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Abstract: With the wide application of remote sensing technology, target detection based on deep
learning has become a research hotspot in the field of remote sensing. In this paper, aimed at the
problems of the existing deep-learning-based desert land intelligent extraction methods, such as the
spectral similarity of features and unclear texture features, we propose a multispectral remote sensing
image desert land intelligent extraction method that takes into account band information. Firstly, we
built a desert land intelligent interpretation dataset based on band weighting to enhance the desert
land foreground features of the images. On this basis, we introduced the deformable convolution
adaptive feature extraction capability to U-Net and developed the Y-Net model to extract desert
land from Landsat remote sensing images covering the Inner Mongolia Autonomous Region. Finally,
in order to analyze the spatial and temporal trends of the desert land in the study area, we used a
structural equation model (SEM) to evaluate the direct and indirect effects of natural conditions and
human activities, i.e., population density (PD), livestock volume (LS), evaporation (Evp), temperature
(T), days of sandy wind conditions (LD), humidity (RH), precipitation (P), anthropogenic disturbance
index (Adi), and cultivated land (CL). The results show that the F1-score of the Y-Net model proposed
in this paper is 95.6%, which is 11.5% more than that of U-Net. Based on the Landsat satellite
images, the area of desert land in the study area for six periods from 1990 to 2020 was extracted.
The results show that the area of desert land in the study area first increased and then decreased.
The main influencing factors have been precipitation, humidity, and anthropogenic disturbance,
for which the path coefficients are 0.646, 0.615, and 0.367, respectively. This study will be of great
significance in obtaining large-scale and long-term time series of desert land cover and revealing the
inner mechanism of desert land area change.

Keywords: desert land; Y-Net model; multispectral images; structural equation model; driving factors

1. Introduction

Desertification is a process of land degradation and the decrease or destruction of
biological potential in arid, semi-arid, and semi-humid places, driven by the coupling of
natural and socio-economic factors [1]. Combating desertification is one of the Sustainable
Development Goals of the United Nations in the 2030 Agenda for Sustainable Develop-
ment [2,3] and is one of the most significant potential ecological, social, and economic
problems [4,5].

Earlier studies on desert land change relied on manual visual interpretation to monitor
its evolution process, and empirical judgment and visual interpretation of remote sensing
data to determine the desertification indicators [6,7]. However, these methods are inade-
quate and incapable of meeting the need for the efficient acquisition of large-scale spatial
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and temporal data for desert land. Remote sensing has been widely employed in desert
land change monitoring [8–10]. The three major categories of remote-sensing-based desert
land change monitoring methods are classifier approaches, spectral index extraction meth-
ods, and deep-learning-based classification/extraction methods. The classifier techniques
are based on expert knowledge, and they predetermine the classification sample categories
and regulate the training sample selection [8,11–14]; however, the classifier approaches
are not ideal for dynamic desert land extraction and diverse contour features. The spec-
tral index extraction methods extract the desert land from an image using the spectral
information. This approach is based on multispectral images, where the spectral bands
with sensitive desert land features are selected in order to maximize the use of the spectral
information. Nonetheless, the construction of a desert land index is complex and frequently
only applicable to a specific area [15,16], which constrains the scope of application.

Intelligent interpretation of remote sensing images based on deep learning has the
advantage of rapid extraction of target features over a wide range, enabling regional or even
global extraction of desert land [17,18]. Zhang et al. [19] initially proposed the SOF-Net
model based on the DeepLab v3+ framework for general land-cover classification. However,
on account of the complex structure of the model, the imagery lost too much desert land
detail information during the convolution operation, resulting in relatively blurry extraction
results. In comparison to the more complex DeepLab v3+, U-Net, with its simple structure,
symmetric encoder–decoder framework, and skip-connection approach, improves the
preservation of details. U-Net not only preserves the deeper semantic information of the
target, but also combines the shallow spatial location information of the target to achieve
accurate segmentation of the target objects, achieving an excellent performance in binary
classification [20]. However, its segmentation results are hampered by the loss of edge and
position information, making it difficult to make accurate judgments about details.

In addition, deep-learning-based methods acquire features primarily based on the
target contours, but desert land areas in remote sensing images typically exhibit unapparent
texture features, and the inherent convolutional neural network (CNN) is limited by the
geometric transformation, which remains a challenge in complex desert land extraction [21].
The proposed deformable convolution approach makes the accurate extraction of complex
scenes of multiple scales and with irregular features possible and is applicable to desert
extraction without apparent texture features [22–24].

In this paper, we propose a multispectral remote sensing image desert land intelli-
gent extraction method based on the spectral information and a deep CNN. Meanwhile,
we describe how we built a desert land intelligent interpretation dataset based on band
weighting in order to enhance the foreground characteristics of desert land imagery. On
this basis, we introduce deformable convolution adaptive feature extraction to U-Net and
propose the Y-Net model to extract desert land from Landsat remote sensing images of
the Inner Mongolia Autonomous Region. To evaluate the direct and indirect effects of
natural conditions and human activities, i.e., population density (PD), livestock volume
(LS), evaporation (Evp), temperature (T), days of sandy wind conditions (LD), humidity
(RH), precipitation (P), anthropogenic disturbance index (Adi), and cultivated land (CL), a
structural equation model (SEM) was used to analyze the spatial and temporal trends of
the desert land in the study area.

The remaining sections of this paper are organized as follows. Section 2 of this paper
describes the study area and the data collection process. The model construction and
evaluation indices are presented in Section 3. The details of the experiments and an
analysis are provided in Section 4, including the details of the production of the desert land
intelligent interpretation dataset and a comparison of the experimental results. In Section 5,
we analyze the effects of the weighted band combination approach, the multiyear changes
in the desert land area, and the SEM’s driving factors for the changes in the desert land
area. Our conclusion is presented in Section 6.
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2. Materials and Methods
2.1. Overview of the Study Area

The Inner Mongolia Autonomous Region (37◦24′–53◦23′N–97◦12′–126◦04′E) is located
on the northern border of the People’s Republic of China (Figure 1). It is a vast territory,
with a predominantly temperate continental monsoon climate and an extremely fragile
ecological environment. It is one of the provinces in China with the greatest concentration
of desert land and also the location with the greatest threat sand dunes [10,25]. Due to
climatic factors and human activities (such as intensive grazing and abandoned arable
land), the sand problem in Inner Mongolia has become more severe. Since the 1980s, Inner
Mongolia has implemented numerous ecological restoration projects and policies, which
have been successful in halting land sanding in certain areas, but the overall situation is
still extremely serious.
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Figure 1. Overview map of the Inner Mongolia Autonomous Region.

2.2. Data Sources
2.2.1. Multispectral Image Data

In this study, we acquired Landsat 4–5 Thematic Mapper (TM), Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) images for
the years 1990, 2000, 2005, 2010, 2015, and 2020 with cloud cover of <10%, with a total of
624 images. The vegetation growth period (April to October) was also selected to facilitate
the identification and extraction of sediment change information [26].

2.2.2. Meteorological and Socio-Economic Data

We used socio-economic data of Inner Mongolia obtained from the annual statistical
almanac data for Inner Mongolia from 1990 to 2020, i.e., the four indicators of population
density, livestock volume, arable land, and anthropogenic disturbance index, to evaluate
the human contribution. The meteorological data were sourced from the National Meteoro-
logical Information Center (http://data.cma.cn/, accessed on 5 February 2023) and were
made up of the five indicators of temperature, days of sandy wind conditions, evaporation,
precipitation, and humidity.

3. Model Construction
3.1. U-Net

U-Net is a fully convolutional neural network based on a symmetric encoder–decoder
framework that is improved with a fully convolutional network (FCN) [20,27]. Composed
of a compression path, an expansion path, and skip connections, the U-Net model is exten-
sively used in remote sensing detection [28–32] due to its simple structure, requirement for

http://data.cma.cn/
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fewer data samples, and high segmentation accuracy. The compression path performs four
3 × 3 convolutions and 2 × 2 maximum pooling operations, which are down-sampling
operations, to obtain a high-dimensional feature pyramid for image information capture.
The expansion path performs four deconvolution and up-sampling operations to precisely
locate the segmentation results. U-Net also replaces the summation form of the FCN with
skip connections. The details and spatial dimensions of the object of interest are gradually
repaired to obtain shallower convolutional layer features, which are advantageous for
image segmentation and obtaining a segmentation result of the same size as the input
image. Finally, the 1 × 1 convolutional layers are connected for dimensionality reduction
to generate the image feature map.

3.2. Deformable Convolution

Due to the fixed geometric structure of the building blocks, a CNN only learns features
at fixed locations for the input image, which cannot be derived precisely using the complex
and variable feature outline information of the input image. In 2017, Dai et al. [33] proposed
deformable convolution, which allows the convolution kernel to be arbitrarily deformed
during training by adding offsets to the sampling locations, in contrast to fixed-grid
sampling. It has the same input and output as the standard version, which allows it to
address the problem of spatial deformation more effectively and enhance the capability
of feature extraction. A comparison of deformable convolution and standard convolution
is provided in Figure 2. The dots in Figure 2a represent the sampling positions of regular
convolution, Figure 2b represents the deformed sampling points with offset in deformable
convolution, and Figure 2c,d are special cases of Figure 2b, indicating that the deformable
convolution can be scaled, rotated, and subject to various transformations with different
aspect ratios. In addition, the size of its perceptual field varies based on the sampling
point positions, further demonstrating the ability of deformable convolution to adapt to
the spatial deformation of the target.
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Figure 2. Sampling comparison diagram of deformable convolution and standard convolution [33].
(a) Standard convolution sampling. (b) Deformable convolution offset. (c) Deformable convolution
panning. (d) Deformable convolution rotation. The green circles represent the standard sampling
points of the fixed convolution kernel, the yellow circle represents the new sampling points generated
by the convolution kernel based on the offset, the black arrow represents the offset vector.

In order to adjust the input size and channel, convolution (Conv) is performed on the
input to obtain the convolutional feature map, and the feature map is fed into two parallel
branches: one branch learns the input image features to obtain the offset, and the sampled
offset is used with another parallel standard convolution branch for deformable convolution
(Figure 3). Deformable convolution: The convolution kernel is not actually a variable
convolution kernel, but the coordinate value with the offset obtained after convolution is
changed. Before the image is convolved, the pixels are re-integrated to realize the expansion
of the convolution kernel. The convolution kernel is offset to the sampled points of the
input feature map and focused on the region or target of interest, improving the model
capability for deformable images. The convolutional layer is responsible for extracting
local information to preserve the underlying details, where different image targets have
different offset sizes obtained by convolutional learning. In deformable convolution, the
convolution operation is two-dimensional (2N) and conducted on the same channel. N
denotes the number of sampling points in the convolution kernel (e.g., N = 9 in the 3 × 3
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convolution kernel). Each sampling point is displaced along both H and W, and the size of
the convolution kernel and the expansion rate of the parallel convolutional layer are set
to the same value. The offset obtained using convolution to predict the offset is typically
a small number, and feature extraction is accomplished by backpropagation utilizing a
bilinear interpolation algorithm [34]. The output of the deformable convolution is then
convolved a second time to produce the output after feature concatenation with the same
dimensions and channels as the input.

Figure 3. Deformable convolution model structure diagram. The arrow represents the the offset vector
in the deformable convolution, the black boxes represent sample points for deformable convolution.

3.3. Y-Net

On account of the blurred boundaries and unsatisfactory contrast of desert land in
Landsat remote sensing images, and the fact that U-Net is insensitive to the detailed features
of desert land, it is difficult to achieve an accurate judgment. In view of this, we developed
the Y-Net model, which retains the symmetrical structure of the original U-Net model while
incorporating deformable convolution to improve the network’s ability to learn the spatial
variation of the target object. The Y-Net model can obtain an adaptive perceptual field
according to the target’s size and shape, based on fully considering the characteristics of
desert land.

The Y-Net model consists of an input layer, a hidden layer, and an output layer, and
the hidden layer can be divided into feature extraction and up-sampling parts, which
are responsible for the network path contraction. The Y-Net model structure is shown
in Figure 4. The input image is passed through a deformable convolutional layer with
a convolution kernel size of 3 × 3 and a rectified linear unit (ReLU) activation function,
which provides a stable and flexible receptive domain for the network to capture the global
information by learning the initial image features from the target contour, as shown in
Equation (1). Y-Net adopts U-Net’s strategy for increasing the number of feature maps
while lowering the scale of the feature maps in the spatial structure. After the deformable
convolution module is learned, the image is down-sampled with the max pooling layer,
and the higher-order semantic feature information of the desert land in the input image is
obtained with four deconvolution and up-sampling sequences, as shown in Equation (2).

The up-sampling section is made up of an up-sampling layer and a deconvolutional
layer, which play the role of path expansion and locate pixel points in the network to
recover the image resolution and restore the details and spatial dimension of the objects by
combining the deformable convolution module to reinforce the learned low-order features
(i.e., position, texture). The low-order feature map of the desert land is recovered to the
same size as the input image after four times up-sampling, and the number of channels of
the same scale corresponding to the feature extraction part and the up-sampling process
are fused so that the low-order location information is fused with the high-order semantic
information and an end-to-end network is formed. Using the sigmoid activation function,
the network classifies each pixel point in the up-sampled feature map to derive the desert
land information in the image. In short, the input and output images are of the same
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dimensions, enabling not only the classification of objects with high-level features but also
the precise segmentation of objects with low-level features [35].

X(p) = ∑r
y=0 (∑

k
x=0 I(x− a, b ·M(x, y))) (1)

where X(p) denotes the point (x, y) of the image I of the certain band of the raw zremote
sensing image of desert land in the output preliminary feature image, with the image value
corresponding to p is the output feature image point; r is the width of the image; I is the
image of a certain band of the input raw remote sensing image of desert land; a and b are
the offsets of a certain band I of the input raw remote sensing image of desert land in the
horizontal and vertical directions; x and y are the horizontal and vertical coordinate values
of a point in I, respectively; and M is the convolution kernel;

Y(p) = ∑k
k=1 Wk · X(p0 + sk · pk + (1− ck) · ∆pk · (1− sk) · ck · ∆mk) (2)

where Y(p) denotes the higher-order feature image value of the output at point p; Wk is the
convolution kernel weight coefficient for grid point k; grid point k denotes the sampling
location; p0 is the original sampling position; sk denotes the learning rate of pk; pk denotes
the position of the sampled point in the adaptive deformable convolution kernel; ck denotes
the learning rate of the adjustable quantity ∆mk, ∆pk denotes the offset in the deformable
convolution; and ∆mk denotes the adjustable amount; sk ∈ [0, 1], ∆mk ∈ [0, 1], ck ∈ [0, 1].
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3.4. Performance Evaluation Indicators

To quantitatively evaluate the performance of the model, four metrics were employed
in this study to evaluate the recognition results: IoU, Precision, Recall, and F1-score.
The formulations for these metrics are provided in Equations (3)–(6). IoU is the most
frequently employed performance evaluation method in image segmentation. It is the
ratio of intersection and merge between desert land pixels extracted by the model and
desert land pixels in the true value labels. The IoU is a measure of the degree of correlation
between true and predicted ranges. The greater the IoU, the closer the match between the
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measured and actual samples, and the more precise the model. Precision is the degree of
accuracy of the positive sample prediction results, that is, the probability that the sample
that was predicted to be positive is actually positive; the higher the precision, the more
accurate the model retrieval. Recall is the proportion of correctly predicted positive samples
to the actual positive samples, that is, the probability of being predicted to be positive in a
sample that is actually positive; the higher the recall, the more comprehensive the model
retrieval. The F1-score is used to measure the accuracy of the Y-Net model’s prediction. The
F1-score can be an effective synergy between the precision rate and recall rate, serving as a
comprehensive index for both when evaluating a model with various prediction values. In
this study, the desert land images obtained through the Y-Net model extraction method
were binarized with the standard desert land contour images. This was done so that
each sand-covered area was 255 pixels and the image background was 0 pixels, and the
pixel-level comparison result of the two images was used as the evaluation index.

IoU =
TP

TP + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-Score = 2× Precision× Recall
Precision + Recall

(6)

In these formulas, TP (true positives) are the samples that are correctly identified as
desert land; FN (false negatives) are the samples that are mistaken as background; TN
(true negatives) are the samples that are correctly identified as background; and FP (false
positives) are the samples that are misidentified as desert land.

4. Experiments and Analysis
4.1. Desert Land Intelligent Interpretation Dataset

The quality and quantity of the training datasets have a direct impact on the training
and prediction accuracy of deep learning models. Currently, the publicly available desert
land datasets are limited in quantity, consist of single scenes and categories, and are
based solely on visible images. The proposed approach is based on multispectral image
bands using a weighted reconstruction method for the band combination, where the bands
with a high sensitivity to desert land are given high weights to maximize the information
utilization of multispectral image bands. This is done to address the fact that sandy samples
constructed from the existing visible image datasets are more similar to the background
features. We utilized Landsat multispectral images and investigated the optimal band
combination for constructing an intelligent interpretation dataset for desert land.

The dataset was constructed via weighted fusion based on the pixel-level band character-
istics, concentrating on the relationships and combinations between spectral bands [36–38].
The results of the weighted fusion contain more spectral information than the original
image, which can significantly improve the accuracy and reliability of image interpretation,
classification, object recognition, and change detection, while also reducing the interference
of invalid bands, maximizing the utilization of image information, highlighting the target
features, and improving the accuracy of the feature extraction. We aimed to resolve the
issues of the color characteristics of desert land in remote sensing images being more simi-
lar to the characteristics of the background due to the influence of topography and dune
shadows, and the fact that the relative luminance of sand dunes in the images is variable.

The principal component analysis method is extensively used in multispectral im-
age band selection tasks, as the color combination of the first three principal component
images can display as much information as possible [39,40]. The original image was prepro-
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cessed using a combination of the principal component analysis band combination method
and band-weighted reconstruction to improve the image spectral difference and model
extraction accuracy.

The remote sensing reflectance of different types of desert land differs [41]. To achieve
an objective evaluation of the sensitivity of the desert land extraction results and to account
for the correlation among the bands, we calculated and compared the performance indicator
(F1-score) for desert land extraction after training each band individually, as shown in
Table 1, to obtain the magnitude of the sensitivity of each band to desert land: B5 > B4 > B1
> B6 > B3 > B7 > B2, so we assigned B5/B4/B1 as the three color channels [41,42].

Table 1. Comparison of the band extraction results.

Band Precision % Recall % F1-Score %

B1 76.293 80.651 78.411
B2 68.789 63.503 66.040
B3 76.888 70.175 73.378
B4 83.870 81.898 82.872
B5 86.710 80.361 83.414
B6 80.267 72.169 76.003
B7 73.594 67.692 70.518

After image weighting and reconstruction, a new image was generated based on the
weighting of the F1-score indicators for B5/B4/B1. The inverse of the variance weighting
procedure was selected in the combined prediction model to determine the image band
weights [43], and the weights for the three aforementioned bands were then calculated.
The inverse of variance weighting method determines the weights based on the magnitude
of the error sum of squares, where a high weight is assigned to the small error sum of
squares values, as shown in Equations (7) and (8). The corresponding B5/B4/B1 weighting
coefficients were calculated as 0.6:0.9:1, and then the image weighting reconstruction was
performed using Equation (9).

Qt = ∑n
i=1 (1− ŷt(i))

2
(7)

Wt =
Q−1

t

∑m
i=1 Q−1

t
(8)

Y = ∑m
t=1 AtWt (9)

where Wt is the corresponding weight of the t-band image; Qt is the sum of squares of the
differences between the true and predicted values of desert land information in the t-band
image; ŷt(i) is the degree of accuracy of the extraction of the ith desert land test set in the
t-band image; m represents the number of bands; At denotes the remote sensing image of
the tth band; and Y is the reconstructed remote sensing image [44].

We developed a band combination multispectral desert land intelligent interpreta-
tion dataset based on the weighted reconstruction method, which maximizes the use of
desert land information sensitive bands to increase the spectral differentiation between
desert land and background features. The original dimension of the multispectral image
acquired by Landsat was 8031 × 7371 pixels. To increase the training speed, the origi-
nal imagery was cropped with the desert land centered neighborhood, and the cropped
imagery was adjusted to 512 × 512 pixels using bilinear interpolation. In the dataset, a
total of 11,672 samples, including 7343 positive samples and 4329 negative samples, were
generated based on cloud cover, luminance and obscurity, and background complexity
(Table 2).
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Table 2. Band combination multispectral remote sensing image dataset.

B1 B4 B5 Original-
B5B4B1 W-B5B4B1 Label
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4.2. Model Training

The Y-Net model was created using Python 3.7.0 as the development environment
and the PyTorch 1.7.1 deep learning framework. The network model was trained using
an NVIDIA GeForce RTX 3090 Ti GPU. Following a series of experiments on the model’s
operation efficiency, result accuracy, and hardware, the final epoch number was set to 200,
the experimental batch size was set to 8, and the Adam optimizer with an initial learning
rate of 10−4 was selected as the optimizer.

4.3. Model Comparison

The robustness of the proposed method for desert land extraction in natural envi-
ronments was evaluated using the test set of 1412 desert land samples. We performed
ablation experiments on U-Net, weighted U-Net (W-U-Net), Y-Net, and weighted Y-Net
(W-U-Net) models (where the original image was the original desert land image with nor-
mal B5/B4/B1 spectral fusion, and the W-image was the B5/B4/B1 weighted desert land
image). The exact labeling results were used as the ground-truth labels, and comparison
graphs of the image quality were constructed. The truth value is the true label of the image.

Table 3 depicts the recognition effect of each network, indicating that the method
presented in this paper enhances the extraction of desert land areas. As shown in Table 4,
the prediction of 1412 Landsat multispectral desert land images for two different test
sets, weighted and unweighted, by the proposed method and the classical U-Net model,
demonstrates that the proposed method is superior in terms of IoU, Recall, Accuracy,
and F1-score. The maximum enhancement of the F1-score of the network presented in
this paper over the classic U-Net model is 11.5%. When compared to W-Y-Net, W-U-Net
has a lower accuracy but a shorter prediction time, demonstrating that the model in this
research is more sophisticated yet has a substantial prediction effect. All U-Net indices



Remote Sens. 2023, 15, 3617 10 of 19

and projections are the lowest, showing that the model has the most basic structure yet
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy
than W-Y-Net, showing that the weighted image features are highlighted and the model
prediction is more complicated. The preceding data demonstrate that the proposed strategy
has a positive impact.

Table 3. Comparison of the model extraction results.

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 2 
 

 

projections are the lowest, showing that the model has the most basic structure yet 
the least sensitivity to sandy soil. Y-Net has a shorter prediction time and worse accuracy 
than W-Y-Net, showing that the weighted image features are highlighted and the model 
prediction is more complicated. The preceding data demonstrate that the proposed strat-
egy has a positive impact. 

Table 3. Comparison of the model extraction results. 

Original Image W-Image U-Net Y-Net W-U-Net W-Y-Net True Value 

       

       

       

       

The red boxes represent the image details extracted by different models at the same location. 

 

The red boxes represent the image details extracted by different models at the same location.

Table 4. Comparison of the desert land extraction results.

Model IoU % Precision % Recall % F1-Score % Calculation
Time (s)

W-U-Net 85.2 90.0 88.4 89.2 347
W-Y-Net 88.3 96.1 94.1 95.1 386

U-Net 73.3 89.1 78.7 83.6 281
Y-Net 77.2 91.8 83.2 87.3 318

5. Discussion
5.1. Weighted Band Combination Methods

In deep learning, the metric between the model inference results for the validation set
data and the true value is referred to as the loss. We fed the training set images into the
model, and the metric between the obtained desert land extraction results and the sample
labels was the extraction error, which is expressed as a 1−F1-score value. Based on this, we
introduced the inverse of the variance weighting technique [43] into the band weighting
process. This method employs the sum of squares of the extraction error as a metric that
reflects the sensitivity of the various bands to desert land characteristics. The extraction
error is the difference between the model extraction result and the true value in the test set
images, and the larger the sum of squares of the extraction error, the less sensitive the band
is to the desert land.
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In the meantime, selecting the optimal band combination for multispectral data is a
crucial prerequisite for image interpretation and thematic information extraction [41], and
the preferred feature-sensitive bands typically have a better performance than standard
band color images in comparison with conventional optical images [45,46]. The multispec-
tral information is the remote sensing reflectance of the different bands of different ground
objects collected by the sensor. In the process of remote sensing image interpretation, with
the increase in the number of sensitive bands of the target ground objects, the ability to
extract ground objects at this image resolution becomes stronger. However, at the same
time, the choice of multiple spectral bands will also increase the amount of computation.
In order to enhance the model operation while also taking into account the correlation,
visibility, and data volume between bands, we selected the three bands (B5/B4/B1) with
the most prominent sensitivity to desert land for the band combination [47].

While the existing common multispectral image fusion methods use the spatial and
spectral characteristics of unprocessed panchromatic and multispectral image bands to de-
termine the optimal parameters, for the same image, the spatial and spectral characteristics
of unprocessed panchromatic and multispectral image bands can vary greatly. Since the
resolution of each band is not the same, it is not appropriate to give each band the same
weight in the selection process [48]. Using the same parameters, their fusion outcomes
would also be suboptimal [46]. In the process of band weighting reconstruction, we desig-
nated corresponding weighting coefficients to the three bands of B5/B4/B1 based on their
sensitivity to the desert land in the imagery, so as to accomplish the goal of balancing the
overall image characteristics.

5.2. Multiyear Changes in Desert Land Area

To acquire the evolution trend of the desert land area in the study area from 1990
to 2020, we isolated the desert land area of six time phases in the Inner Mongolia region
of China during the study period, as depicted in Figure 5. The results indicate that the
overall desert land area in the Inner Mongolia region increased from 1990 to 2000. From
2000 to 2020, the desert land area in the study area decreased consistently, and the land
desertification was reversed. Due to the intensive land cultivation in Alashan League,
Ordos, and Wuhai in western Inner Mongolia, which contributes to a relatively vulnerable
ecological environment, the area of desert land continued to expand from 1990 to 2000 [49],
as shown in Figure 6. With the introduction of sand prevention and control policies after
the year 2000, part of the land was restored, and the desertification process began to reverse.
As shown in Figure 6c–f, a large amount of desert land recovered to usable land from 2000
to 2010. The main reason for this is that policies such as enclosure, grazing prohibition,
and conversion of farmland to forest (grassland), as well as the coupling effect of climate
conditions with moisture change, has accelerated the change of desert land degree in the
western Alxa and Ordos regions, and the desert land was improved, to some extent [50].
From 2010 to 2020, a continuous and stable recovery state appeared, and the degree of
desertification was clearly improved, indicating that sand control policies and ecosystem
restoration projects have made some progress in the study area [51].
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Figure 5. Distribution map of desert land area changes in Inner Mongolia from 1990 to 2020. (a) Dis-
tribution map of desert land area changes in Inner Mongolia in 1990; (b) Distribution map of desert
land area changes in Inner Mongolia in 2000; (c) Distribution map of desert land area changes in
Inner Mongolia in 2005; (d) Distribution map of desert land area changes in Inner Mongolia in 2010;
(e) Distribution map of desert land area changes in Inner Mongolia in 2015; (f) Distribution map of
desert land area changes in Inner Mongolia in 2020.
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Figure 6. Distribution map of severe desertification in eastern Inner Mongolia. (a) Distribution map of
severe desertification in eastern Inner Mongolia in 1990; (b) Distribution map of severe desertification
in eastern Inner Mongolia in 2000; (c) Distribution map of severe desertification in eastern Inner
Mongolia in 2005; (d) Distribution map of severe desertification in eastern Inner Mongolia in 2010;
(e) Distribution map of severe desertification in eastern Inner Mongolia in 2015; (f) Distribution map
of severe desertification in eastern Inner Mongolia in 2020.

5.3. Driving Force Analysis

The SEM [52] is a model for constructing, evaluating, and assessing causal relation-
ships between variables. Intermediate variables can be added to determine the degree of
direct or indirect influence of different factors on desert land area [53]. To quantify and
evaluate the coupled influence of multiple natural and human factors on the change of
desert land area, we constructed a SEM for multiple variables, i.e., desert land area, natural
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geographical elements, and socio-economic factors in the study area, and characterized the
degree of contribution of the various influencing factors to the change of desert land area
using the path coefficients derived from the model. As depicted in Figure 6, a path diagram
model was developed between the desert land area and the nine observed variables of
population density (PD), livestock volume (LS), evaporation (Evp), temperature (T), days of
sandy wind conditions (LD), humidity (RH), precipitation (P), anthropogenic disturbance
index (Adi), and cultivated land (CL) [54]. The anthropogenic disturbance index evaluates
the degree to which human activities have an impact on natural ecosystems and is divided
into four levels. The disturbance index is 0 for natural unused lands such as Gobi and desert
land, 1 for natural unused lands such as woodland and grassland, 2 for anthropogenic
regenerated lands such as cropland and pastureland, and 3 for artificial surfaces such as
urban construction land, as shown in Equation (10).

D =
∑3

i=0 Ai × Pi

3∑n
i=1 Pi

(10)

where Ai is the disturbance index of the ith level and Pi is the area of the ith type of land.
In Figure 7, the observed variables are depicted by rectangular black frames, and the

solid red arrows indicate the causal relationship between the two variables. The fitted
model has a p-value of 0.599, where p ranges between 0.05 and 1, and the closer p is to 1, the
better the model fit. We evaluated the model fit and established that the determined model
structure was capable of reflecting the intricate relationship between the nine observed
variables and the sandy land area. Clearly, five of the observed variables, i.e., humidity,
evapotranspiration, days of sandy wind conditions, the anthropogenic disturbance index,
and precipitation, can directly affect the change of desert land area. Temperature, livestock
volume, arable land, and population density can indirectly affect the desert land area
through the direct variables. The following describes the specific performance of the
aforementioned variables during the various time periods in the study area. From 1990
to 2000, the change in desert land area in the study area was caused by an increase in
temperature, which led to a decrease in humidity, which in turn led to an increase in days
of sandy wind conditions and promoted the continuous expansion of the desert land area.
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Meanwhile, as population density increased in the area, a large amount of forest and
grassland was cleared for cultivation and pasture, and the anthropogenic disturbance index
increased year by year during the study period. As the area of vegetation cover in the
study area decreased, the surface roughness decreased, resulting in an increase in the area
of desert land [49].

During the study period of 2000–2010, a series of sand control policies and ecosystem
restoration projects implemented in the study area from around 2000 caused the climate in
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the region to begin to turn wet and precipitation to increase [50,51], which is conducive to the
growth and recovery of vegetation, thereby reducing the number of sandy wind condition
days in the region and controlling the mobility and expansion of land sanding [53,55].

From 2010 to 2020, as a result of the continued development of sand control and sand
management in the region and the implementation of ecological projects, the climate became
wetter, accelerating the growth of vegetation and the recovery of degraded land [50,56].
The vegetation cover increased, and the decrease in the anthropogenic disturbance index
further decreased the area of desert land in the study area.

Comparing the total path coefficients to the correlation coefficients, Table 5 reveals
that the anthropogenic disturbance index, precipitation, humidity, and cropland are the
primary determinants of desert land area change, and despite the fact that the Pearson
correlation coefficient (r) is greater for the days of sandy wind conditions, cropland, and
the anthropogenic disturbance index, the difference between the total path coefficients and
the correlation coefficients is large. The main cause of the difference between the total path
coefficients and the correlation coefficients is the coupling effect between the drivers of the
anthropogenic disturbance index, i.e., precipitation, days of sandy wind conditions, and
cultivated land.

Table 5. Comparison table of the combined path coefficients and the absolute values of r for the nine
drivers of desert land area.

Factors LD P RH Adi Evp LS CL PD T

Comprehensive path
coefficients 0.199 0.646 0.615 0.367 0.259 0.253 0.545 0.19 0.181

Pearson correlation
coefficients 0.408 0.104 0.100 0.313 0.136 0.046 0.317 0.422 0.100

Desert land area change is a consequence of the coupling effect of climate change and
human activities [57]. In this study, we quantitatively evaluated the interaction between
climate change and human activities using the SEM results. As depicted in Figure 8, in
terms of the combined effect, the anthropogenic factor is the most direct factor of desert
land area change, with a total effect coefficient of 0.392. Human activities such as socio-
economic development and ecosystem restoration projects have also played a leading
role in desert land area change in the study area during the different historical periods.
Other related issues, such as overgrazing or a grazing ban, excessive land reclamation, and
ecological restoration projects, have also had significant effects on the sand dunes in Inner
Mongolia [58], and the literature [51] has confirmed the efficacy of ecological engineering
in enhancing sand dunes, which supports the aforementioned findings.
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Figure 8. Diagram of the coupling of human activity and climate. The green arrows represent pos-
itive correlations with greater influence, and the orange arrows represent negative correlations with
less influence.
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The influence of human activities on climate through the partial least squares path
analysis amounts to 0.687, highlighting the close relationship between climate change and
human activities. The anthropogenic factors have influenced the process of desert land
change by altering the climate of the study area. Consequently, ecosystem restoration
projects, such as afforestation to promote environmental conversion to wet conditions, have
played a significant role in enhancing the desert land change environment in northern
China. From the year 2000, the relevant ecological policies to convert pasture and arable
land into grassland and woodland have been favorable strategies for the restoration of
vegetation cover in the study area, thereby influencing the humidity of the regional climate
through water conservation [59] and creating climatically favorable conditions for the
recovery and reversal of desert land. In contrast, natural factors have had a negligible
effect, with an overall impact of −0.25. Since there is a strong negative correlation between
humidity and desert land area, the contribution of humidity and precipitation to desert
land area change accounts for the majority of the total effect of natural factors on desert
land area change. In particular, as precipitation and humidity levels rise, the climate in the
area becomes more conducive to the recovery and development of vegetation, which has a
containing effect on the desert land area. As shown in Figure 8 and Table 6, human activities
play a dominant role in the process of desert land area change, but the interrelationship
between human activities and climate change is also crucial to the impact of desert land
area change [60]. The 30-year sediment change process in the study area has been driven
primarily by human activities and secondarily by anthropogenic climate change.

Table 6. Direct and indirect effects of climate and human activities on desert land changes.

Factor Direct Indirect Total

Human activities 0.367 0.025 0.392
Climate −0.565 0.315 −0.25

6. Conclusions

In this paper, we proposed the multispectral remote sensing image desert land ex-
traction model—Y-Net—that takes into account the band information and evaluates the
spatial and temporal patterns using structural equation modeling. We evaluated the spatial
and temporal patterns of desert land changes and their drivers in the Inner Mongolia
Autonomous Region from 1990 to 2020 and reached the following conclusions.

Combining the inverse of variance weighting method with the accuracy degree of
information extraction from each band of the desert land remote sensing images allowed
us to determine the weight value of each band of the desert land remote sensing images.
The multispectral remote sensing images of the desert land area were weighted and recon-
structed to generate new desert land remote sensing images and a dataset that provides new
data support for desert land extraction from remote sensing images using deep learning.
By incorporating deformable convolution into the U-Net model to improve its performance,
the model’s adaptability to the issue of low extraction accuracy due to the irregular shape
and unequal demarcation of desert land images was enhanced.

In the extraction task of irregular desert land in complex scenes, the extraction accuracy
in this study was 95.1%, which is 11.5% better than that of U-Net. We also obtained the
spatial and temporal distribution of desert land in the study area from 1990 to 2020 based
on the Y-Net model and quantitatively estimated the driving factors causing the spatial and
temporal evolution of desert land in Inner Mongolia. The results indicated that the desert
land area in the study area has decreased continuously since 2000, and anthropogenic
disturbance and humidity have been the two most influential anthropogenic and natural
factors influencing the change of desert land area. Moreover, the coupling effect of human
activities and climate change was found to be closely related to the change in desert land
area, with climate change constituting a significant background factor in the desert land
change process.
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In this paper, we presented a method for intelligently extracting band information
from multispectral remote sensing images of desert land. However, future improvement
of the expert knowledge through field validation and verification of the precision of the
constructed data samples will be required. Moreover, the method proposed in this paper
is restricted to Landsat multispectral remote sensing images. Data reconstruction and
sand extraction using other images will yield results that differ from those presented
here. In addition, the structure of the SEM is not unique, and the interaction of the
various influencing factors on the desert land area should be examined to obtain a more
precise analysis.
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