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Abstract: Sufficient historical flood inventory data (FID) are crucial for accurately predicting flood
susceptibility using supervised machine learning models. However, historical FID are insufficient
in many regions. Remote sensing provides a promising opportunity to expand the FID. However,
whether the FID expanded by remote sensing can improve the accuracy of flood susceptibility
modeling needs further study. In this study, a framework was proposed for improving the accuracy
of flood susceptibility prediction (FSP) by combining machine learning models and the expanded
FID using Sentinel-1A radar images. Five widely used machine learning models were employed
to verify the accuracy of the proposed method by taking Wuhan City as a case study, including the
random forest (RF), gradient boosting decision tree (GBDT), k-nearest neighbor (KNN), support vector
machine (SVM), and artificial neural network (ANN) models. Sentinel-1A images from time points
before, during, and after flood events were used to expand the FID for training the machine learning
models. The results showed that the performance of the machine learning models for predicting
flood susceptibility was improved greatly by considering the expanded FID, being improved by
approximately 1.14–19.74% based on the area under the receiver operating characteristic curve (AUC).
Among the used machine learning models, taking into account all the statistical indicators, the ANN
showed the best performance, while the SVM showed the best generalization performance in Wuhan
City. According to the results of the ANN model, approximately 19% of the area in Wuhan City,
mainly distributed near rivers and lakes, is at a high flood susceptibility level. This study provides
an essential reference for flood susceptibility analyses in regions with limited flood sampling data.

Keywords: flood susceptibility; machine learning models; remote sensing; Sentinel-1; Wuhan City

1. Introduction

Flood is one of the most common and devastating natural disasters worldwide [1].
According to Rentschler and Salhab (2020) [2], about 23% of the world’s population (about
1.81 billion people) are under the threat of once-in-a-century flood. The global economic
losses caused by floods reached USD 82 billion in 2021, accounting for approximately
31% of the global economic losses related to natural disasters [3]. It is certain that floods
cannot be avoided. However, in order to reduce the devastating socio-economic impacts,
early warning systems have been developed [4] and also operational forecasting and
monitoring approaches for flood occurrence applied [5]. The flood disaster losses can be
greatly reduced by predicting the probability of flood occurrence in advance using flood
susceptibility prediction methods [6].
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According to previous studies, there are four types of methods that can be used to
predict flood susceptibility, including simple transition methods, knowledge-driven mod-
els such as multi-criteria decision-making, hydrological and hydrodynamic models, and
data-driven models such as machine learning models [7]. For the simple transition methods
and knowledge-driven models (denoted as non-data-driven methods for ease of analysis),
the weights of flood conditioning factors are estimated mainly based on expert knowl-
edge [1]. Therefore, many non-data-driven methods are subjective and not easily applied
by inexperienced decision-makers. In addition, some non-data-driven methods (such as
the frequency ratio method) ignore the internal relationships between flood conditioning
factors, which are critical for predicting flood susceptibility in unlabeled pixels accurately.
Some hydrological and hydrodynamic models are used for flood susceptibility prediction,
although this requires higher data quantity and quality, while the complex calculations
require more advanced hardware support. Data-driven machine learning models predict
the flood susceptibility in unlabeled pixels by automatically establishing the relationships
between the flood conditioning factors and historical flood or non-flood point data [8,9].
They have been widely used in recent years for predicting flood susceptibility, since (1) they
are less influenced by subjective experience and can better predict the complex nonlinear
relationships between flood events and flood conditioning factors; and (2) they are more
flexible because the required data are not complex and are easy to obtain when mapping
flood susceptibility. The commonly used machine learning models for FSP include the deci-
sion tree (DT), random forest (RF), support vector machine (SVM), artificial neural network
(ANN) and deep learning models [8,10,11]. For example, Tehrany et al. (2015) [12] predicted
flood susceptibility using SVM models with different kernel functions; Zhao et al. (2020) [13]
used convolutional neural networks to predict flood susceptibility; and Li et al. (2023) [14]
used the deep learning models coupled with ensemble learning models to model flood
susceptibility. These models are widely used in flood susceptibility studies and widely
accepted by the scientific community [15]. Despite the advantages of machine learning
methods, they depend strongly on sufficient FID as the reference to train and validate the
models. However, sufficient FID are difficult to obtain in many global regions, although
several global hazard databases, which record flooding events, are publicly accessible, such
as the Emergency Disasters Database (EM-DAT), the International Flood Network (IFNET)
and the Global Archive of Large Flood Events [16]. The lack of sufficient FID is still one of
the biggest challenges limiting the accuracy of machine learning models for FSP, especially
in remote or unrecorded regions. Governmental reports, field surveys, and remote sensing
data are the most commonly used data sources for obtaining FID [17,18]. Among them, the
data from governmental reports and field surveys are more reliable, although the amount
of such data (including spatial coverage and integrity) is very limited. Satellite remote
sensing provides a significant opportunity to monitor surface water, which can be applied
to expand the FID. Synthetic aperture radar (SAR) images with the advantage of pene-
trating clouds and fogs are considered to be more prominent in monitoring flood-affected
areas [19,20]. According to previous studies, Sentinel-1 SAR data are widely used to map
floods. For example, Uddin et al. (2019) [21] used multi-temporal Sentinel-1 SAR images to
map floods in Bangladesh. Zeng et al. (2020) [22] used Sentinel-1 images to detect the flood
disaster in Wuhan in 2016. Yuan et al. (2021) [23] and McCormack et al. (2022) [24] also
used Sentinel-1 to extract flood areas.

Some scholars have used the flood areas detected by Sentinel-1 to generate or expand
flood inventory data. Shahabi et al. (2020) [18] and Sachdeva et al. (2022) [25] used
Sentinel-1 data to extract flood areas to generate FID. Although Sentinel-1 data have
advantages in generating flood inventories, satellite monitoring also faces some challenges
in extracting flood areas, which affect the accuracy of the expended FID. For example, the
small signal backscatter from the flooded surface can be hidden by the double bounce (DB),
dielectricity (blocking signal backscatter flow through soil), and vegetation submerged
during the flood [26]. These deficiencies may lead to false flood monitoring results, affecting
the performance of machine learning models when using the FID generated by remote
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sensing to predict flood susceptibility in non-monitored regions. Some scholars combined
historical FID with the FID generated by remote sensing to generate flood susceptibility
maps. Mehravar et al. (2023) [27] combined the historical flood inventory obtained by
the agricultural department with the flood inventory generated by Sentinel-1 images to
generate flood susceptibility. Shahabi et al. (2020) [18] also used the flood inventory
obtained by the water authority and the flood inventory generated by Sentinel-1 images
to map the flood susceptibility. However, whether the combination of historical FID
and FID generated by remote sensing is an effective way to improve the accuracy of
flood susceptibility prediction in areas with sparse historical flood monitoring data needs
further study.

This study focuses on proposing a framework to improve the accuracy of FSP by
combining widely used machine learning models and the expanded FID based on satellite
remote sensing. Wuhan City was selected as a case study for verifying the proposed
method. In detail, the FID in Wuhan City were first expanded based on Sentinel-1A images
and historical FID. Second, five widely used machine learning models (ANN, RF, GBDT,
KNN and SVM) were employed to predict the flood susceptibility index over Wuhan City.
Third, the performance of the machine learning models was assessed and compared in two
scenarios, i.e., with and without considering the expanded FID. Finally, the impact of the
expanded FID on FSP was summarized and relevant uncertainties were discussed.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

Wuhan City, with a total area of 8569.15 km2, is located in a transition zone from the
hills in Southeastern Hubei Provence to the low mountains and hills at the southern foot
of the Dabie Mountains through the eastern edge of the Hanjiang Plain [28]. Therefore,
the central area of the city is low and flat, and it is surrounded by north–south hills and
ridges. The annual average temperature in Wuhan City is about 15.8–17.5 ◦C, and the
annual average precipitation is about 1150–1450 mm [28,29]. The rainfall is concentrated in
the months from June to August every year, accounting for about 40% of the annual rainfall.
Figure 1 shows the location of Wuhan City.

There are many rivers, lakes, and ports distributed in Wuhan City. The Yangtze River
and the Han River (the largest tributary of the Yangtze River) meet in the center of the
city and divide the city into three parts: Hankou, Hanyang, and Wuchang. Many large
and small lakes are embedded on both sides of the Yangtze River to form a lake marsh
water network. Wuhan has 166 lakes of different sizes, and it is known as the “city of
hundreds of lakes”. The annual mean water surface area of the lakes in Wuhan City is
about 867 km2 [28]. The abundant precipitation, geographical and topographical factors
and the rich river network determine that Wuhan City is extremely prone to flood disaster
under extreme rainstorm weather. Since 2010, there have been five serious flood disasters
according to the Wuhan Municipal People’s Government. One of them, from 1 July to
6 July 2016, was used as the example to predict the flood susceptibility over Wuhan City.

2.1.2. Data

Three types of data were used in this study, the historical FID, the Sentinel-1A image
data used for expanding the FID and the data for calculating the flood conditioning factors
for driving the machine learning models. For the historical FID, a total of 77 monitored flood
points (FPs), which were provided by the Wuhan Water Authority (http://swj.wuhan.gov.cn/,
accessed on 1 July 2023), were used in this study (Figure 1). The historical FID records the
exact locations of floods in Wuhan from 2016 to 2022. Most of them were distributed in the
central urban area and near rivers. If the centrally distributed FPs in Figure 1 were directly
applied to machine learning models for predicting flood susceptibility, it may bring great
uncertainties since the data are insufficient and overly concentrated [30].

http://swj.wuhan.gov.cn/
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Figure 1. Location of Wuhan City and the historical flood sampling points in the city. The pink area
in the upper left image is Hubei Province; The blue area in the picture below is Wuhan City. The
semitransparent blue area in the right image represents the coverage range of Sentinel-1 images used
in this experiment.

Sentinel-1A radar images were used to expand the FID based on the historical FID.
Sentinel-1A is one of the satellites in the Sentinel-1 satellite series. It carries an imaging
C-band SAR instrument and has four imaging modes: Interferometric Wide Swath (IW),
Extra-Wide Ewath (EW), Stripmap (SM), and Wave (WV) modes [31,32]. The radar data
were used to expand the FID due to their strong ability to penetrate clouds and fogs
for reducing the uncertainties caused by cloud and fog disturbances [18]. The cloud,
fog, and rain climate phenomena occur frequently during flood periods. Optical images
have higher spatial resolution, although they are susceptible to the weather factors [33].
In addition, the temporal resolution of optical images is coarse. The Sentinel-1 Level-1
Ground Range Detected (GRD) products of the IW imaging mode can be downloaded from
(https://scihub.copernicus.eu/dhus, accessed on 1 July 2023). Since the flood event used
in this study was from 1 July to 6 July 2016, the Sentinel-1A images taken on 30 May, 5 July,
and 17 July 2016 were used as the pre-flood disaster image, the middle-flood disaster image,
and the post-flood disaster image, respectively. Due to uncontrollable factors, the effective
area of the Sentinel-1 images used in this experiment only covers 3417.67 km2 of the study
area, accounting for 40.0% of the total area of the study area. The specific distribution of
the images is shown in Figure 1.

The data used for calculating the flood conditioning factors include DEM (ASTER
GDEM, with vertical and horizontal accuracies of 12.6 m and 72 m, respectively), which
were provided by the Geospatial Data Cloud (https://www.gscloud.cn, accessed on
1 July 2023), and land use and soil-type data, which were derived from Tsinghua Univer-
sity (http://data.starcloud.pcl.ac.cn/, accessed on 1 July 2023) and the China Soil Science
Data Center (http://vdb3.soil.csdb.cn, accessed on 1 July 2023), respectively. Landsat-
8 OLI_TIRS remote sensing images provided by the Geospatial Data Cloud were used

https://scihub.copernicus.eu/dhus
https://www.gscloud.cn
http://data.starcloud.pcl.ac.cn/
http://vdb3.soil.csdb.cn
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to derive the normalized difference vegetation index (NDVI) and normalized difference
accumulation index (NDBI).

2.2. Flood Conditioning Factors

The choice of flood regulation factors depends mainly on the characteristics of the
study area [34]. Table 1 shows the flood conditioning factors used in this study for deriving
the machine learning models to predict the flood susceptibility index over Wuhan City.
Based on the geographical and natural environment of Wuhan City and on previous studies,
a total of 12 factors were considered, including the elevation, slope, aspect, curvature, NDVI,
terrain humidity index (TWI), NDBI, river power index (SPI), land use (LU), soil type (ST),
distance to water (DW), and distance type (DT) [8,15,18,35]. Due to the fact that floods are
more likely to occur in areas with low and flat terrain [8,9,18], the elevation, slope, aspect,
curvature, TWI and SPI have been used in most studies. The coverage of land features and
the underlying surfaces with different properties can affect drainage [6]. Thus, the NDVI,
LU and ST are used in most studies. Where part of the study area is an urban building
area, the NDBI has been added as an conditioning factor in most studies on urban flood
susceptibility [3]. The water system has a strong correlation with flood disasters [3,6,8,9].
Therefore, the DW is an important factor chosen to represent water systems in most studies.
In addition, this study area is a multi-river and multi-lake area, and in addition to the
DW, the DT has been added to distinguish the different types of rivers and lakes. The
meanings of these factors and their calculation methods are summarized in Table 1. All
these 12 factors were remapped to 30 m spatial resolution.

2.3. Framework and Machine Learning Models for Predicting Flood Susceptibility

Figure 2 shows the proposed flowchart for predicting flood susceptibility using the
expanded FID and machine learning models. It includes three key parts: (1) expanding
the FID based on Sentinel-1A data (Section 2.3.1); (2) building machine learning models
in two scenarios, with and without considering the expanded FID, for predicting flood
susceptibility over Wuhan City (Sections 2.3.2–2.3.4); and (3) comparing the performances
of different machine learning models for predicting flood susceptibility (Section 2.4).
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Table 1. Flood conditioning factors used in this study for driving the machine learning models.

Flood Conditioning Factor Data Source Meaning Resolution Equation Variable Description

Elevation GDEM V2
The distance from a point along
the vertical line to the absolute

base plane
30 M Extraction based on DEM -

Slope GDEM V2 Degree of surface steepness 30 M Extraction based on DEM -

Aspect GDEM V2
Direction of projection of the

slope normal on the horizontal
plane

30 M Extraction based on DEM -

Curvature GDEM V2 The degree of curvature of a
curve at a point 30 M Extraction based on DEM -

NDVI Landsat-8 OLI_TIRS Normalized difference vegetation
index 30 M NDVI = NIR − R

NIR + R

where NIR and R refer to the top of the
atmosphere reflectance of the near-infrared (0.86

µm) and red band, respectively.

NDBI Landsat-8 OLI_TIRS Normalized differences built-up
index 30 M NDBI = SWIR − NIR

SWIR + NIR

where SWIR and NIR are the top of the
atmosphere reflectance of the shortwave
infrared (2.2 µm) and near infrared band,

respectively.

TWI GDEM V2 Topographic wetness index 30 M TWI = ln(AS/ tanβ) where AS is the specific catchment area in units
of (m2 m−1) and β is a slope in radians [36].SPI GDEM V2 Stream power index 30 M SPI = AS· tanβ

Soil type National 1:6 million soil-type
dataset Soil classification 1:600 million - -

Land use FROM-GLC 10 2017v1 Land use classification 10 M - -

Distance to water 1:1 million basic geographic
vector map data

The Euclidean distance to the
closest water area 1:100 million - -

Distance type 1:1 million basic geographic
vector map data

Classification of water body
types nearest to pixels based on

the Euclidean distance
1:100 million - -
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Figure 2. Flowchart for expanding the flood inventory data and predicting flood susceptibility using
the expanded FID and machine learning models.
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2.3.1. Methods for Expanding Flood Inventory Data

Sentinel-1A images were employed to expand the FID. The specific steps were as
follows. First, Sentinel-1A images from the pre-, middle-, and post-flood periods were
prepared for the flood event. These images were pre-processed to extract the water surface
area data (before, during and after the flood event), including registration, gamma filtering,
geocoding and radiometric calibration. Second, the water surface areas in the pre-, middle-,
and post-flood periods were extracted using Otsu’s threshold method (Equation (1)) [22,37].
After many attempts, 48 (the value range is from 0–255) was used as the threshold in
this study. The flood area for the flood event (SFlood) is the spatial difference in the water
surface area extracted from the Sentinel-1A image during the flood event (SDWA, pre-flood
event image) and that extracted from the Sentinel-1A image before the flood event (SBWA,
middle-flood event image), i.e., SFlood = SDWA-SBWA. For the misclassification area, the
visual interpretation method was used to eliminate the misclassification area caused by the
terrain, mainly starting from the landform. The extracted flood area was then compared
with the water surface area extracted from the Sentinel-1A image after the flood event
(post-flood event image) to reduce the impact of the time interval of shooting the images
in the three periods. Finally, FPs were extracted based on the extracted flood areas, which
were polygons [9]. These flood polygons were converted into FPs by randomly selecting
points at the non-edge locations of the small polygons using ArcGIS 10.6 software. A total
of 270 FPs were expanded in this study.

σ2 = p1(m1 − mg)
2 + p2(m2 − mg)

2 (1)

where σ is the variance between the two categories, p1 and p2 are the proportions of
category 1 and category 2 in the image, m1 and m2 are the average values of category 1 and
category 2, respectively, and mg is the average value of the whole image. The threshold
value when σ2 reaches the maximum value is the best segmentation threshold value.

2.3.2. Data Processing and Scenario Design

The processing of the data included two steps (Figure 2). The first was the selection of
non-FPs. According to most previous studies, the non-FPs were randomly selected in the
non-flood areas [8,9,38]. The selection method for the non-FPs was to add two constraints
on the basis of random selection, one was to avoid the flood area and the other was to
select non-FPs within the selected Sentinel-1 image range and the historical flood inventory
range. Referring to previous studies, the non-FPs with the same number as the FPs were
randomly selected in this study. The second was to determine the test dataset. The test data
did participate in the training and verification process during the modeling period. They
were only used for the final test of the performances of the models. The numbers of FPs
and non-FPs in the test data were equal, accounting for about 20% of all the used points.

Two scenarios were designed for training and validating the machine learning models,
i.e., with and without considering the expanded FID (Figure 2). In scenario 1, only the
historical FIDs were used to train and validate the models. Specifically, all the historical
FIDs except those used for testing the models, including 62 FPs (Figure 2), were used to
train and validate the machine learning models, and the same number of non-flood points
were selected. Scenario 2 was designed based on scenario 1. We used all the historical
FIDs from scenario 1 and all the expanded FIDs except those used for testing the models
(216 FPs in total) to train and validate the machine learning models in scenario 2. The same
number of non-flood points were also assigned. The test dataset in scenario 2 was the same
as that in scenario 1 for a fair comparison.

2.3.3. Machine Learning Models Used in This Study

Five machine learning models were employed in this study, including the ANN, RF,
GBDT, KNN, and SVM. Since these models have been described in detail in previous
studies, they will be only briefly described. The RF and GBDT models are tree-based
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integration methods. The RF is based on the decision-making of multivariate trees, that
is, its result is decided by a majority vote [39]. Majority voting enables the RF to handle
the overfitting problem and interpret the complex relationship between the conditioning
factors. The GBDT is a decision tree algorithm based on a boosting algorithm [40]. Different
from the RF bagging algorithm, the boosting algorithm is the decision result of all the trees.
The RF and GBDT are widely used in studies concerning flood susceptibility prediction
due to their interpretability and high accuracy.

The KNN algorithm, originally proposed by Cover and Hart in 1968, is one of the
most typical machine learning algorithms [18]. According to the algorithm, if most of
the K-adjacent samples for a certain sample belong to a certain category, the sample is
considered to belong to that category [41]. The advantage of the KNN lies in its simplicity,
effectiveness, and ability to handle complex nonlinear relationships.

The SVM is a supervised machine learning model, which maps the original data to
a high-dimensional space and then constructs a hyperplane through a kernel function to
convert nonlinear relations into linear relations, thus simplifying the classification [12,42].
The key to building the SVM is the choice of kernel function, which affects the accuracy
of the model. According to previous studies, the best performing RBF was selected as the
kernel function of this model [12,42,43]. The SVM has strong generalization ability and
good performance in processing high-dimensional data.

The ANN is an information processing system based on the structure and function of
brain neural networks. It simulates the activity of neurons based on mathematical models.
The neural network is widely used in flood susceptibility modeling. A deep neural network
(DNN) is an ANN with multiple hidden layers, which is effective in dealing with the
complex relationship between flood and flood conditioning factors [44]. The ANN has
excellent abilities in terms of learning complex linear relationships and applying various
types of data.

In this study, a total of ten machine learning models were constructed (each scenario
included five models) (Figure 2).

2.3.4. Steps for Predicting Flood Susceptibility Using Machine Learning Models and the
Expanded FID

The steps for predicting flood susceptibility using the machine learning models can
be summarized as follows. First, the flood and non-flood points in Wuhan City were
labeled 1 and 0, respectively. They represented a 100% probability of flood occurrence and
non-occurrence, respectively. The flood conditioning factors representing the classification
(soil type, land use and distance type) were quantified, and natural numbers were used
to replace their classification. Before being incorporated into the model, the values of the
12 flood conditioning factors were normalized to adapt to models that require feature
normalization, such as the KNN, Ann and SVM. The data concerning the selected 12 flood
conditioning factors (Table 1) were prepared for driving the machine learning models to
predict the flood susceptibility index (varying between 0 and 1) in the unlabeled regions
over the study area. Second, the different machine learning models were built and trained
based on the designed scenarios in Section 2.3.2 and the data preparation in the first step to
predict the flood susceptibility index over Wuhan City. For the RF, GBDT, KNN, and SVM
models, they were built based on Python’s Scikit-Learn package. For the ANN model, it was
built based on PyTorch for building a neural network framework. Then, the models were
trained using cross-validation and spatial cross-validation methods to evaluate the models
more accurately. We used 5-fold cross-validation and 5-fold spatial cross-validation, where
k-means clustering was used for the data partitioning in the spatial cross-validation [45].
Finally, the flood susceptibility index in the unlabeled pixels over Wuhan City was predicted
based on the trained machine learning models. The performances of the different machine
learning models were compared in the designed two scenarios based on the statistical
metrics in Section 2.4. Based on the results of the performance comparison of the machine
learning models, flood susceptibility maps of Wuhan City were mapped.
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2.4. Statistical Metrics

Six statistical metrics were selected to measure the performances of the different
machine learning models for FSP, including the receiver operating characteristic curve
(ROC), the area under the ROC curve (AUC), the Kappa coefficient, precision, recall and F1-
score [8,14,46]. The ROC and AUC are the most commonly used metrics to measure model
performance for FSP. The ROC takes the true and false positive rates as the vertical and
horizontal axes, respectively. The closer the curve is to the upper left corner, the higher the
model performance is. The area under the ROC curve (AUC) varies between 0.5 and 1 [14].
The closer to 1 the AUC value is, the better the model performance is. The Kappa coefficient
varies between −1 and 1. The closer to 1 the value is, the more consistent the predicted
and observed values are [46]. Precision and recall are metrics used in machine learning
to measure the accuracy of a classification model. Precision focuses on the correctness
of the positive predictions, while recall focuses on the model’s ability to identify all the
positive instances correctly [8]. The F1-score is a metric that combines precision and recall
to provide a balanced evaluation of a classification model. It is the harmonic mean of the
precision and recall, and it takes both false positives and false negatives into account. The
ROC curve and AUC value are the most commonly used indicators for binary classification
tasks in machine learning. A higher recall rate means that there are fewer omissions in
the identification of flood-prone areas. Therefore, in Section 3.4, the test performance
comparison of the models mainly compares the AUC value and recall rate of the models.

Recall = TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

Precision =
TP

TP + FP
(4)

K =
O-E
1-E

(5)

E =

(
TP + FP

N
× TP + FN

N

)
+

(
TN + FP

N
× TN + FN

N

)
(6)

F =
2 × Recall × Precision

Recall + Precision
(7)

where TP (true positive) and TN (true negative) represent the number of points correctly
classified as flood and non-flood, respectively; FP (false positive) and FN (false negative)
are opposite to TP and FP, respectively; K and N refer to the kappa coefficient and the
number of all the sample data, respectively; and F refers to the F1-score.

2.5. Analysis of Appearance Rationality of Susceptibility Mapping

The flood susceptibility maps generated by the different models may have different
spatial patterns. Therefore, we used the method of generating a variability map combined
with the conditioning factors to analyze the flood-prone mutation region subjectively, so as
to make the results more convincing [47]. The variability value was obtained by calculating
the rate of change of a pixel and its surrounding 3 × 3 pixels [47]. The change rate of the
three grids was calculated, and the generation method was to use the local statistical tool
in ArcGIS software to calculate the variability.
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3. Results
3.1. Expansion of Flood and Non-Flood Points

As a typical representative of a multi-river and -lake city, Wuhan City should fully
consider the changes in the water surface area of lakes and rivers over time when extracting
flood areas. In this study, we considered the changes in the water surface area of lakes and
rivers before and after the flood period to eliminate the impact of the changes on the area
of rivers and lakes.

Figure 3a,b show the historical and expanded flood and non-flood point data used for
training, validating and testing the machine learning models. It is clear that the historical
FPs are mainly distributed in the central areas of Wuhan City. In addition, most of them are
distributed near rivers and lakes. It is obvious that the historical flood point data are not
sufficient for flood susceptibility prediction using machine learning models in Wuhan City.
The expanded flood point data have better spatial representation.
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Figure 3. The spatial distribution of the historical and expanded FPs and the comparison of the
extracted flood area with previous studies. (a) Historical and expanded flood and non-flood sampling
points used for training and validating the models. The Flood points_b means the historical FPs; the
Flood points_a means the expanded FPs. (b) Flood and non-flood points used for testing the models.
In addition, the blue semi-transparent area is the Sentinel-1 image area used in this study. (c) Flood
areas (red color) extracted by Zeng et al. (2020) [22] near Wu Lake (Adapted with permission from
Ref. [22]. 2020, Ziyue Zeng). Its specific location is in the red box in (a). (d) Flood areas (red color)
extracted in this study for comparing with results of Zeng et al. (2020) [22]. The Water 1 represents the
water surface data from the National Catalogue Service for Geographic Information (see Section 2.2);
the Water 2 is the water surface extracted in this study. (e) Locations of the FPs identified based on
the flood areas extracted by Zeng et al. (2020) [22] in (c).
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The accuracy of the expanded flood point data in this study was verified by compar-
ing them with the flood point data expanded by previous studies. Figure 3c shows the
extraction of the flood area by Zeng et al. (2022) [22] near Wu Lake. Zeng et al. used the
Otsu method to extract the flood area of Sentinel-1 images of the same flood event as this
study. The producer’s accuracy and the user’s accuracy in the flood areas extracted by Zeng
et al. (2022) reached 72.8% and 74.4%, respectively. The area near Wu Lake was selected
as an example for the verification (Figure 3c–e). On the one hand, the spatial distribution
of the flood areas extracted by Zeng et al. (2020) [22] (Figure 3c) and that extracted in
this study (Figure 3d) is highly overlapped. On the other hand, we compared the spatial
locations of the FPs extracted in this study (Figure 3d) and those extracted based on the
flood areas identified by Zeng et al. (2020) [22] (Figure 3e). The results showed that 95% of
the FPs extracted in this study are spatially overlapped with those extracted based on the
identified flood area by Zeng et al. (2020) [22]. This shows that the FPs extracted in this
study are reasonable.

3.2. Multicollinearity of Flood Conditioning Factors

When selecting conditioning factors, a multicollinearity check shall be conducted [48].
This section focuses on assessing the multicollinearity of the selected flood conditioning
factors using the variance inflation factor (VIF) [49]. The VIF is the ratio of variance between
a model constructed with multiple other parameters and a model constructed with only
one item. It quantifies the severity of the multicollinearity in an ordinary least squares
regression analysis. When there is no multicollinearity, the value of the VIF is close to
1. According to previous studies, when the VIF value is greater than 10, it indicates a
serious multicollinearity problem [15]. High correlation between the flood conditioning
factors affects the performance of the machine learning models. Figure 4 shows the spatial
distribution of the selected 12 flood conditioning factors in Wuhan City. Table 2 shows the
specific classification names of three flood conditioning factors represented by classification.
Table 3 shows the VIFs of these factors.

Table 2. Spatial distribution of the flood conditioning factors in Wuhan City.

Land Use Soil Type Distance Type

Code Description Code Description Code Description
0 - A Swampy Soil I Yangtze and Han Rivers
1 Crop B Lakes and water II Rivers
2 Forest C Dark yellow–brown loam III Lakes
3 Grass D Alluvial soils IV Reservoirs
4 Shrub E Tidal soils - -
5 Wetland F Rice soils - -
6 Water G Yellow–brown loam - -
7 Tundra H Yellow–brown loam - -
8 Impervious I Yellow–red loam - -
9 Bare land J Yellow–brown loam - -
10 Snow/ice K Percolating rice - -
11 Cloud L Trapped rice - -
- - M Red loam - -
- - N Grey tide soil - -
- - O Red loamy soils - -
- - P Brown–red loam - -
- - Q De-submerged rice - -
- - R Urban area - -
- - S River and stream - -
- - T Rinsed rice - -
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Table 3. The VIF analysis of the selected flood conditioning factors.

Factors VIF Factors VIF

Elevation 3.81 Slope 4.58
NDVI 5.25 Curvature 1.12

SPI 1.43 NDBI 2.85
TWI 5.82 Distance to water 2.91
LU 2.84 Distance type 11.83

Aspect 3.53 Soil type 9.50

It can be seen from Table 3 that the VIFs for most of the flood conditioning factors are
less than 10, except for the distance type factor with a VIF of 11.83, which is slightly greater
than 10. As Wuhan is a region with many lakes and rivers, in addition to the distance from
the rivers and lakes, the diversity of the rivers and lakes means that different types of rivers
and lakes will have different effects on the occurrence of floods. We used the Euclidean
distance to classify the nearest water type (river and lake) of the pixel to be predicted,
because different types of waters have different effects on the risk of flood. Because there is
still a lack of relevant research on flood susceptibility mapping in areas with many rivers
and lakes, in addition to this conditioning factor, no more suitable conditioning factor has
been found. Thus, to sum up, even if the VIF of the distance-type factor is greater than 10,
it is still applied to this study.

3.3. Training and Validation of Machine Learning Models

This study employed five machine learning models (ANN, RF, GBDT, KNN, and SVM).
Based on two scenarios (with and without considering expanding FID; see Section 2.3.2 for
details), the five-fold cross-validation and the five-fold spatial cross-validation methods
were adopted for training and validation purposes. Table 4 shows the hyperparameters after
parameter adjustment. The adjusted AUC values were used to measure the performances
of the machine learning models (Table 5). The ANN model used in this study adopted a
fully connected layer structure with 1 input layer including 12 ganglion points and 4 hidden
layers including 24, 15, 10, and 5 ganglion points, respectively.

Table 4. Adjustment of the model hyperparameters for the ANN, RF, GBDT, KNN and SVM models
in Wuhan City.

Model Hyperparameters of without Considering Data Expansion Hyperparameters of with Considering Data Expansion

RF n_estimators = 15 n_estimators = 25
GBDT n_estimators = 100, loss = ‘deviance’, learning_rate = 0.1 n_estimators = 100, loss = ‘deviance’, learning_rate = 0.1
ANN batch_size = 4, epoch = 60, activation function: ReLU batch_size = 4, epoch = 80, activation function: ReLU
KNN n_jobs = −1, n_neighbors = 7 n_jobs = −1, n_neighbors = 15
SVM kernel = ‘rbf’, C = 195, gamma = 1.0, probability = True kernel = ‘rbf’, C = 198, gamma = 1.0, probability = True

Table 5. The AUC values of the machine learning models used in this study in the model valida-
tion phase.

Model in Scenario 1,
without Considering

Expanded FID

AUC Value under
Cross-Validation

AUC Value under
Spatial

Cross-Validation

Model in Scenario 2,
with Considering

Expanded FID

AUC Value
under Cross-
Validation

AUC Value under
Spatial

Cross-Validation

RF 0.89 0.97 RF 0.90 0.95
GBDT 0.90 0.98 GBDT 0.92 0.95
KNN 0.83 0.82 KNN 0.89 0.81
SVM 0.87 0.82 SVM 0.92 0.86
ANN 0.97 0.92 ANN 0.94 0.89

According to Table 5, when the cross-validation method is used, the ANN model shows
the best performance in the scenario without considering the expanded FID (scenario 1,
with an AUC value of 0.97), followed by the GBDT, RF and SVM models (with AUC values
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of 0.90, 0.89 and 0.87, respectively), whereas the KNN model shows the worst performance
according to the AUC (with a value of 0.83). In the scenario with considering the expanded
FID (scenario 2), the ANN model also shows the best performance in Wuhan City, with
an AUC value of 0.94, followed by the SVM, GBDT and RF models (with AUC values of
0.92, 0.92 and 0.90, respectively). The KNN model (with an AUC value of 0.89) shows the
worst performance in scenario 2, as that in scenario 1. When the spatial cross-validation
method is used, the GBDT model shows the best performance in the scenario without
considering the expanded FID (scenario 1, with an AUC value of 0.98), followed by the
RF and ANN models (with AUC values of 0.97 and 0.92, respectively), whereas the KNN
and SVM models show the worst performance according to the AUC (with a value of
0.82). In the scenario with considering the expanded FID (scenario 2), the RF and GBDT
models show the best performance in Wuhan City, with an AUC value of 0.95, followed
by the ANN and SVM models (with AUC values of 0.89 and 0.86, respectively). The KNN
model (with an AUC value of 0.81) shows the worst performance in scenario 2, as that in
scenario 1. Therefore, the GBDT model performs the best for flood susceptibility prediction
in Wuhan City. Note that all five models used in this study show satisfactory performance
in both scenarios, with and without considering the expanded FID, in Wuhan City (the
AUC values of all these models are greater than 0.8 in the validation period), although
these models show different performances.

3.4. Performance Comparison of Machine Learning Models

This section focuses on (1) assessing whether the performance of FSP is improved by
considering the expanded FID based on the selected five machine learning models, and
(2) comparing the performance differences of the selected five machine learning models for
predicting flood susceptibility. In order to provide a fair comparison, the data concerning
the FPs used for testing the models’ performance did not include the FPs data used for
training and validating the models (Figure 2). In addition, all the models (with and
without considering the expanded FID) used the same test dataset to remove the impact
of inconsistent test datasets. Figure 5 and Table 6 show the statistical metrics used for
assessing the performances of the machine learning models, including the ROC curves,
AUC, Kappa coefficient, precision, recall, F1-score and the improvement in the AUC.
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Figure 5. The ROC curves and corresponding AUC values of the machine learning models in the
testing period. The symbol “_b” means the AUC of the machine learning models without considering
the expanded FID, while the symbol “_a” means the AUC of the machine learning models considered
the expanded FID.
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Table 6. The results of the performance metrics used to evaluate the performances of the machine
learning models during the testing phase.

Scenario Model Kappa AUC Precision Recall F1-Score Improvement
of AUC (%)

Models in
Scenario 1

RF 0.25 0.80 0.67 0.62 0.59 -
GBDT 0.30 0.76 0.64 0.6 0.58 -
KNN 0.47 0.77 0.75 0.73 0.72 -
SVM 0.57 0.88 0.75 0.74 0.73 -
ANN 0.60 0.83 0.81 0.79 0.8 -

Models in
Scenario 2

RF 0.72 0.93 0.86 0.86 0.86 16.25
GBDT 0.70 0.91 0.85 0.85 0.85 19.74
KNN 0.53 0.86 0.83 0.83 0.83 11.69
SVM 0.70 0.89 0.77 0.76 0.76 1.14
ANN 0.72 0.91 0.83 0.91 0.86 9.64

As for AUC value, in the test phase, only the SVM (with AUC = 0.88) and ANN (with
AUC = 0.83) show good AUC values among the data modeling models using scenario 1,
while the AUC values of other models are very low, which could not meet the require-
ments. In the model of the scenario 2 data modeling, all the models generally show good
performance. Specifically, the RF (with AUC = 0.93) has the best performance, followed
by the GBDT (with AUC = 0.91), ANN (with AUC = 0.91), and SVM (with AUC = 0.89),
while the KNN (with AUC = 0.86) has the lowest AUC value. In terms of the recall rate, in
the simulated data of scenario 1, the ANN (with recall = 0.79) shows the highest recall rate,
followed by the SVM (with recall = 0.76). In the simulated data of scenario 2, the ANN
(with recall = 0.91) still has the highest recall rate, followed by the RF (with recall = 0.86),
GBDT (with recall = 0.85), and KNN (with recall = 0.83), while the SVM (with recall = 0.76)
performs the worst.

Comparing the simulation models of scenario 1 and scenario 2, we find that the AUC
value of the GBDT has the largest difference. The GBDT model in scenario 2 shows a 19.74%
increase in the AUC compared to the model in scenario 1. The RF (with an improvement
in the AUC = 16.25%), KNN (with an improvement in the AUC = 11.69%), and ANN
(with an improvement in the AUC = 9.64%) take second place, while the SVM (with an
improvement in the AUC = 1.14%) has the smallest AUC difference. This indicates that the
SVM model has stronger generalization performance compared to other models, while the
GBDT and RF exhibit significant overfitting phenomena. This means that when modeling
with insufficient FID, the GBDT and RF models are not suitable due to overfitting issues.
On the contrary, the SVM model is more suitable for modeling in situations where the
FID are scarce. Based on the above results, the ANN model exhibits good comprehensive
performance, with no obvious overfitting phenomenon when modeling in both scarce and
sufficient data, and its recall rate is the highest in both scenario 1 and scenario 2. The
SVM model is more suitable for modeling in FID-scarce areas, which helps to reduce the
overfitting effects caused by data scarcity. However, due to its low recall rate, the SVM is
not suitable for modeling when the FID are sufficient.

3.5. Flood Susceptibility Map and Appearance Rationality Analysis in Wuhan City

Figure 6 shows the flood susceptibility maps of Wuhan City based on the SVM, RF
and ANN models. Since the SVM model shows a better performance based on results in
Section 3.4, the flood susceptibility map predicted by the SVM model is used to analyze the
flood susceptibility in Wuhan City. The susceptibility maps predicted by the RF and ANN
models are also considered for inter-comparison purposes. The flood susceptibility index
varying between 0 and 1 in Figure 6 is used to represent the probability of flood occurrence.
Five levels of flood susceptibility are divided based on the flood susceptibility index using
the quantile method, including very low, low, moderate, high, and very high. The area and
its proportion for each level are plotted in Figure 7.
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According to Figures 6 and 7, about 70% of the historical FPs are located within areas
with high or very high flood susceptibility levels, while less than 20% of the historical FPs
are located within areas with very low or low flood susceptibility levels. According to
Figure 7, nearly 36% of areas in Wuhan City are at high and very high flood susceptibility
levels, of which approximately 19% are at a very high susceptibility level. This means that
36% of areas in Wuhan City will be at risk of flooding when extreme rainfall occurs and
19% of areas are in the high flood risk state. These places are mainly distributed in regions
near low-lying rivers and lakes. The percentages for the very low, low and moderate flood
susceptibility levels are 17%, 24% and 23%, respectively.

Figure 8 shows the variability map generated by the flood susceptibility map in Fig-
ure 7 as well as some important conditioning factors. It is possible to analyze the rationality
of the generated flood susceptibility map by combining four important conditioning factors
(elevation, distance from water body, distance type, and NDVI). After the comparison, we
find that areas with sudden changes in susceptibility are located in areas with higher eleva-
tions and sudden changes, as well as in areas close to rivers and lakes. This is consistent
with the phenomenon that floods usually occur in areas close to rivers and lakes and in
low-lying areas, while they are not easy to occur in areas with larger slopes. Interestingly,
the distance between the sensitive mutation areas and rivers and lakes also varies. The
distance between the sensitive mutation area and the lake is obviously greater than the
distance from the Yangtze River. This indicates that the area around the Yangtze River
is less affected by floods than lakes. It shows that the lake area needs to strengthen its
flood management.
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important conditioning factors. Among them, (a–d) represent the variability map generated by the
flood susceptibility map of (a–d) in Figure 7, and (e–h) show the details of the red box area of (a–d).
(i–l) represent four important conditioning factors, namely elevation, distance to water, NDVI, and
distance type, in the (e–h) regions. In addition, the classification of the distance type is shown in
Table 3.

4. Discussion

In this study, we used Sentinel-1A radar data to expand the FID in Wuhan City. The
results showed that the expanded data can improve the performances of the machine
learning models well. That is, the performances of all five models has been improved by
considering the expanded FID compared to the performances when not considering the
data expansion. The performance improvement is caused mainly by the increased sample
size (e.g., the number of FPs). According to Zhao et al. (2021) [50], the model performance
for predicting flood susceptibility will be improved as the number of samples increases.
However, if the expanded FID are not corrected (such as the non-flood points are incorrectly
used as flood points), the model performance will be decreased as the number of FP samples
increases. Our results showed the reliability of the expanded FID based on Sentinel-1A data
for improving the performance of FSP using machine learning models. Another reason
for the increased model performance is that the expanded and historical FPs are evenly
distributed over the study area, meaning that the distance between the predicting cells
and their corresponding training domains is greatly decreased. According to McCartney
et al. (2020) [51], the model performance will be improved rapidly as the distance of the
predicting cells from their training domains decreases. Note that the expanded FPs in this
study were not distributed in all the regions of the study area, because Sentinel-1A covers
only half of the study area during the disaster event (the east half of the study area). This
brings uncertainties to the results of this study concerning flood susceptibility prediction.

Despite the advantages, the data expansion based on Sentinel-1 data faces some
limitations. First, Sentinel-1 data are difficult to use to extract the water surface area in urban
areas due to the double bounce mechanism of radar remote sensing in urban areas [52,53],
although they can be well used to extract the water bodies in bare land and sparsely
vegetated areas due to the obvious backscattering characteristics of water bodies [52].
Some previous studies extracted flood area data in urban areas based on datasets from
the TerraSAR-X and ALOS-2/PALSAR-2 synthetic aperture radar sensors [53]. The spatial
resolution of the datasets derived from these sensors is no more than 3 m. However, the
spatial resolution of Sentinel-1 data is 5 × 20 m, making it difficult to accurately extract
water bodies in urban areas. Second, the vegetation canopy cannot be penetrated by
Sentinel-1 sensors, which leads to abnormalities in the water surface extraction in densely
vegetated areas [22]. In addition, the rapid flow of water during the flood period will also
lead to water detection errors [53]. Third, the temporal resolution of Sentinel-1A images is
not enough for monitoring flood processes dynamically. For the flood event in this study
(during 1 July to 6 July 2016), only one Sentinel-1A image is available (the imaging date
is 5 July 2016) during the event, which affects the accuracy of this study. If more images
during flood events can be considered, the accuracy of the machine learning models may
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be further improved. In the future, multi-source remote sensing images can be combined
to more accurately extract the flood areas.

The Otsu threshold method has certain limitations when extracting water bodies from
Sentinel-1 images. The Otsu threshold method can quickly and conveniently calculate the
threshold for image segmentation [54]. For threshold images with a unimodal histogram
distribution, the Otsu threshold method has good results, although it is difficult for the
Otsu method to achieve a good effect for threshold images with a bimodal or multimodal
histogram distribution [55]. In addition, when the water area is less than 10%, there will be
significant deviation in the segmentation results [56]. We used a VV polarized Sentinel-1
image, which is a threshold image with a bimodal histogram distribution, which can lead to
certain deviations when extracting water bodies. For example, some areas with undulating
terrain may be mistakenly classified as water bodies due to the terrain and beam incidence
angle. Therefore, we used visual interpretation to eliminate some misclassification areas,
although we were unable to take into account all the misclassification areas. Therefore, our
goal is to select flood points as accurately as possible to compensate for the shortcomings
of the water area extraction. In addition, the area of lakes and rivers in the study area of
this experiment is about 26.1%, which excludes the deviation caused by the water body
area being less than 10%.

The selection of the test set data points in this experiment has certain limitations. In
order to ensure that the test set can contain richer information, we chose the test set data
based on the spatial distribution and density of the points. This method ensures that the
points in the test set are more dispersed in space, providing richer information for the model
performance evaluation. Therefore, our test results will better reflect the generalization and
robustness of the model. However, this method does overlook the imbalance in the number
of points between the historical flood inventory and the remote sensing flood inventory in
the test set. This will cause the test results to be more biased toward the expanded FID data,
leading to uncertainty in the results. In future research work, the selection of the testing
machines needs to balance the spatial distribution of the historical FID and the expanded
FID with the proportion of the sample size, which will make the results more convincing.

When comparing the different machine learning models, they showed different gener-
alizations and accuracies, which are critical for accurate FSP in regions with insufficient
historical FID. Based on most previous studies, semi-supervised models have stronger gen-
eralization than supervised models when predicting flood susceptibility [40,50,57,58], since
supervised models rely more on the quality of the sampling data (the number and spatial
distribution of the FPs). Transfer learning is also an important approach for reducing the
model generalization in areas with sparse FID. The transfer learning models were trained
in areas with sufficient FID and similar environmental conditions as the study area first,
and then they were trained again in the study area with insufficient FID to improve the
generalization and ability of the models [50]. In addition, the imbalanced size between
the flood and non-flood points is another factor affecting the model performance and
generalization [40]. Ekmekcioğlu et al. (2022) [8] found that when the number of flood
points is equal to that of the non-flood points, the model shows a better performance. How-
ever, when the number of flood and non-flood points is seriously imbalanced, the model
performance will be reduced significantly. In future research, semi-supervised learning
will be an important method to improve the accuracy of flood susceptibility modeling in
FID-scarce areas.

Our flood susceptibility map shows that most flood-prone areas are located in areas
with low elevations, flat terrain, and close to water bodies. This is consistent with most
studies. In addition, most of the susceptible areas in this study are more densely distributed
around water bodies, which is different from some studies [8]. This is because our study
area is an area with many lakes and rivers. This is consistent with the results concerning
the same study area with a large number of lakes and rivers [34,59].
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5. Conclusions

The purpose of this study was to propose a framework for improving the performance
of FSP by combining machine learning models and the expanded FID based on satellite
remote sensing. Wuhan City was selected as a case study and five widely used machine
learning models were employed to verify the proposed method and compare their per-
formance differences in two scenarios, with and without considering the expanded FID,
including the RF, GBDT, KNN, SVM, and ANN. The main conclusions obtained in this
study can be summarized as follows.

The expanded FID based on Sentinel-1A data greatly improved the performance of
the machine learning models for flood susceptibility prediction in Wuhan City, improving
by approximately 1.14~19.74% the statistical metrics of AUC. The ANN model showed the
best performance in all scenarios. The SVM model showed a better reducing the overfitting
caused by insufficient FPs. According to the flood susceptibility map of Wuhan City, about
36% of areas in Wuhan City are at the risk of flooding. Among them, 19% are at the
high susceptibility risk level. These high-risk regions are mainly distributed in regions
near low-lying rivers and lakes. Although increasing the number of FPs can improve
the performance of machine learning models for FSP, it is affected by the quality of the
expanded FID since the water surface extraction based on Sentinel-1A data is limited by the
vegetation canopy, urban land, and the temporal and spatial resolution of the Sentinel-1A
data. When using SAR images to generate FID, it is necessary to eliminate the impacts of
seasonal changes in water bodies and to select a more accurate water extraction method for
images with a bimodal histogram distribution. The combination of the expanded FID and
transfer learning models may be an effective way to further improve the accuracy of flood
susceptibility prediction.
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