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Abstract: In linear inverse scattering, the performance of the imaging system is sometimes evaluated
in terms of its resolution, i.e., its capability to reconstruct a point-like scatterer. However, there is still
a lack of analytical studies on the achievable resolution. To address this, we consider the point spread
function (PSF) evaluation of the scattered near field for the single frequency and multi-view/multi-
static case in homogeneous medium. Instead of numerically computing the PSF, we propose and
discuss an approximate closed form under series expansions according to the angular ranges of both
source and receiver location. In order to assess the effectiveness of the proposed approximation, we
consider two cases including both full and limited view angles for the incident field and observation
ranges. In addition, we provide a localization application to show the usefulness of the theoretical
discussion. Numerical results confirmed the analytical investigations.

Keywords: linear inverse scattering; number of degrees of freedom; point spread function; near-field;
resolution; TSVD inversion; localization

1. Introduction

In the inverse electromagnetic scattering problem, the goal is to determine the permit-
tivity and permeability of an unknown scatterer and identify its shape and location. This is
achieved by using information about the scattered field, obtained through the illumination
of the scatterer with a known incident field. This problem is of great interest because of its
applications in various areas of physics and engineering; for instance, radar imaging [1],
synthetic-aperture radar (SAR) imaging [2,3], remote sensing [4,5], ground penetrating
radar (GPR) [6,7], civil engineering applications of GPR [8], geophysics application of
GPR [9], and medical imaging [10–12]. The near or far field can be considered in terms of
the favorite application.

When considering objects with significant differences in dielectric properties, such
as strong contrasts, or objects that are very large in terms of the wavelength, multiple
scattering becomes a significant factor to take into account. Therefore, the problem becomes
strongly non-linear and requires the use of iterative approaches for its solution. Then,
solution algorithms are based on the minimization of an error function. Stochastic methods
are applicable when the number of unknowns is very low due to their heavy computational
burden. On the other hand, iterative and gradient based approaches may converge to false
solutions, according to the choice of the starting point. Therefore, all these methods do not
allow consideration of the mathematical features of the operator to be inverted so as to
predict their ultimate results. On the contrary, linear approximations allow investigation
of their results and their limitations. To this end, it is common to consider the pertinent
so-called point spread function (PSF) in tomographic approaches in order to appreciate the
resolution of the algorithm. In this paper, we attempt to find a closed form expression for
the PSF in the case of single frequency excitation and to validate it numerically.

Linear scattering models also arise in iterative non-linear method such as the Born
iterative method (BIM) [13] and the distorted Born iterative (DBI) [14,15]. Therefore, an
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accurate analysis of the linear inverse scattering problem deserves attention in order to
understand the best expected performances in connection with the source and receiver
locations. Hereafter, we consider the Born approximation.

We need to introduce two mathematical tools for our analysis. When the operator
is linear and compact, the singular value decomposition (SVD) of the relevant operator
can be applied to introduce the number of degrees of freedom (NDF) and PSF. For the
operators of which we are interested in this paper, the compact operators whose singular
values exponentially decay to 0, when the singular values exhibit a step-like behavior,
NDF can then be estimated as the number of significant singular values before the knee or
exponential decay. This number can be assumed as an estimate of the maximum achievable
resolution, meaning the number of independent point-like scatterers that can be accurately
reconstructed. However, determining the NDF in closed form is often a difficult task,
except for specific geometries like linear, circumference, and circular geometries. For all
other cases, one can attempt to derive an estimate or upper bound for the NDF through
numerical means.

The NDF evaluation of scattered fields was addressed in [16] for strip geometries,
where it was found that the length of the strip matters in computing the NDF and the NDF
of two linear scatterers can be computed by the matrix approach which is equal to the
summation of the NDF of each strip when they are far apart. In [17] it was shown that the
NDF of a full 2D square source is equivalent to the NDF of a void square source, which is
provided by summing the NDF of each side of the square. An analytical evaluation of the
NDF of the radiated/scattered fields was provided in [18] for circumference geometries and
two concentric circumferences were considered to show that the NDF of two geometries
is equal to the NDF of the outer circumference in the inverse source. Whereas in inverse
scattering, the total NDF is the sum of each circumference.

The PSF represents the impulse response of the cascade formed by the operator and
its regularized inverse. It provides the impulse response of a linear imaging system to a
point-like object. Therefore, the width of its main lobe is related to the achievable resolution
by the inversion process. This means that the response produced by any object can be
represented as the convolution of the response due to a point-like scatterer with the spatial
variation of the object itself. Using this method makes it possible to quickly and reliably
reconstruct images of objects of good quality. The PSF is a fast and significant approach to
computing the achievable image quality of the objects.

In addition, it is feasible to represent the regularized solution to the inverse problem
using a truncated SVD (TSVD) by using an expansion in the right singular functions. Thus,
in the reconstruction, the truncation index allows excluding from the reconstruction the
components corresponding to small singular values, which eliminates the noise compo-
nents. The behavior of the exact PSF is related to the truncation index that can be adapted
in terms of the NDF, which means the unknown can be reconstructed reliably by an imag-
ing algorithm, even when there are uncertainties present in the data. Nevertheless, the
analytical form of the PSF is not always available when using TSVD inversion, and its
determination may require a numerical approach.

The PSF concept was used in [19] to perform holographic imaging of dielectric media.
In [20], the imaging resolutions of the time-reversal and back-projection algorithms were
compared by analyzing their PSFs with numerical studies, and it was shown that both algo-
rithms had the same imaging resolutions, whether in the free space or the layered media.

Earlier research in [21] presented an approximate evaluation of the resolution for strip
source/scattering geometries, assuming full data availability. The evaluation demonstrates
that the approximation can effectively predict the resolution. Furthermore, the resolution is
spatially invariant in the full-view case. The same analysis is available in [18] for circumfer-
ence source/scattering geometries. For the limited view case, a good approximation of the
resolution was evaluated in [22] for curve geometries and in [23] for the full 2D geometries,
and the studies found that a spatially variant of the resolution was achieved.
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This paper addresses the evaluation of the PSF of the scattered field to estimate the
achievable resolution for a single frequency and multi-view in the homogeneous medium
in the near zone. In fact, there is no analytical evaluation of the exact PSF, and it should
be determined numerically. To overcome these limitations, we propose an analytical
approximation of the exact PSF. Our analysis covers two cases: the full-view case, where the
incident field and observation ranges cover full angles, and the aspect-limited case, where
the incident field and observation ranges are limited to a certain range of angles. In this
analysis, we adopt a circumference geometry for the sensing system. While the analytical
estimation of the NDF is known in [23,24] for the far field, we extend this approach to
compute the NDF in the near field. We discuss how the NDF in both far and near fields is
equal by providing a comparison between them for each case. Numerical simulations are
provided for each case to confirm the analytical discussions. Finally, we show how to use
analytical discussions for a localization application.

In this paper, we focus on the linear approximation of the scattering equations for
dielectric objects in free space, specifically the Born approximation. However, the en-
tire approach and the results can also be extended to other linear approximations of
scattering. For instance, for a perfectly electric conducting object, the physical optics
(PO) approximation [25], arising from the radiation of equivalent approximate currents in
free space, provides a linear approximation of the scattering operator very similar to the
one considered hereafter. The PO approximation has been also extended to the scattering
of a strong dielectric object so that it can be also invoked in the remote sensing of the
Earth’s surface. In addition, we consider near field conditions, which are common in
subsurface prospection by ground penetrating radars. Finally, the observation and the
excitation domains are assumed to lay on an arc of the circumference, as it allows a closed
form evaluation of some of the functions relevant in the chosen approach. However, in
the aspect-limited case, a chord and circumference can approximate the arc. Therefore, the
results can be expected to hold approximately for linear domains as well.

The following is the structure of the paper. In Section 2, the problem statement
and the approximate evaluation of the resolution for a general scattering geometry are
presented. Section 3 provides various numerical examples to support the theoretical
discussions. Section 4 provides a numerical application of the theoretical discussions.
Finally, in Section 5, conclusions and discussions are provided.

2. Statement of the Problem

In this section, we first provide some mathematical preliminaries and notations used
in the following sections. Second, we recall the definition of the exact PSF and provide the
evaluation of the approximated PSF.

Figure 1 shows the general geometry of the problem in the near field. An unknown
scatterer is located in a homogeneous domain referred to as the investigation domain
(ID). The position vectors of the scattering object, the source point(transmitter), and the
observation point (receiver) are denoted by r = (ρ, φ), ri = (ri, θi), and rs = (rs, θs),
respectively, where ri and rs are constant. The incident field and observations angular
domains are supposed to be limited so that θi ∈ [α1, α2] and θs ∈ [γ1, γ2].

The scattered field is defined by

Es
(
rs, ri

)
=

x

ID

χ(r)H(2)
0
(

β
∣∣r− rs

∣∣)H(2)
0
(

β
∣∣r− ri

∣∣)dr = T (χ(r)) (1)

where H(2)
0 is the Hankel function of the second kind and zero-th order. χ(ρ, φ) and T are

contrast function and pertinent linear operator for the multi-view and single frequency
scattering configuration of our interest. χ(r) is equal to εs(r)− 1, where εs(r) is the relative
permittivity of the scatterer. We suppose that the scatterer is located in the free space as a
homogenous background. Furthermore, the wavenumber and wavelength are indicated by
β and λ, respectively.
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Figure 1. The general geometry of the problem.

Approximate Evaluation of the Resolution

The achievable resolution in the inverse scattering problem may be impacted by
factors such as the shape of the scattering geometry and the ranges of the incident field
and observation domains. To assess the performance of the reconstruction algorithm
and demonstrate its effectiveness in achieving resolution, the PSF concept is used. In
this subsection, to provide a clear view of the mathematical details leading to the main
analytical results of the paper, we present the individual steps as a numbered list.

1. The definition of the exact PSF. In the scatterer domain, the impulse response of an
imaging system to a point-like scatterer is defined by the PSF concept and can be
expressed by the cascade of the T −1, i.e., the regularized inverse operator of T and
the direct operator. The PSF is observed at (r) when the point-like scatterer is located
at
(
r0
)
. In other words, the response of the system to a Dirac delta function δ is the

PSF of the system. Mathematically, the exact PSF is defined by

PSF
(
r, r0

)
= T −1T δ

(
r− r0

)
(2)

Then, the SVD is applied to (1) because the T operator is linear and compact. Its
singular system consists of {vn, σn, un}, where un and vn are the singular functions, which
span the data and the scatterer contrast function spaces, respectively, and σn expresses
the singular values by arranging them under a decreasing order [26]. To define the TSVD
inversion [26], we can express (2) using the truncated completeness relation involving
singular functions vn. In this way, we can obtain the minimum-norm solution to the inverse
scattering problem requiring the projection of the actual contrast function onto the singular
function that possesses singular values that are not zero. Then, it can be shown as follows:

PSF
(
r, r0

)
=

N

∑
n=1

vn(r) v∗n
(
r0
)

(3)

where the symbol (*) denotes the conjunction operation. Equation (3) expresses that the
exact PSF depends on the number of retained singular values. The truncation index N is
related to the accuracy of the solution and can be adopted in terms of the NDF.

2. The introduction of the approximated PSF. To derive the closed-form expression of (3),
it is necessary to have information about the singular functions, which cannot be
calculated in closed form in general. However, according to [18,21,22], the adjoint
operator can approximate the inverse operator in (2) if the singular values of the
relevant operator exhibit a nearly constant behavior before the knee of its curve.
Therefore, if this condition is satisfied, we can substitute the inversion operator
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in (2) with the adjoint operator to build a good approximation of the PSF, which
can overcome the aforementioned limitation. The goal is to provide an analytical
evaluation of the approximated PSF to predict the resolution, while the approximated
P̃SF is defined as follows:

P̃SF
(
r, r0

)
= T +T δ

(
r− r0

)
(4)

3. The analytical evaluation of (4). The adjoint operator of (1) is provided by

T +Es =
∫ α1

α2

∫ γ1

γ2

ES
(
rs, ri

)
H(2)

0

∗(
β
∣∣r0 − rs

∣∣) H(2)
0

∗(
β
∣∣r0 − ri

∣∣) dθs dθi (5)

Then, the spectral theorem is applied to T +T , which is a compact self-adjoint operator.

T +T δ
(
r− r0

)
=

s
ID

[∫ α1
α2

∫ γ1
γ2

H(2)
0
(

β
∣∣r− rs

∣∣) H(2)
0
(

β
∣∣r− ri

∣∣) H(2)
0

∗(
β
∣∣r0 − rs

∣∣) H(2)
0

∗(
β
∣∣r0 − ri

∣∣) dθs dθi

]
dr

(6)

whose kernel is as below:

k
(
r, r0

)
= P̃SF

(
r, r0

)
=[∫ γ1

γ2
H(2)

0
(

β
∣∣r− rs

∣∣) H(2)
0

∗(
β
∣∣r0 − rs

∣∣) dθs .
∫ α1

α2
H(2)

0
(

β
∣∣r− ri

∣∣) H(2)
0

∗(
β
∣∣r0 − ri

∣∣) dθi

] (7)

4. The addition theorem for the Hankel functions. This is invoked as a series representation
as, for instance below:

H(2)
0
(

β
∣∣r− rs

∣∣) = ∑
l

Jl(βρ) H(2)
l (βrs) ejl(φ−θs) f or ρ < rs (8)

where Jn(·) is the Bessel function of the first kind and n-th order and H(2)
0 is the

Hankel function of the second kind and n-th order.

By using (8) four times and interchanging the integrals with the summations, (7)
becomes a four-fold summation, which can be factored as the product of two symmetrical
functions with different arguments:

P̃SF(ρ, ρ0, φ, φ0) = f (ρ, ρ0, φ, φ0, rs)·g(ρ, ρ0, φ, φ0, ri) =[∫ γ1
γ2

∑
l

Jl(βρ) H(2)
l (βrs) ejl(φ−θs) ∑

n
Jn(βρ0) H(2)

n
∗
(βrs) e−jn(φ0−θs) dθs

]
.[∫ α1

α2
∑
k

Jk(βρ) H(2)
k (βri) ejk(φ−θi) ∑

m
Jm(βρ0) H(2)

m
∗
(βri) e−jm(φo−θi) dθi

] (9)

f (ρ, ρ0, φ, φ0, rs) and g(ρ, ρ0, φ, φ0, ri) are concerned with the observation and incident
field, respectively.

5. Residual closed form integration. The f function can be written as a double summation:

f (ρ, ρ0, φ, φ0, rs) = ∑
l

al ∑
n

bln cn (10)

whose terms al , bln and cn are as follows:
al = Jl(βρ) H(2)

l (βrs) (a)
bln = ej(lφ−nφ0)

∫ γ2
γ1

ej(n−l)θs dθs (b)

cn = Jn(βρ0) H(2)
n
∗
(βrs) (c)

(11)
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By performing the simple closed form integration in (11)b, the computation of bln
gives the following:

bln = ej(lφ−nφ0) (γ2 − γ1)
(

e
1
2 j(n−l)(γ2+γ1)

)
sinc

( (n− l)(γ2 − γ1)

2
)

(12)

where sinc(x) = sin x/x.
At the same time, the g function can be written as (10):

g(ρ, ρ0, φ, φ0, ri) = ∑
k

ak ∑
m

bkm cm (13)

where ak, bkm and cm are now the following:
ak = Jk(βρ) H(2)

k (βri) (a)
bkm = ej(kφ−mφ0)

∫ α2
α1

ej(m−k)θi dθi (b)

cm = Jm(βρ0) H(2)
m
∗
(βri) (c)

(14)

By performing the simple closed form integration in (14)b, the computation of bkm
gives now the following:

bkm = ej(kφ−mφ0) (α2 − α1)
(

e
1
2 j(m−k)(α2+α1)

)
sinc

( (m− k)(α2 − α1)

2
)

(15)

6. Final result. We can rewrite explicitly Equation (9) as below:

P̃SF(ρ, ρ0, φ, φ0) =[
(γ2 − γ1)∑

l
Jl(βρ) H(2)

l (βrs) ·

∑
n

Jn(βρ0) H(2)
n
∗
(βrs)ej(lφ−nφ0)

(
e

1
2 j(n−l)(γ2+γ1)

)
sinc

(
(n−l)(γ2−γ1)

2

)]
·[

(α2 − α1)∑
k

Jk(βρ) H(2)
k (βri) ·

∑
m

Jm(βρ0) H(2)
m
∗
(βri)ej(kφ−mφ0)

(
e

1
2 j(m−k)(α2+α1)

)
sinc

(
(m−k)(α2−α1)

2

)]
(16)

thus, providing the analytical expression of the approximated P̃SF. The summations
can be safely truncated to [βmax(ρ, ρ0)], as [·] is the maximum integer, due to asymp-
totic exponentially decay of the Bessel functions for indices larger than its argument,
when ρ, ρ0 are smaller than rs, ri.

It should be noted that while the exact PSF depends on the truncation value of the
TSVD algorithm, which depends on the NDF of the problem, the P̃SF is independent of
it. Therefore, to assess the performance of the P̃SF, it is important to estimate the NDF
pertinent to the scattering geometry and use this information to truncate the SVD. This will
allow for a fair comparison between the approximate and exact PSFs. In the Appendix A, a
discussion is provided on how to estimate the NDF in the case of aspect limited data in the
near field.

3. Numerical Validation

This section provides numerical examples to validate the analytical discussions and
to demonstrate the effectiveness of the approximated PSF. Specifically, a circle ID with a
radius of a = 4λ is considered. As far as the numerical inversion of the integral Equation (1)
is concerned, in order to achieve a good approximation of the continuous operator, the
simple choice of a sufficiently polar dense grid to achieve a λ

10 step on both arc and radial
variables is adopted. The SVD of the resulting matrix equation is computed in the MATLAB
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environment. In this way, we may obtain the exact PSF by truncating the SVD to the exact
NDF.

In the following numerical examples, ri and rs are both equal to 5λ. Moreover, only the
main lobe of the PSF is considered to highlight its focusing properties, and the amplitudes
of both PSFs are normalized to 1.

In order to compute the NDF of the considered ID, we use the analytical result
provided in [23,24] for the far scattered field concerning the evaluation of the NDF for
the double Fourier transform operator. In fact, for far zone observation, the scattering
operator (1) can be cast as such by an appropriate change of variables form the angular
to the spectral ones. Then, a closed form value of the NDF is known in the literature and
employed here: it requires only to know the measure Σ of the ID and A of the spectral
domain area. In turn this depends on the ranges of excitation and observation angles.
Therefore, the NDF for the far scattered field is provided by the following:

NDF =
Σ A

(2π)2 (17)

where Σ = πa2 for the considered ID. More detailed information is available for computing
A in [23].

First, numerical examples are presented for the full-view case in Section 3.1. Then,
different examples are provided for the aspect-limited case in Section 3.2.

3.1. Full-View Case

In this subsection, we consider the full view case where the angular ranges of the
excitation and observation directions are ∆θ = 2π wide. This means that α1 and γ1 are
equal to −π, whereas α2 and γ2 are π.

First, we compare the NDF of both the far and near scattered field and compute them
numerically by referring to the pertinent far zone operator [23,24] and to (1), respectively.
Figure 2 provides a comparison of the behaviours of their normalized singular values. The
expected NDF of the far field from (17) is equal to NDF = 4π2a2/λ2 = 632, as A = π(2β)2

and the numerical results confirm that the NDF in the near field is equal to the NDF of the
far field. This result can be expected in virtue of the equivalence theorem, as for each source
the corresponding near scattered field has the same NDF of the corresponding far field.
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In order to assess the performance of the P̃SF in achieving the resolution, a comparison
is made between the normalized amplitude of the exact and approximated PSFs cut along
φ in Figure 3. The results are presented for three point-like scatterers when ρ = 3.05λ. The
findings demonstrate that the resolution remains space-invariant and confirm a significant
overlap between the P̃SF and the exact PSF in the main lobes. This reliable prediction of
the achievable resolution applies to every point-like scatterer.
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Figure 3. Comparison of the normalized amplitude of the actual (solid lines) and approximated
(dashed lines) PSFs for φ0 = 0 (red lines), φ0 = π/6 (blue lines), and φ0 = π/4 (green lines), when
ρ = 3.05λ.

Next, we compare both PSFs for ρ-cut when φ = π/2, as illustrated in Figure 4. As
observed, the space invariance is once again achieved and the approximated P̃SF also
performs well.
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Figure 4. Comparison of the normalized amplitude of the actual (solid lines) and approximated
(dashed lines) PSFs for ρ0 = 2.05λ (red lines), ρ0 = 2.55λ (blue lines), and ρ0 = 3.05λ (green lines),
when φ = π/2 .

3.2. Aspect-Limited Observation and Excitation

In this subsection, we consider the aspect limited case when the system is in re-
flection mode where the angular ranges of the excitation and observation directions are
∆θ = π/2 wide. This means that α1 and γ1 are equal to −π/4, while α2 and γ2 are
π/4. The spectral domain area A is computed in [23] for this angular range, which is
A = β2((∆θ − sin ∆θ)). Hence, the NDF of the far field can be analytically derived
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from (17), which is πa2((∆θ − sin ∆θ)/λ2). Figure 5 displays the behavior of the computed
singular values of the pertinent operators for the near and far fields. It is observed once
again that both NDFs are approximately the same, although their behaviors are different.
(See Appendix A for an explanation of this result for the present scenario).
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Figure 5. The behavior of the normalized singular values of the linearized inverse scattering in near
and far fields.

Figure 6 presents a comparison between the normalized amplitude of both PSFs along
φ-cut, achieved for different ρ values. We considered that three different point-like scatterers
are positioned within the angular domain. Along the φ, the PSF exhibits a narrow main
lobe width at the center of the angular range (indicated by the red lines). However, as the
point-like scatterer moves from the center towards the edge, the main lobe width increases.
Conversely, for the three points located well inside the ID (ρ = 2.05λ), the main lobe width
appears broader, and as ρ increases, the width becomes narrower. These results demonstrate
that the proposed approximation accurately predicts the achievable resolution for each
point-like scatterer.
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Figure 6. Comparison of the normalized amplitude of the actual (solid lines) and approximated
(dashed lines) PSFs for φ0 = 0 (red lines), φ0 = π/6 (blue lines), and φ0 = π/4 (green lines):
(a) ρ = 2.05λ, (b) ρ = 3.05λ.

The previous example is replicated here for φ0 = π/2 (red lines), φ0 = 5π/6 (blue
lines), and φ0 = π (green lines) along φ-cut for different ρ values, as shown in Figure 7.
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Once again, it is observed that φ, for the point-like scatterer located within the angular range,
the main lobe width of their respective PSFs varies as their positions change. However,
for φ0 = π/2, which lies outside the angular range, the width of its main lobe becomes
wide. Similarly, the width of the main lobe appears broad for three points situated at the
depth of ID (ρ = 2.05λ). Furthermore, increasing the ρ value results in a narrower main
lobe width. These results once again verify that the approximation is acceptable for every
point-like scatterer.
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Figure 7. Comparison of the normalized amplitude of the actual (solid lines) and approximated
(dashed lines) PSFs for φ0 = π/2 (red lines), φ0 = 5π/6 (blue lines), and φ0 = π (green lines).
(a): ρ = 2.05λ, (b): ρ = 3.05λ.

Figure 8 presents a comparison of two PSFs along the ρ-cut, aiming to evaluate the
performance of the P̃SF and observe the achievable resolution. In Figure 8a, the PSFs
exhibit a wide main lobe width when φ = 0, while in Figure 8b, the main lobe width
is smaller when φ = π/2. Along the ρ-cut, the resolution of the considered point-like
scatterers remains constant but it varies as φ changes. These results once again validate
the effectiveness of the proposed P̃SF, which closely overlaps with the exact PSF for each
point-like scatterer.
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4. Application to Localization of Point-Like Scatterers

This section provides a localization application related to the theoretical discussions.
The application concerns localizing some point-like scatterers. We consider a 2D full square
dielectric object as an ID, where x ∈ (−a, a) and y ∈ (−b, b), with a and b are equal to
5λ. The ranges [α1, α2], [γ1, γ2] and other parameters are the same as in the previous
section. As mentioned earlier, the NDF for this ID is not available in the close form for
the near scattered field. However, as discussed above and in the Appendix A, the NDF
can be expected to be approximately the same as the far scattered fields, which can be
analytically derived from (17), and is given by NDF = 4ab(∆θ − sin ∆θ)/λ2. Figure 9
shows the normalized behaviors of singular values of relevant operators in the near and far
fields and confirms that the NDF in the near field is approximately equal to the NDF in the
far field for the same angular ranges of the position of sources and receivers.
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Figure 9. The behaviors of the normalized singular values of the relevant operator for a 2D full square
in near and far fields.

To implement our proposed application, it is necessary to determine the achievable
resolution. For this purpose, a comparison between the exact and approximated PSFs
is now provided along both the x-cut and y-cut, as depicted in Figure 10. The results
reveal that the main lobe width of the PSF along the x-cut is wider compared to the width
of the main lobe in the y-cut. Consequently, the space-variant behaviour of the PSF is
only observed when the scatterer moves from one cut line to another. In other words, the
resolution remains unchanged along each cut. Additionally, the PSF results confirm that
the approximated PSF can work well. We define the resolution, denoted as R, as half of the
width of the main lobe of the PSF. Hence, the resolution Rx is determined as 3λ along the
x-cut, while the resolution Ry is measured as 0.66λ along the y-cut.

In this application, we consider the scenario where five point-like scatterers are posi-
tioned along an oblique line within the ID, which can mimic a localization problem along
the separation between media with very different permittivities so that the PO approxi-
mation holds as sometimes in remote sensing. The reconstructed result of these point-like
scatterers is displayed in Figure 11. Figure 11a validates that the considered scatterers
are effectively resolved and can be distinguished from each other when they are spaced
according to the resolution distance Ry. However, if the scatterers are located closer than
the resolution distance Ry, as depicted in Figure 11b, the reconstruction appears as two
merged points instead of separate individual points.
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Figure 10. Comparison of the normalized amplitude of the actual (solid lines) and approximated
(dashed lines) PSFs: (x-cut) for x0 = −λ (green lines), x0 = 0 (red lines), and x0 = 1.5λ (blue lines)
when y = 1.5λ, (y-cut) for y0 = −λ (green lines), y0 = 0 (red lines), and y0 = 1.5λ (blue lines) when
x = 1.5λ.
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Figure 11. The reconstructed image of five point-like scatterers when: (a) the distance between them
is equal to the resolution, (b) the distance between them is less than the resolution. The blue dots
indicate the position of the scatterers.

Since the resolution does not depend on the shape of the ID and as shown in the
previous example Rx = 3λ is large, therefore, we consider a rectangular geometry with
a = 10λ and b = 3λ to reconstruct five point-like scatterers located on an oblique line
within ID. In this case, the NDF is equal to 68 (which is computed by the equation provided
in the previous example). Figure 12 shows the reconstructed image of the considered
points. When the distance between points is equal to the resolution Rx = 3λ, they can
be resolved well, as shown in Figure 12a. On the other hand, if they are positioned at a
distance less than the resolution, they appear as a line rather than separable points, as
shown in Figure 12b.
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Figure 12. The reconstructed image of five point-like scatterers: (a) the distance between them is
equal to the resolution, (b) the distance between them is less than the resolution. The blue dots
indicate the position of the scatterers.

In conclusion, the defocusing effect of the PSF can be appreciated by the fact that
the correct reconstruction of the same number of point-like scatterers can be achieved
only when they are sufficiently spaced away, due to the width of the main lobe of the
PSF according to observation and source locations. Additionally, this effect varies along
different directions.

5. Conclusions and Discussion

The PSF evaluation of scattered fields was addressed to estimate the resolution in
the near field for both full view and aspect-limited cases. The main goal of evaluation
was to introduce an analytical approximated PSF, overcoming the limitations due to the
need of a numerical evaluation of the exact PSF. Circle geometry was considered as an ID.
We computed the NDF for near and far fields in both full and limited cases. The results
demonstrated that the NDF of the near field is approximately equal to that of the far field.
The specially invariant PSF is achieved along both φ and ρ for the full-view case, while the
resolution is different along each cut for the aspect-limited case. In the aspect-limited case,
the main lobe width of the PSF is wide along φ for a point-like scatterer located outside of
the angular range, whereas inside it is smaller. Additionally, the main lobe width of the
PSF is also large for horizontal ρ and small for vertical. We also showed that the NDF of a
full square is the same for both fields in the aspect-limited case, and the space-variance is
achieved only when the point-like scatterer moves from one side to the other.

The results confirmed that the approximation works well in both cases. An application
was introduced to reconstruct some point-like scatterers along an oblique line, which
may mimic a localization problem along a part of the Earth’s surface. It showed that the
considered scatterers can be reconstructed quite correctly if they are spaced in terms of the
resolution space. This occurs because the approximate evaluation by the adjoint operator
still allows quite well the prediction of the main lobe of the PSF. On the other side, in order
to examine the resolution of isolated point-like scatterers, taking into account the main lobe
is sufficient. Instead, when many point-like scatterers are present in the scattering scenario,
their reconstruction is affected by the sidelobes of the PSF and use of the approximated
one might be questionable. The proposed approximation may provide a valuable tool
to imaging systems for close remote sensing for the possibility of predicting achievable
resolution in advance by analytical means from the geometrical features of the sensing
system, once the source and observations ranges are assigned over circumferences in close
proximity to the investigation domain.
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Appendix A

Hereafter: we present an explanation about the evaluation of the NDF in the near
field when the source points and the observation points scan a limited angle over the
respective circumference geometry. We make use of some arguments in [27] to provide an
overestimate of the NDF of the scattered field in the near field, which is then linked to the
aspect-limited available data.

Let us first consider the far field case with a single impinging plane wave and a
circumference ID of radius a. In this circumstance, based on the Born approximation, the
scattered field coincides with the field radiated by the equivalent source provided by the
induced currents within the ID due to the presence of the scatterer. For this problem, the
pertinent analytical SVD is available [28], which provides 2N + 1, where N = [βa], for NDF
and Fourier harmonics as right singular functions. Consequently, the scattered field can be
represented by a finite Fourier series as follows:

Es(θs, θi) =
n

∑
n=−N

cn(θi) e−jnθs (A1)

At the same time, the finite Fourier series, being a periodic function, can be equivalently
converted into a sampling series as below:

Es(θs, θi) =
N

∑
n=−N

Es(θsn, θi) DN(θs − θsn) (A2)

where θsn = n(2π)/(2N + 1) is the n-th sample position and DN(θ) =
sin[(2N + 1)θ/2]/[(2N + 1) sin(θ/2)] is the Dirichlet sampling function of degree N.

By the reciprocity theorem Es(θsn, θi) = Es(θi, θsn), which means that each sample
can be viewed as the file scattered by the object in the θi direction when a plane wave
is impinging from the θsn direction. Therefore, the previous discussion can be repeated
leading to the following:

Es(θi, θsn) ∝
N

∑
m=−N

Es(θim, θsn ) DN(θi − θim) (A3)

Putting everything together the double finite series can be obtained as follows:

Es(θi, θsn) ∝
N

∑
n=−N

(
N

∑
m=−N

Es(θim, θsn ) DN(θi − θim)

)
DN(θs − θsn) (A4)

where the samples of the scattered field over the whole observation angles for all incidence
angles are involved. (Note that Es(θim, θsn) = Es(θsn, θim), again because of the reciprocity
theorem, so that only (2N + 1)2/2 samples are actually independent).

When we consider a limited angular observation domain, only the scattered field
samples belonging to that domain become relevant in representing the scattered field
as a rough estimate. Similarly, when the impinging plane waves travel from a limited
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angular set, only a limited number of scattered field samples are necessary to evaluate the
scattered field within the same angular domains. This suggests that a similar proportionality
argument holds for the NDF (indeed this is the case discussed in [23]), where the number
of necessary scattered field samples is proportional to the angular domains of observations
and incidence.

When we consider both the source and the observation points located over a circum-
ference in the near field, the previous discussion only needs to be adjusted in terms of the
SVD of the scattered field under a single excitation source. Once again, it coincides with the
field radiated by the equivalent source created by the induced currents within the ID, and
the corresponding SVD is analytically known. This yields 2N + 1, with N = [βa], NDF (if
the transmitters and receivers are a few wavelengths apart form the ID) and, again, Fourier
harmonics as right singular functions. Therefore, we can repeat the entire discussion re-
garding the sampling representation of the scattered field, and the same arguments about
the significance of a limited number of samples to roughly evaluate the scattered field over
the limited incident field and observation angular domains hold true. Consequently, it can
be expected that also the NDF of the problem scales with the available angular domains
when θi ∈ [α1, α2] and θs ∈ [γ1, γ2].
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