pixel point in the detection result and the pixel
point in the true value, and α is an adjustable parameter (α = 1 in this work). If the edge
detection result is exactly the same as the ground-truth, FOM is 1. Otherwise, FOM is lower
than 1. The larger the FOM, the better the performance on image details maintenance.

4.1. Comparison with UAVSAR DATA

The UAVSAR L-band multi-temporal PolSAR data over Manitoba, Canada obtained on
22, 23, and 25 June 2012 are utilized for comparison, shown in Figure 6. The provided data
have already been 3-look processed in the range and 12-look processed in the azimuth with
range and azimuth resolutions of, respectively, 5 and 7 m [43]. The study area with a size
of 1130 × 880 pixels mainly contains mixed crops represented by cereals and vegetables.

The speckle filtering results for UAVSAR data (22 June 2012) are shown in Figure 7.
In this comparison, six regions of interest (ROIs) are randomly selected from the study
area for further evaluation of the speckle filtering effect, shown in Figure 6a. The selected
six ROIs including three homogeneous areas with different land covers (marked with red
rectangles, denoted as ROI1, ROI2, and ROI3) and the three weak-feature areas with edge
(marked with blue rectangles, denoted as ROI4, ROI5, and ROI6).
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The speckle filtering comparisons for six ROIs are shown in Figures 8–11. For three
homogeneous areas (ROIs 1–3), the original data and speckle filtered data from different
methods are shown in Figure 8. Visually, the six speckle filtering methods can well smooth
the speckle. The boxcar, refined Lee, and IDAN filtered data have some speckle effect,
while the improved Sigma method, SimiTest method, and the proposed method can well
smooth the speckle effect.
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On the basis of visual analysis, the ENL is selected to carry out quantitative analysis for
the speckle filtered data. The quantitative results comparison on 22 June are summarized
in Table 1. The ENL values from the original data for ROIs 1–3 are 20.62, 16.23, and 20.54,
respectively. After speckle filtering, the ENL values are improved for ROIs 1–3. Similar to
visual analysis, the boxcar method exhibits relatively limited speckle smooth performance
with the lowest ENL values of 440.42, 385.80, and 430.27 for ROIs 1–3. The ENL values of
the improved Sigma method are better than the boxcar method, refined Lee method, and
IDAN method, but lower than the SimiTest method and the proposed MTPCM method.
For ROI1 and ROI2, the proposed MTPCM method achieves the highest ENL values of
966.15 and 854.95, which is better than the other five comparison methods. For ROI3, the
SimiTest method has the highest ENL of 906.04, while the ENL value of the proposed
MTPCM method is very close to that of the SimiTest method. Therefore, the proposed
MTPCM method exhibits better performance on speckle reduction.

To further evaluate the speckle filtering performance for different methods, edge
detection is carried out for three weak-feature areas (ROIs 4–6). The Pauli images, SPAN
images, edge detection results, and binary edge detection results with a threshold of 0.5 are
shown in Figures 9–11. Meanwhile, the edge ground-truth images are shown in Figure 9(a0),
Figure 10(a0) and Figure 11(a0).

The edge detection comparison for ROI4 is shown in Figure 9. The ROI4 contains
two types of homogeneous regions separated by a straight line. From a visual perspective,
the speckle effect is still apparent in the filtered images from the boxcar method, refined
Lee method, and IDAN method. The improved Sigma method, SimiTest method, and the
proposed MTPCM method can effectively smooth the speckle effect. The edge detection
result from original data produces a large number of false alarms, while the edge detection
results from filtered data produce no alarms. There is some edge missing phenomenon in
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the boxcar filtered, improved Sigma filtered, and IDAN filtered data, while the refined Lee
method, SimiTest method, and the proposed MTPCM method not only smooth the speckle
effect but also maintain image edges well, shown in Figure 9(b6,b7). The edge detection
results from both the SimiTest method and the proposed MTPCM method are a straight line
that closely matches the ground-truth. The edge detection comparison for ROI5 is shown
in Figure 10. The ROI5 contains a curved edge. It can be seen that compared with the
traditional methods, the SimiTest method and the proposed MTPCM method exhibit better
performance on edge detection, with the proposed MTPCM method outperforming the
SimiTest method. The edge detection comparison for ROI6 is shown in Figure 11. The ROI6
contains multiple types of land covers, crop-line edges, and weak-feature edges. It can be
observed that, from the traditional filtered data, the salient linear edges can be detected,
while the crop-line edges marked with red triangular box and weak-feature edges marked
with red rectangular box are difficult to detect, as shown in Figure 11(b4–e4). However, the
result of edge detection from the proposed MTPCM method is superior both for crop-line
edges and weak-feature edges, as shown in Figure 11(g4).
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Figure 9. Edge detection comparison for ROI4 of UAVSAR data. (a0) Edge ground-truth. (a1–a7) Pauli
image. (b1–b7) SPAN image. (c1–c7) Edge detection results. (d1–d7) Binary edge detection results.
The numbers 1–7 indicate original, boxcar filtered, refined Lee filtered, improved Sigma filtered,
IDAN filtered, SimiTest filtered, and MTPCM filtered data, respectively.
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Table 1. Quantitative results comparison for UAVSAR data (22 June 2012).

Method
ENL FOM

ROI1 ROI2 ROI3 ROI4 ROI5 ROI6

Original data 20.62 16.23 20.54 0.10 0.12 0.34

Boxcar 440.42 385.80 430.27 0.62 0.03 0.45

Refined Lee 488.65 437.93 504.02 0.23 0.16 0.51

Improved Sigma 600.09 558.12 569.79 0.10 0.10 0.38

IDAN 455.03 398.33 445.50 0.59 0.16 0.39

SimiTest 963.75 841.82 906.04 0.82 0.54 0.60

MTPCM 966.15 854.95 905.82 0.83 0.81 0.70

The quantitative results in terms of the edge detection on 22 June are summarized in
Table 1. The proposed MTPCM method achieves the highest FOM values of 0.83, 0.81, and
0.70, which is better than the other five comparison methods. Moreover, compared with
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the SimiTest methods, the FOM is improved by 0.01, 0.27, and 0.10, respectively from the
proposed MTPCM method.
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Figure 11. Edge detection comparison for ROI6 of UAVSAR data. (a0) Edge ground-truth.
(a1–g1) Pauli images from original, boxcar filtered, refined Lee filtered, improved Sigma filtered,
IDAN filtered, SimiTest filtered, and MTPCM filtered data, respectively. (a2–g2) The corresponding
SPAN images. (a3–g3) The corresponding edge detection results. (a4–g4) The corresponding binary
edge detection results.
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In order to further verify the performance of the proposed MTPCM method, the same
comparison experiment is carried out for UAVSAR data on 23 June and 25 June. The
quantitative results comparison is shown in Tables 2 and 3, respectively.

Table 2. Quantitative results comparison for UAVSAR data (23 June 2012).

Method
ENL FOM

ROI1 ROI2 ROI3 ROI4 ROI5 ROI6

Original data 20.43 15.68 19.27 0.09 0.12 0.34

Boxcar 428.15 438.56 384.60 0.18 0.00 0.33

Refined Lee 368.65 345.58 351.25 0.21 0.16 0.52

Improved Sigma 428.13 438.56 384.61 0.27 0.11 0.38

IDAN 349.05 326.34 314.49 0.55 0.20 0.39

SimiTest 637.84 618.20 582.13 0.82 0.67 0.62

MTPCM 640.08 626.56 581.33 0.82 0.81 0.72

Table 3. Quantitative results comparison for UAVSAR data (25 June 2012).

Method
ENL FOM

ROI1 ROI2 ROI3 ROI4 ROI5 ROI6

Original data 18.13 16.45 19.25 0.06 0.12 0.37

Boxcar 544.05 324.30 529.98 0.09 0.00 0.30

Refined Lee 462.74 303.13 461.51 0.21 0.01 0.54

Improved Sigma 544.14 324.35 529.98 0.20 0.01 0.40

IDAN 408.89 270.30 413.73 0.56 0.20 0.38

SimiTest 838.76 423.43 898.69 0.83 0.39 0.61

MTPCM 851.84 438.95 903.51 0.84 0.53 0.68

In this comparison for UAVSAR data on 23 June, for ROI1 and ROI2, the ENL values
of the proposed MTPCM method are the highest among all methods, reaching 640.08 and
626.56, respectively. For ROI3, the ENL values of the proposed MTPCM method are slightly
lower than that of the SimiTest method. In terms of edge detection, the FOM values of
the proposed method are 0.82, 0.81, and 0.72 for the ROI4-ROI6, respectively. For ROI4,
the FOM value of the proposed MTPCM method and the SimiTest method is the highest,
reaching 0.82. For ROI5 and ROI6, the FOM values of the proposed MTPCM method are
the highest.

In this comparison for UAVSAR data on 25 June, the ENL values of the proposed
MTPCM method are the highest among all methods, reaching 851.84, 438.95, and 903.51,
respectively. In terms of edge detection, the FOM value of the proposed MTPCM method is
also the highest, reaching 0.84, 0.53, and 0.68, respectively. Therefore, the proposed MTPCM
method can effectively improve ENL while maintaining high FOM and has superior speckle
filtering performance.

The number and interval of time series data can affect the performance of the proposed
filtering method. In order to analyze the influence of the number and interval of time series
data, the UAVSAR PolSAR data obtained on 22 June, 23 June, 25 June, 29 June, 3 July, 5 July,
and 8 July 2012 are utilized for experiments.

The quantitative results for UAVSAR data at the different number of time series on
22 June are summarized in Table 4. It can be seen that when the number of time series is 3,
the ENL values of ROI1 and ROI2 achieve the highest, and the FOM values of ROI4, ROI5,
and ROI6 are the highest. As the number of time series increases, both the ENL and FOM
values increase first and then decrease. When the number of time series is greater than 5,
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the filtering effect of the proposed method deteriorates significantly. In addition, note that
with the increase in the number of time series data, the dimension of the multi-temporal
polarimetric covariance matrix will increase, which will cause the proposed method to be
time-consuming. Therefore, the number of time series data is usually chosen to be 2 or 3 in
this work.

Table 4. Quantitative results for UAVSAR data at different number of time series (22 June 2012).

Number of
Time Series

ENL FOM

ROI1 ROI2 ROI3 ROI1 ROI2 ROI3

1 963.75 841.82 906.04 0.82 0.54 0.60

2 965.62 854.23 905.59 0.83 0.76 0.67

3 966.15 854.95 905.82 0.83 0.81 0.70

4 962.81 851.05 898.71 0.81 0.80 0.69

5 950.80 848.12 891.08 0.78 0.73 0.61

7 916.81 795.54 806.64 0.67 0.41 0.45

The quantitative results for UAVSAR data at different intervals of time series on
22 June are summarized in Table 5. It can be seen that when the combination of time series
is 22 June and 29 June, the ENL values are the highest among all intervals of time series,
reaching 965.94, 854.56, and 905.79, respectively, and the FOM values are also the highest
among all intervals of time series, reaching 0.83, 0.81, and 0.70, respectively. As the interval
of time series increases, the filtering effect of the proposed method decreases. As time goes
by, the crops in the scene keep growing and changing, resulting in fewer and fewer selected
similar pixels, and the filtering effect is reduced. Therefore, the choice of time interval
is different for different scenarios and needs to be analyzed specifically according to the
actual data.

Table 5. Quantitative results for UAVSAR data at different intervals time series (22 June 2012).

Combination of
Time Series

ENL FOM

ROI1 ROI2 ROI3 ROI1 ROI2 ROI3

0622–0623 965.62 854.23 905.59 0.83 0.76 0.67

0622–0625 965.65 854.43 905.65 0.83 0.77 0.69

0622–0629 965.94 854.56 905.79 0.83 0.81 0.70

0622–0703 965.36 854.22 905.50 0.83 0.76 0.66

0622–0705 964.90 853.75 905.26 0.82 0.73 0.64

0622–0708 964.46 853.2 904.96 0.82 0.73 0.64

4.2. Comparison with ALOS/PALSAR Data

In order to further examine the speckle filtering performance for the proposed MTPCM
method, the ALOS/PALSAR L-band multi-temporal PolSAR data over the coast of North-
east Japan obtained on 21 November 2010 and 8 April 2011 are utilized for comparison,
shown in Figure 12. The resolution of this data is 4.45 m × 23.14 m (azimuth × range).
Next, 8-look multi-looking processing is performed on this dataset in the azimuth direction
to make pixel sizes consistent for azimuth and range direction. The multiple images have
been registered. The study area with a size of 550 × 600 pixels mainly contains sea, land,
forest, etc.

The speckle filtering results for ALOS/PALSAR data on 22 June 2012 and on 8 April
2011 are shown in Figures 13 and 14, respectively. A point target is marked with red
rectangles in the images. It is clear that the boxcar method, refined Lee method, and IDAN
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method can significantly smooth the speckle, but the image resolution is reduced by these
methods. In particular, the point target is gone in boxcar filtered and refined Lee filtered
images. The improved Sigma method, SimiTest method, and the proposed MTPCM method
preserve the spatial resolution well, which exhibits better performance on both speckle
reduction and details preservation.
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In order to obtain quantitative performance comparisons of the different methods, six
ROIs are randomly selected from the study area, shown in Figure 12a. The selected six
ROIs include three sea regions (marked with red rectangles, denoted as ROI1, ROI2, and
ROI3) and three land regions (marked with blue rectangles, denoted as ROI4, ROI5, and
ROI6). The sizes of ROIs are all 70× 70 pixels. The quantitative results comparison in terms
of ENL values for ROIs 1–6 are summarized in Tables 6 and 7. For ALOS/PALSAR data
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obtained on 21 November 2010, the ENL values of original data for ROIs 1–3 are 5.38, 4.83,
and 5.66, respectively. The ENL values of the filtered data are clearly improved. The boxcar
method, refined Lee method, improved Sigma method, and SimiTest method obtain higher
ENL values than the IDAN method, but lower than the proposed MTPCM method. The
ENL values of the proposed MTPCM method for ROIs 1–3 reach 134.84, 138.27, and 148.68,
respectively. For the land regions, the ENL values of the proposed method are the largest,
reaching 104.36, 69.09, and 21.68, respectively. Due to the more complex land regions, their
ENL values are generally lower than those of sea regions.
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Table 6. Quantitative results comparison for ALOS/PALSAR data (21 November 2010).

Method ROI1 ROI2 ROI3 ROI4 ROI5 ROI6

Original data 5.38 4.83 5.66 3.61 3.39 1.93

Boxcar 97.45 85.24 107.34 74.56 41.61 12.86

Refined Lee 86.50 74.45 86.93 91.22 36.22 15.44

Improved Sigma 97.45 85.60 107.94 93.62 39.96 11.07

IDAN 74.81 61.18 80.22 74.58 35.47 13.58

SimiTest 104.93 98.17 118.34 98.15 64.32 21.51

MTPCM 134.84 138.27 148.68 104.36 69.09 21.68

For ALOS/PALSAR data obtained on 8 April 2011, the proposed MTPCM method
also achieves the highest ENL values of 279.87, 372.45, 168.75, 71.64, 96.94, and 46.05. There-
fore, the speckle filtering results for ALOS/PALSAR data further verify the performance
advantages of the proposed MTPCM method.
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Table 7. Quantitative results comparison for ALOS/PALSAR data (8 April 2011).

Method ROI1 ROI2 ROI3 ROI4 ROI5 ROI6

Original data 6.28 5.90 6.09 2.45 4.80 2.26

Boxcar 150.42 174.12 125.02 41.10 59.62 5.36

Refined Lee 110.02 137.55 114.78 65.78 58.83 30.16

Improved Sigma 150.03 174.00 125.99 63.17 61.93 7.51

IDAN 109.59 118.54 92.70 44.67 49.01 16.16

SimiTest 249.34 295.51 149.24 65.16 80.87 45.36

MTPCM 279.87 372.45 168.75 71.64 96.94 46.05

5. Conclusions

An adaptive speckle filter is developed specifically for multi-temporal PolSAR data.
The novelty lies in the scheme for similar pixel selection by similarity test of multi-temporal
polarimetric covariance matrices. This scheme fuses the complete information of multi-
temporal PolSAR data and achieves more satisfied characterization and determination of
similar pixels. Sensitivity evaluations in terms of several typical and challenging texture
patterns validate the efficiency of this selection scheme. Further comparison studies with
airborne and spaceborne PolSAR data over various imaging scenes clearly demonstrate the
speckle filtering performance of the proposed method. The superiority of the established
method is also confirmed compared with conventional methods. The proposed method can
provide almost speckle-free and details preservation which will greatly assist the following
practical applications.

In this paper, the problem of the similarity test of multi-temporal polarimetric covari-
ance matrices has been discussed. With the shortening of the spaceborne full-pol SAR
revisit period, it is expected to obtain a large number of multi-temporal full-pol SAR data.
The applicability of the proposed method will be better verified. In addition, there are
abundant multi-temporal dual-pol SAR data at the present stage. Since the dual-pol SAR
covariance matrix also satisfies the complex Wishart distribution, the proposed method is
suitable for multi-temporal dual-pol SAR.
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