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Abstract: The detection performance of active sonar is often hindered by the presence of seabed
reverberation in shallow water. Separating the reverberations from the target echo and noise in the
received signal is a crucial challenge in the field of underwater acoustic signal processing. To address
this issue, an improved Go-SOR decomposition method is proposed based on the subspace-orbit-
randomized singular value decomposition (SOR-SVD). This method successfully extracts the low-
rank structure with a certain striation pattern. The results demonstrate that the proposed algorithm
outperforms both the original Go algorithm and the current state-of-the-art (SOTA) algorithm in
terms of the definition index of the low-rank structure and computational efficiency. Based on the
monostatic reverberation theory of the normal mode, it is established that the low-rank structure
is consistent with the low-frequency reverberation interference striation. This study examines the
interference characteristics of the low-rank structure in the experimental sea area and suggests that
the interferences of the fifth and seventh modes mainly control the low-rank structure. The findings of
this study can be applied to seafloor exploration, reverberation waveguide invariant (RWI) extraction,
and data-driven reverberation suppression methods.

Keywords: low-rank structure; reverberation interference striation; matrix approximations; randomized
algorithm; normal-mode reverberation theory; subspace-orbit approach

1. Introduction

The study of shallow-water active detection requires careful consideration of seabed re-
verberation, which poses significant challenges and is of utmost importance [1]. In shallow
water, seafloor reverberation presents a significant obstacle to active sonar performance, as
weak target echoes can easily be overwhelmed by reverberation interference. Reverberation
clutter, which is caused by the inhomogeneity of the water column, discrete scatters on the
seafloor, non-discrete seabed structures [2], and fish schools [3], exacerbates the undesired
constant false alarm rate (CFAR) of active sonar.

To address these challenges, researchers have developed reverberation suppression
and signal separation technologies. However, as seabed reverberation and transmitted
signals are inseparable in the Fourier domain, processing methods in the wavelet domain [4]
and fractional Fourier domain [5–7] have become increasingly significant. To enhance data
quality, singular value decomposition (SVD) [8] and mode decomposition (MD) [9–14]
techniques can be implemented at different stages of processing. Some studies suggest that
the reverberation waveguide invariant (RWI) β, calculated by reverberation interference
striation (RIS) that represents the regular structure in the time–frequency domain, can
be used to develop RWI-based methods for CFAR and estimating the reverberation level
(RL) [15,16]. However, these methods focus on a single measurement, ignoring the internal
relationship between multiple measurements and resulting in difficulties with data-driven
requirements.

In the processing of reverberation data using optimization and matrix computation-
based theories, the structural properties of multi-ping data matrices are of significant

Remote Sens. 2023, 15, 3648. https://doi.org/10.3390/rs15143648 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15143648
https://doi.org/10.3390/rs15143648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0009-2645-109X
https://doi.org/10.3390/rs15143648
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15143648?type=check_update&version=1


Remote Sens. 2023, 15, 3648 2 of 19

importance due to their inherent low-rank features. In [17], a unitary transformation is
applied to the block Toeplitz matrix of received signals, and a fast approximate algorithm is
devised for the approximation of the reverberation low-rank subspace. For the localization
problem of receiver failure in reverberant environments, a matrix completion algorithm
that relies on the low-rank characteristic is developed for the Hankel matrices of received
signals [18]. The non-negative matrix factorization (NMF) algorithm is utilized to calcu-
late the low-rank structure based on the non-negative multiplier criterion and has been
demonstrated to be effective for underwater blind-separation cases of linear frequency
modulation (LFM) signals [19,20]. Background separation algorithms, such as robust prin-
cipal component analysis (RPCA) [21] and Go decomposition [22], have been introduced to
separate reverberation, target echo, and noise in multi-ping received signals [23,24] when
reverberation signals are viewed as interference backgrounds. Furthermore, a combination
method of NMF and Go decomposition is presented to detect underwater targets [25].

However, the current multi-ping methods of reverberation separation [23–25] face
three significant challenges. Firstly, the method’s application is restricted to high-frequency,
short-range reverberation, while cases of low-frequency distant reverberation have not been
validated. In contrast to high-frequency short-range reverberation, low-frequency distant
reverberation, which can be regarded as a two-way long-range propagation process, is more
susceptible to the environmental factors of water velocity disturbance [26], geoacoustics [27],
waveguide effects [28,29], and environmental uncertainty [30], resulting in more intricate
reverberation pings. Consequently, the low-rank structure of reverberation obtained from
multi-ping reverberation will exhibit distinct characteristics due to the impact of frequency
and propagation distance. Secondly, although the low-rank structure between different
reverberation pings is naturally introduced, a strictly physical explanation in specific
scenarios has not been observed, resulting in the inability to guarantee the accuracy and
effectiveness of the algorithm’s applicability and separation results. Thirdly, the existing
methods mainly achieve signal separation through simulation and only a few have been
validated at the level of experimental data, which may lead to uncertainties in the practical
application of the algorithms.

To tackle the aforementioned issues, an efficient Go-SOR decomposition algorithm
is proposed for separating reverberation signals. The algorithm is demonstrated to be
effective for low-frequency and distant cases in underwater reverberant environments.
Additionally, the results indicate that the proposed algorithm outperforms both the original
Go algorithm and the state-of-the-art (SOTA) algorithm in terms of the definition index of
the low-rank structure and computational efficiency. Furthermore, the physical significance
of the low-rank structure obtained by the algorithm for low-frequency reverberation in
shallow water is explicated as follows: under the monostatic reverberation model of the
normal mode, the low-rank structure reverberation aligns with the theoretically predicted
RIS. The experimental findings in the South China Sea reveal that the low-rank structure
reverberation is primarily formed by the interference of the fifth and seventh modes,
thereby ensuring the existence of a low-rank structure in shallow seabed reverberation.

1.1. Notations

• c, cb: minimum sound velocity in the water column, the sound velocity of seabed
sediment.

• dr, dS(t, θ, τ), dθ: width of the elliptical ring, area increment of bottom scattering,
increment of polar angle.

• e: base of the natural logarithm.
• E(β): distribution of RWI.
• E(·): expectation of (·).
• f , fmm′ : frequency point, interference frequency of mode m and m′.
• gmn( f , t, θ), gmn( f , t): scattering amplitude of mode m and n at polar angle θ, scattering

amplitude of mode m and n.
• i: square root of −1.
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• I( f , t), I, Imean: reverberation intensity, reverberation intensity matrix, mean value of
reverberation intensity matrix.

•
q
ĪT ,

q
L̄,

q
S̄,

q
Ḡ: q-th ping of reverberation intensity, low-rank structure, sparse signal, and

residual signal.
• j: iteration index in the algorithms.
• krm, krn, krm′ , krn′ : horizontal wavenumbers (eigenvalues) of different modes.
• 2l: focal length of an ellipse.
• L̄: low-rank matrix without the ping number (each ping is the same).
• m, m′, n, n′: mode numbers.
• max (·), min (·): maximum value of (·), minimum value of (·).
• N: total number of modes.
• p: oversampling the dimension parameter.
• Pθ( f , t), P( f , t): reverberation pressure at polar angle θ, total reverberation pressure.
• Pk

Ω(·), Pσ
ω(·): retain the first k-largest absolute entries of a matrix (·) and set other

entries to zero (k-largest non-negative projection on matrix domain), hard threshold
operator with threshold σ on the entries of a matrix (·).

• q, q: index of the power scheme in the paper, index of reverberation pings.
• Q: total number of reverberation pings.
• Q1,Q2: unitary\orthogonal matrix of QR decomposition.
• r, r0, r1, r2: rank of a matrix, the horizontal distance of monostatic reverberation, the

horizontal distance from scatters to the receiver of bistatic reverberation, the horizontal
distance from the source to the scatters of bistatic reverberation.

• R: real field.
• R1, R2: upper triangular matrix of QR decomposition.
• Rmn( f , t): element of random amplitude in the scattering matrix.
• rank(·), card(·): rank of a matrix (·), number of non-zero elements in a matrix (·).
• Sη(·): soft threshold operator for (·) with threshold η.
• t, tmax: reverberation time, maximum iterations.
• Tmn( f , t): element of the random scattering matrix without area term.
• U, Ur, U2, V2, Vr, V2: unitary\orthogonal matrix of SVD.
• vec(·), mat(·): vectorization of a matrix (·), matricization of a vector (·).
• X, L, S, G: input matrix, low-rank matrix, sparse matrix, residual matrix.
• zs, zr, zb: depth of the source, depth of the receiver, depth of the bottom.
• φ(t): random variable with uniform distribution in [0, 2π] at reverberation time t.
• µ, µ1, µ2: constants of Lambert amplitude.
• α: sound absorption coefficient.
• β: value of RWI.
• ρ(θ), ρb: circular similarity of the ellipse at polar angle θ, bottom density.
• θ, θm, θn: polar angle, grazing angle of mode m, grazing angle of mode n.
• σ: hard threshold parameter.
• Σ, Σr, Σ2: diagonal matrix of SVD.
• τ: width of the transmitted pulse.
• ε: error margin.
• ϕm(zs), ϕm(zb), ϕn(zr), ϕn(zb): eigenfunctions of different depths and mode numbers.
• ‖(·)‖F: Frobenius norm of a matrix (·).
• (·)∗, (·)H , (·)−1, (·)†: complex conjugation of (·), transpose\Hermitian transpose of a

real\complex matrix (·), inverse of (·), Moore–Penrose inverse of a matrix (·).
• 〈·〉: ensemble operation.

2. Theoretical Basis of Seabed Distant Reverberation
2.1. Reverberation Model

A depth-projection schematic of the bistatic bottom reverberation model in shallow
water is shown in Figure 1a. The black solid and cyan circles represent the source and
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receiver, respectively. The geometric prior yields an elliptical ring of width dr for the
received reverberation at time t, with a fixed focal length 2l. An area element on the
elliptical ring is shown as a red square, and the solid blue line with an arrow indicates the
projected path from the source to the receiver. Then, it is shown

dr ' cτ

2
, dS(t, θ, τ) = r1drdθ ' cτ

2
r1dθ. (1)

Based on the normal mode reverberation theory [31,32], the seabed reverberation field
Pθ( f , t) corresponding to the unit scattering area dS(t, θ, τ) can be expressed as

Pθ( f , t) =
i

8π

N

∑
m=1

N

∑
n=1

ϕm(zs)ϕm(zb)ϕn(zr)ϕn(zb)gmn( f , t, θ)√
krmkrn

ei(krmr1+krnr2)

√
r1r2

. (2)

For simplicity, we omit the index of the polar angle θ in the scattering amplitude
gmn( f , t, θ):

gmn( f , t) = gmn( f , t, θ) = Tmn( f , t)
√

dS(t, θ, τ),

Tmn( f , t) = Rmn( f , t)eiφ(t)
√

sin θm sin θn,
(3)

where the bottom scattering amplitude Rmn( f , t) can be a empirical constant
√

µ in the
Lambert scattering case [33], or follows a Rayleigh or K distribution in the stochastic
scattering case [34]; φ(t) is a random variable with uniform distribution in [0, 2π] and θm
is the grazing angle of the m-th mode. More information can be found in the Notations
section (Section 1.1). Integrating along angle θ in Equation (2), the reverberation field can
be expressed as follows:

P( f , t) =
i

8π

∫ N

∑
m=1

N

∑
n=1

ϕm(zs)ϕm(zb)ϕn(zr)ϕn(zb)Tmn( f , t)ei(krmr1+krnr2)
√

dS(t, θ, τ)√
krmkrnr1r2

=
i
√

cτ

8
√

2π

N

∑
m=1

N

∑
n=1

ϕm(zs)ϕm(zb)ϕn(zr)ϕn(zb)Tmn( f , t)√
krmkrn

∫ 2π

0

ei(krmr1+krnr2)

√
r2

√
dθ.

(4)

According to the geometric properties of an ellipse, r1 and r2 can be written as follows:

r1 =
l2 − (ct/2 )2

l cos θ − ct/2
, r2 =

lct cos θ − l2 − (ct/2 )2

l cos θ − ct/2
. (5)

The bistatic seabed reverberation in shallow water can be deduced from Equations (4)
and (5). We define the circular similarity ρ(θ) as

ρ(θ) =
ct/2 − l

ct/2 − l cos θ
=

1− 2l/(ct)
1− 2l cos θ/(ct)

. (6)

When the ratio of the focal length 2l to the length of the scattering path ct approaches
zero, ρ(θ) ' ρ = 1, and Equation (5) can be approximated as

r1 ' r2 '
ct
2

= r0, (7)

which means that the scattering elliptic ring of bistatic reverberation can be regarded as the
scattering circle ring of the monostatic case. Substituting Equation (7) into (4) yields the
monostatic reverberation field

P( f , t) =
i
√

cτ

8
√

πr0

N

∑
m=1

N

∑
n=1

ϕm(zs)ϕm(zb)ϕn(zr)ϕn(zb)Tmn( f , t)ei(krm+krn)r0
√

krmkrn
. (8)
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The corresponding schematic of monostatic reverberation is shown in Figure 1b, and
the legends remain the same as in Figure 1a.

1r
2r



x

y
( , , )dS t  

2l

dr

Receiver Source

(a)

Source

Receiver

Sea floor

Sea surface

sz

rz

bz

 0r

(b)

Figure 1. Schematic of the shallow seabed reverberation. (a) Projection of the in-depth direction of
the bistatic reverberation: elliptic ring. (b) Monostatic reverberation: circle ring.

2.2. Simulations of Low-Frequency Bottom Reverberation

A sound speed profile (SSP) of the South China Sea is shown in Figure 2a. The SSP
represents a negative gradient structure with a water depth of zb = 88.75 m. The bottom
velocity cb, density ρb, and absorption coefficients are 1664 m/s, 1.9 g/cm3, and 0.2 dB/λ,
respectively. The depths zs of the source and zr of the receiver are 50 m and 65 m, and the
reverberation time and frequency bands are 2–6 s and 300–555 Hz, respectively. For the
bistatic reverberation case, the focal length 2l is set to 200 m.

1525 1530 1535 1540

30

60

90

120

150

(a) (b)

Figure 2. (a) SSP of the South China Sea. (b) Relative positions of the sources and receiver in the
experiment.

Considering the reverberation field P( f , t), the reverberation intensity can be ex-
pressed as follows:

I( f , t) = P( f , t)P∗( f , t). (9)

Simulated by Equations (8) and (9), the Lambert RIS for the monostatic case is shown
in Figure 3a. By Equations (4) and (9), the Lambert RIS for the bistatic case is shown in
Figure 3b. It can be seen that the slope information of the bistatic RIS is nearly the same
as that of the monostatic RIS, but the intensity information differs. To measure the RISs, a
two-dimensional Fourier transform method [35] (see Appendix A) is applied to calculate
the distribution E(β) of RWI. The results are presented in Figure 3c, where the blue solid
line and the red dashed line represent E(β) of the monostatic Lambert RIS in Figure 3a and
bistatic Lambert RIS in Figure 3b, respectively, and are in good agreement with the peaks
and trends. The peak distribution E(β) is conventionally defined as the real value of RWI,
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i.e., β. Furthermore, when the simulating condition satisfies the reverberation time t > 2 s,
the circular similarity ρ(θ) in Equation (8) satisfies ρ(θ) ≈ 1. Thus, the bistatic bottom
reverberation can be well-depicted by a much simpler monostatic bottom reverberation
model in both theoretical and simulated bases under the given conditions.

2 3 4 5 6

300

350

400

450

500

550

0

0.2

0.4

0.6

0.8

1

(a)

2 3 4 5 6

300

350

400

450

500

550

0

0.2

0.4

0.6

0.8

1

(b)

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

(c)

Figure 3. (a) Lambert RIS for mono-static case. (b) Lambert RIS for bi-static case. (c) Distributions
E(β) of RWI for RISs in Figure (a,b).

3. Randomized Algorithms and Signal Separation
3.1. Randomized Form of Low-Rank Approximation

The Eckart–Young theorem [36] states that the optimal solution for low-rank approxi-
mation can be achieved through SVD under the constraint of the minimum Frobenius norm
or spectral norm. However, the efficiency of SVD is limited by the size of the data matrix,
and it is computationally expensive for large-dimensional matrices. To overcome this
limitation, randomized algorithms based on the Johnson–Lindenstrauss theorem [37] have
been introduced into SVD or low-rank approximation methods. Randomized SVD (RSVD)
was first proposed by Halko et al. [38], then some researchers developed the subspace-orbit
RSVD (SOR-SVD) [39,40] and theoretically provided the approximate error. Additionally,
the low-rank approximation derived directly by the bilateral random projection (BRP)
approach was first described in Equation (8) in [41], and optimized to the tight rank-r form
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by Zhou et al. [42], with a theoretical analysis of the approximate error under the constraint
of the spectral norm.

The pseudocode implementations of the two randomized low-rank approximation
methods, BRP and SOR-SVD, are presented in Algorithms 1 and 2, respectively. BRP
and SOR-SVD are demonstrated to be strictly equivalent when q = 0 and approximately
equivalent when q > 0 (refer to Appendix B). However, the efficiency of SOR-SVD is
proved much better than that of BRP in the following content, especially when the power
scheme parameter q increases.

Algorithm 1 BRP with the power scheme

Input: X ∈ Rm×n(m ≥ n), standard Gaussian matrix A1 ∈ Rn×r, r, q
Output: low-rank matrix Lr of rank r

1: X̃ =
(
XX H)qX

2: A2 = X̃ A1, Y2 = X̃ H A2, Y1 = X̃Y2
3: compute QR decompositions: Y2 = Q2R2, Y1 = Q1R1

4: compute low-rank approximation: Lr=
(

L̃
) 1

2q+1 =Q1

[
R1
(

AH
2 Y1

)−1RH
2

] 1
2q+1 QH

2

Algorithm 2 SOR-SVD with power scheme

Input: X ∈ Rm×n(m ≥ n), standard Gaussian matrix A2 ∈ Rn×r, p, r, q
Output: low-rank matrix Lp of rank p, rank-r approximate SVD of Lr

1: for j = 1 : q + 1 do
2: A1 = X A2
3: A2 = X H A1
4: end for
5: compute QR decompositions: A1 = Q1R1, A2 = Q2R2
6: compute the small-dimensional intermediate quantity: M = QH

1 XQ2
7: compute the rank-r truncated SVD of Mr = UrΣrV H

r
8: compute the rank-p approximation: Lp = Q1MQH

2
9: compute the rank-r approximation SVD form: Lr = (Q1Ur)Σr(Q2Vr)

H

3.2. Algorithms of Signal Separation

As shown in Algorithm 3, the original Go decomposition is a signal separation algo-
rithm based on alternating projection and the BRP–low-rank approximation [22]. For the
following optimization problem:

minL,S ‖X − L− S‖2
F,

s.t. rank(L) ≤ r,
card(S) ≤ k,

(10)

the solution of the Go decomposition yields the low-rank background L, sparse target
signal S, and residual noise G corresponding to the input matrix X.

As discussed in Section 3.1, the efficiency of BRP in the Go decomposition is lower than
to that of SOR-SVD. Therefore, replacing BRP with SOR-SVD can reduce the computing
time without sacrificing approximate precision. An improved algorithm, named Go-SOR,
is presented in Algorithm 4. The SOTA randomized-separation algorithm, ALM-SOR-SVD
RPCA [40], is also introduced in Algorithm 5 for comparison.
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Algorithm 3 Original Go decomposition

Input: X ∈ Rm×n(m ≥ n), standard Gaussian matrix A1 ∈ Rn×r, r, q, k, ε, tmax
Output: low-rank matrix L, sparse matrix S, residual matrix G

1: while true do
2: t = t + 1
3: Lt = BRP(X − St−1, A1, r, q) (Algorithm 1)
4: St = Pk

Ω(X − Lt) (Equation (11))
5: if ‖X − St − Lt‖2

F/‖X‖2
F ≤ ε or t ≥ tmax then

6: break
7: end if
8: end while
9: compute G = X − S− L

Algorithm 4 Go-SOR decomposition

Input: X ∈ Rm×n(m ≥ n), standard Gaussian matrix A1 ∈ Rn×r, r, q, k, ε, tmax
Output: low-rank matrix L, sparse matrix S, residual matrix G

1: while true do
2: t = t + 1
3: Lt = SOR-SVD(X − St−1, A1, p, r, q), where p = r (Algorithm 2)
4: St = Pσ

ω(X − Lt) (Equation (12))
5: if ‖X − St − Lt‖2

F/‖X‖2
F ≤ ε or t ≥ tmax then

6: break
7: end if
8: end while
9: compute G = X − S− L

Algorithm 5 ALM-SOR-SVD RPCA

Input: X ∈ Rm×n(m ≥ n), standard Gaussian matrix A1 ∈ Rn×r, p, r, q, ε, tmax
Output: low-rank matrix L, sparse-plus-noise matrix E

1: while true do
2: t = t + 1
3: (U, Σ, V) = SOR-SVD

(
X − Et−1 + µ−1

t Yt−1, A1, p, r, q
)

(Algorithm 2)

4: Lt = US
µ−1

t−1
(Σ)V H

5: Et = S
λµ−1

t−1
(X − Lt + µ−1

t−1Yt−1)

6: Yt = Yt−1 + µt−1(X − Lt − Et)
7: µt = max(ρµt−1, µ̄)
8: if ‖X − Et − Lt‖2

F/‖X‖2
F ≤ ε or t ≥ tmax then

9: break
10: end if
11: end while

Note that the output matrix E of the ALM-SOR-SVD RPCA differs from that of the
Go-SOR decomposition. Alternatively, the sparse matrix S and residual matrix G can
be separated from the sparse-plus-noise matrix E by applying a k-largest non-negative
projection Pk

Ω(·) as follows:

Pk
Ω : Sij =

{
Eij
∣∣Eij = max(|E|, l) , 1 ≤ l ≤ k,

0,
G = X − S− L. (11)

where the subscript “ij” and the operation “max” with a parameter “l” indicates the index
of elements and the l-th maximum in the matrix, respectively. Similarly, the element-wise
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hard threshold operator Pσ
ω(·) with a threshold σ on X − L is applied in Go-SOR and is

defined as follows:

Pσ
ω : Sij =

{
(X − L)ij,

∣∣(X − L)ij
∣∣ ≥ σ,

0,
∣∣(X − L)ij

∣∣ < σ.
(12)

4. Results
4.1. Low-Rank Structure of the Shallow Reverberation Experiment

Experimental data of shallow seabed reverberation were obtained from the 2015
reverberation experiment in the South China Sea. The SSP of the sea area is shown in
Figure 2a, and the geoacoustic parameters are the same as those used in the simulation. The
receiver was fixed at a depth of 65 m, and 31 explosive sources were released at a depth of
50 m around the receiver. The relative positions of the sources and the receiver are shown
in Figure 2b, where the symbols of the blue circle and red asterisks indicate the receiver and
sources, respectively. The distances between the sources and receiver are approximately
200 m. According to the results in Section 2, it is reasonable to simplify the experimental
bistatic reverberation by monostatic reverberation when the reverberation time is t > 2 s
and the focal length is 2l ∼ 200 m.

The moving signal was not predetermined during the sea trial. Low-frequency analysis
and recording (LOFAR) spectra of the experimental reverberation data were obtained by

short-time Fourier transform (STFT) and labeled LOFARgram. LOFARgrams
1
ĪT ,

11
ĪT ,

21
ĪT ,

and
31
ĪT of ping numbers 1, 11, 21, and 31 are displayed in Figure 4a, Figure 4b, Figure 4c,

and Figure 4d, respectively. It can be observed that these spectrograms vary with different
pings, and there is no obvious regularity for the environmental uncertainty and difference
in positions. The structural similarity index measure (SSIM) values of every two pings
are shown in Table 1, and the results are concentrated around 0.1, which indicates the
non-correlation of different reverberation pings.

Table 1. SSIM of every two different reverberation pings.

Ping Number 1 11 21 31

1 - 0.0845 0.1396 0.1030
11 0.0845 - 0.1002 0.0860
21 0.1396 0.1002 - 0.1080
31 0.1030 0.0860 0.1080 -

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Experimental LOFARgrams for different reverberation pings. (a) Ping = 1. (b) Ping = 11.
(c) Ping = 21. (d) Ping = 31.

The input matrix X is obtained by the vectorization of different LOFARgrams

X =

[
vec

(
1
ĪT

)
, vec

(
2
ĪT

)
, . . . , vec

(
31
ĪT

)]
. (13)

The initialization of Go-SOR (found in Algorithm 4), Go (found in Algorithm 3), and
ALM-SOR-SVD RPCA (found in Algorithm 5) are r = p = 1, q = 1, and tmax = 100.
Because there is no preset target for the experiment, the values of k and σ are meaningless.

The low-rank matrix
q
L̄, sparse matrix

q
S̄, and residual matrix

q
Ḡ of q-th ping LOFARgram

q
ĪT

are obtained by the matricization of the output

q
L̄ = mat[L(:, q)],

q
S̄ = mat[S(:, q)],

q
Ḡ = mat[G(:, q)]. (14)

The computing times of the three algorithms are listed in Table 2. These algorithms
ran on a personal desktop computer equipped with an Intel i7 10700 CPU and 64 GB
RAM, using Matlab 2022b software for implementations. It can be seen that the proposed
Go-SOR algorithm (computing time 0.44 s) has a certain improvement compared to the
SOTA performance of ALM-SOR-SVD RPCA (computing time 0.76 s). However, the
original Go algorithm has the poorest performance (computing time 55.20 s) and takes
two orders of magnitude longer than the other two algorithms. The improvement in
efficiency of the proposed Go-SOR algorithm can be attributed to two factors: (a) the use
of SOR-SVD instead of BRP in the low-rank approximation, and (b) the use of the hard
threshold operator Pσ

ω(·) instead of the non-negative projection operator Pk
Ω(·) in each

iteration [43]. The first factor was explained in detail earlier, and the second factor will
be briefly discussed below. The non-negative projection operator Pk

Ω(·) involves time-
consuming element-sorting, while the hard threshold operator Pσ

ω(·) is a more efficient
operator that involves element subtraction. Additionally, the parameters of ALM-SOR-SVD
RPCA are difficult to determine, whereas those of Go-SOR are relatively simple, which is a
significant advantage in practical applications.

Table 2. Reverberation data processing times for r = p = 1, q = 1, and tmax = 100.

Algorithms Go-SOR Original Go ALM-SOR-SVD RPCA

Computing time (s) 0.44 55.20 0.76
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The low-rank structures
q
L̄ for the three algorithms are shown in Figure 5.

Figure 5a, Figure 5b, and Figure 5c represent the results of Go-SOR, original Go, and ALM-
SOR-SVD RPCA, respectively. The graph in Figure 5d symbolizes the mean LOFARgram
of 31 reverberation pings. Although all four graphs show similar interference striation
patterns around 2 s to 4.5 s, the low-rank structure of Go-SOR is the most distinct. The
definition index, which is commonly used in optical image quality assessment, is calculated
using four different matrix gradient methods: Energy of gradient (EOG), Tenengrad, Bren-
ner, and Laplacian [44,45]. The results in Table 3 demonstrate that the proposed Go-SOR
algorithm outperforms the other two algorithms in all four gradient methods, with the
definition indices normalized to 1 for ease of understanding and comparison. Therefore,
the proposed Go-SOR algorithm achieves the best performance in terms of both the image
quality of the generated low-rank structure and computing efficiency.
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Figure 5. Reverberation intensity spectrum at a depth of 65 m. (a) Low-rank structure via Go-
SOR decomposition. (b) Low-rank structure via Go decomposition. (c) Low-rank structure via
ALM-SOR-SVD RPCA decomposition. (d) The mean value of 31 ping LOFARgrams.

Table 3. Normalized definition indices of the low-rank structure reverberation via different algo-
rithms.

Go-SOR Original Go ALM-SOR-SVD RPCA

EOG 1 0.8352 0.9100
Tenengrad 1 0.8398 0.9304

Brenner 1 0.7472 0.6825
Laplacian 1 0.8406 0.8974
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The corresponding distributions E(β) of RWIs in Figure 5 are shown in Figure 6a.
The blue solid, red dashed, green dashed, and black dotted lines represent E(β) for the
low-rank structure in Figure 5a (via Go-SOR), Figure 5b (via Go), Figure 5c (via ALM-
SOR-SVD RPCA), and mean LOFARgram in Figure 5d, respectively. The curves show
similar distributions of RWIs, indicating that the striation features of the four subfigures
in Figure 5 are almost consistent. The coincidence of the peaks demonstrates the close β
values, making the processing of low-rank structure reverberations reliable.
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Figure 6. (a) Distributions E(β) of RWI corresponding to the sub-figures shown in Figure 5. (b) Dis-
tributions E(β) for the comparison of processed and simulated results.

4.2. Uniformity of RIS, Mean LOFARgram, and Low-Rank Structure

The contents in Figures 5 and 6a illustrate the relationship between the RIS, mean
LOFARgram, and low-rank structure, highlighting their uniformity.

For a simplified monostatic reverberation case in the experimental environment, the
stochastic scattering amplitude Rmn( f , t) in Equation (3) is assumed to be stationary, and
the first and second moments exist [46]

E[Rmn( f , t)] = 〈Rmn( f , t)〉 = √µ1, E
{
[Rmn( f , t)]2

}
=
〈
[Rmn( f , t)]2

〉
= µ2. (15)

Using Equation (8), the ensemble reverberation intensity element 〈I( f , t)〉 of intensity
matrix 〈I〉 with frequency index f and time index t can be expressed as follows:

〈I( f , t)〉 = 〈P( f , t)P∗( f , t)〉 = cτ

64πr0

N

∑
m=1

N

∑
n=1

ϕm(zs)ϕm(zb)ϕn(zr)ϕn(zb)√
krmkrn

×

N

∑
m′=1

N

∑
n′=1

ϕm′(zs)ϕm′(zb)ϕn′(zr)ϕn′(zb)
〈

Tmn( f , t)T∗m′n′( f , t)
〉
ei(krm+krn−krm′−krn′ )r0√

krm′krn′
.

(16)

where

〈Tmn( f , t)T∗m′n′( f , t)〉 =
〈

Rmn( f , t)R∗m′n′( f , t)ei[φ(t)−φ(t)]
〉√

sin θm sin θn sin θm′ sin θn′

=

{
µ1
√

sin θm sin θn sin θm′ sin θn′ , i f m 6= m′ or n 6= n′,

µ2
√

sin θm sin θn sin θm′ sin θn′ , i f m = m′ and n = n′.

(17)

Equations (16) and (17) show that the ensemble expression 〈I〉 of stochastic reverbera-
tion I loses randomness and is theoretically consistent with a certain Lambert reverberation
ILambert with parameters µ1 and µ2. In the experimental data treatment, the ensemble rever-



Remote Sens. 2023, 15, 3648 13 of 19

beration intensity 〈I〉 is approximated by the mean LOFARgram Imean of the Q (Q = 31)
pings. Thus, we naturally obtain the following equation:

ILambert = 〈I〉 ≈ Imean =
1
Q

Q

∑
q=1

q
ĪT . (18)

Therefore, the uniformity of the RIS (symbolizing the Lambert reverberation ILambert)
and mean LOFARgram Imean is demonstrated. When considering a low-rank structure, the
initialized condition r = 1 in Go-SOR leads to the following relation:

q1

L̄ =
q2

L̄ = L̄, (19)

which means that the low-rank structures of different ping numbers q1 and q2 are consistent.
Another condition of the non-existence of a moving target implies

0 =

〈
q
S̄ +

q
Ḡ

〉
, (20)

where 0 is the zero matrix. Meanwhile, each ping of the reverberation intensity matrix can
be written as

q
ĪT = 〈I〉+

[
q
ĪT − 〈I〉

]
. (21)

It can be observed that factorized terms 〈I〉 and

[
q
ĪT − 〈I〉

]
on the right-hand side

(RHS) of Equation (21), which satisfy Equations (19) and (20), respectively, are unique. It is
demonstrated that the low-rank structure obtained by the proposed algorithm is exactly
the unique solution of the ensemble form of experimental RIS (mean LOFARgram Imean)
under specific prior conditions. By combining these equations, the consistency between the
low-rank structure and Lambert RIS can be theoretically established. Therefore, the RIS
ILambert, mean LOFARgram Imean, and low-rank structure L̄ are related by the following
expressions:

L̄ = ILambert ≈ Imean. (22)

4.3. Interference Properties of the Low-Rank Structure

Due to the influence of the time-varying environment, the interference properties of
single-ping reverberation change sharply. As shown in Figure 5, obvious periodic interfer-
ence phenomena can be observed in the low-rank matrices for multi-ping reverberation
from 2 s to 4.5 s. By the uniformity of RIS and the low-rank structure, the interference
frequency f of experimental data can be theoretically analyzed through Equation (16),
which is the simplified monostatic model for shallow seabed reverberation.

The concept of interference frequency fmm′ between modes m-th and m′-th is intro-
duced to analyze the one-way process of bottom reverberation interference patterns:

fmm′ =
|krm − krm′ |

2π

c
2

. (23)

The dominant interference frequencies for the reverberation experimental data are
determined through spectral analysis of the low-rank structure shown in Figure 5. For
accurate frequency estimation, the reverberation intensity curves at different frequencies
are detrended during pretreatment. We use the multiple signal classification (MUSIC)
method to improve the resolution of estimated results [47]. The estimation of interference
frequencies for the low-rank structure is shown in Figure 7a, where the blue solid line, black
dashed line, and red dotted line represent the results of 300, 400, and 500 Hz, respectively.
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The frequencies corresponding to the highest peaks match the direct calculations of the
fifth and seventh modes by Equation (23) under all three different frequencies.
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Figure 7. (a) Estimations of interference frequencies for the low-rank structure, and the peaks indicate
that the low-rank structure is controlled by the fifth and seventh modes significantly. (b) RIS consists
of the fifth and seventh modes in the simulation.

The simulated fifth-and-seventh-only RIS, which is similar to the low-rank structure
shown in Figure 5a between 2 s to 4.5 s, is described in Figure 7b. For comparison,
distributions E(β) of the fifth-and-seventh-only RIS, monostatic Lambert RIS in Figure 3a,
and low-rank structure in Figure 5a are described in Figure 6b, with the black dotted
line, red dashed line, and blue solid line, respectively. We find that E(β) of the simulated
fifth-and-seventh-only RIS matches well with the experimental low-rank structure. Because
of the difference in the mode number in the simulation, the monostatic Lambert RIS, which
is calculated under all modes, presents a more complex pattern compared to the fifth-and-
seventh-only RIS, and the difference of E(β) in Figure 6b is apparent. The differences in the
RWI corresponding to the peaks in Figure 6b are small enough, despite the deviation of
the monostatic E(β) curve from the others. This demonstrates the conclusive control of the
fifth and seventh modes in the experiment.

5. Discussion

In this study, we employed randomized separation algorithms to extract the low-rank
structure of shallow seabed reverberation. We propose a modified Go-SOR decomposition
method based on the equivalence of SOR-SVD and BRP, which exhibits superior compre-
hensive performance compared to the SOTA algorithm when processing low-frequency
reverberation experimental data. We demonstrated the uniformity between the simulated
Lambert RIS, low-rank structure reverberation, and ensemble intensity structure based
on the simplified monostatic reverberation model. The spectral analysis of the low-rank
structure reverberation and theoretical calculation of interference frequencies indicate that
the interference structure is primarily controlled by the fifth and seventh modes in the
experimental environment of the South China Sea.

The original contributions of this work are:

• A novel signal separation technique, named Go-SOR, was proposed and evaluated for
processing reverberation experimental data. The results show that Go-SOR outper-
forms the SOTA algorithm ALM-SRO-SVD RPCA in terms of the computing time and
definition index. Furthermore, we established the conditional equivalence of low-rank
approximation between the SOR-SVD of the proposed algorithm and the BRP of the
original Go algorithm.
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• A bistatic low-frequency reverberation simulation model based on the normal mode
theory was developed. When the transition indicator circular similarity is ρ(θ)→ 1,
the model can be transformed into a monostatic distant seabed reverberation model.

• The equivalence between the low-rank structure by the proposed algorithm and RIS
was described, which provides the interpretability of the algorithm’s processing results.
Our findings suggest that the study of RIS can be transformed into the study of the
low-rank structure reverberation obtained from the data. This provides the possibility
for the study of the data-driven RIS and other methods based on the data-driven RWI,
and facilitates the acquisition of the dominant modes of the experimental sea area
from the data.

The presented method has potential applications in seafloor exploration, RWI extrac-
tion, and active sonar dereverberation. Additionally, the proposed algorithm may facilitate
the detection of strong moving targets by extracting sparse components and it may be a
promising approach for detecting weak signals in the future.
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Appendix A. Calculation of E(β) by the Two-Dimensional Fourier Transform

To rigorously and accurately describe the slope information of the RIS, it is necessary
to use the concept of the distribution E(β) of RWI. For a reverberation intensity matrix
I0(r0, ω) with a distance index r0 and angular frequency index ω, a two-dimensional
Fourier transform is performed on its mean-removal matrix Ī0(r0, ω)

Ĩ0(κ, τ) =
∫ ∞

−∞

∫ ∞

−∞
Ī0(r0, ω)ei(κr0+ωτ) dr0dω, (A1)

where the matrix Ĩ0(κ, τ) can be written as Ĩ0(K cos φ, K sin φ) in polar coordinates with the
polar axis index K and angle index φ. According to Parseval’s theorem, E(β) is proven to
be the energy distribution along the angle φ by Rouseff [35]

E(β) = (2π)−2
∫ B

−B

∣∣ Ĩ0(K cos φ, K sin φ)
∣∣2|K|dK, (A2)

where B represents the truncated region of the polar axis K.

Appendix B. Equivalence of BRP- and SOR–SVD-Based Low-Rank Approximations

Assume a preset power scheme q = 0 and oversampling parameter p = r for the BRP
(shown in Algorithm 1) and SOR-SVD (shown in Algorithm 2). Then, in BRP, we have the
following:

A2 = X A1, Y2 = X H A2, Y1 = XY2. (A3)

Implementing the QR decomposition, we obtain

Y2 = Q2R2, Y1 = Q1R1. (A4)
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Thus, the low-rank approximation Lr of rank r is expressed as follows:

Lr = Q1

[
R1

(
AH

2 Y1

)−1
RH

2

]
QH

2

= Q1

[
R1

(
AH

1 X HXX HX A1

)−1
RH

2

]
QH

2

= Q1

[
QH

1 Y1

(
AH

1 X HXX HX A1

)−1
Y H

2 Q2

]
QH

2

= Q1

{
QH

1 X
[

Y2

(
Y H

2 Y2

)−1
Y H

2

]
Q2

}
QH

2 ,

(A5)

where the term Y2
(
Y H

2 Y2
)−1Y H

2 in (A5) is the projection matrix of Y2 and can be calculated
using the QR decomposition (refer to Appendix C)

Y2

(
Y H

2 Y2

)−1
Y H

2 = Q2QH
2 . (A6)

Substituting Equation (A6) into (A5), the low-rank approximation Lr can be simplified as
follows:

Lr = Q1QH
1 XQ2QH

2 , (A7)

which is similar to the low-rank approximation Lp of SOR-SVD in Algorithm 2. Considering
the cases of q 6= 0 and X̃ =

(
XXT)qX, the low-rank approximation Lr in (A5) is revised to

Lr = Q1

[
R1

(
AH

2 Y1

)−1
RH

2

]1/(2q+1)
QH

2

= Q1

{
QH

1 X̃
[

Y2

(
Y H

2 Y2

)−1
Y H

2

]
Q2

}1/(2q+1)
QH

2

= Q1

{
QH

1 X̃Q2

}1/(2q+1)
QH

2 .

(A8)

Considering the SVD of X : X = UΣV H , the SVD form of X̃ can be written as follows:

X̃ =
[(

XXT
)q

X
]
= UΣ(2q+1)V H . (A9)

Indeed, range(Q1) and range(Q2) are the approximations of the order-r column and row
space of X̃ [38], respectively. Refer to (A16), one obtains

U1:r ∼ Q1Û, V1:r ∼ Q2V̂ , (A10)

where the subscripts (·)1:r indicate the first r columns of (·), and the superscripts ˆ(·) indicate
the r× r unitary\orthogonal matrices. Taking (A9) and (A10) into (A8), we have

Lr = Q1

{
QH

1 UΣ(2q+1)V HQ2

}1/(2q+1)
QH

2

∼ Q1

{
Û−HUH

1:rUΣ(2q+1)V HV1:rV̂−1
}1/(2q+1)

QH
2

= Q1

{
Û−HΣ

(2q+1)
1:r V̂−1

}1/(2q+1)
QH

2

= Q1

{
Û−HΣ1:rV̂−1

}
QH

2 .

(A11)
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Following the same process, we have

Q1QH
1 XQ2QH

2 = Q1

{
QH

1 UΣV HQ2

}
QH

2

∼ Q1

{
Û−HΣ1:rV̂−1

}
QH

2 .
(A12)

Thus, we have

Lr = Q1

{
QH

1

(
XXT

)q
XQ2

}1/(2q+1)
QH

2 ∼ Q1QH
1 XQ2QH

2 , (A13)

where the superscript �̃�� of ��� is ignored, except for that in X̃.

Appendix C. The Proof of Equation (A6)

The rank-r TSVD of Y2 (Y2 ∈ Rn×r) is obtained, and we have

Y2 = U2Σ2V H
2 , Y†

2 = V2Σ−1
2 UH

2 . (A14)

R2 in (A4) is rewritten using SVD and yields

R2 = URΣRV H
R , Y2 = Q2R2 = Q2URΣRV H

R . (A15)

Without loss of generality, the rotation ambiguity of the SVD is omitted. Thus, by combining
(A14) and (A15), we have

U2 = Q2UR. (A16)

The term Y2
(
Y H

2 Y2
)−1Y H

2 in (A5) can be written as

Y2

(
Y H

2 Y2

)−1
Y H

2 = Y2Y†
2

= U2Σ2V H
2 V2Σ−1

2 UH
2 = U2UH

2

= Q2URUH
R QH

2 = Q2QH
2 ,

(A17)

which yields the result in (A6).
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