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Abstract: Deep-Learning-based (DL-based) approaches have achieved remarkable performance in
hyperspectral image (HSI) change detection (CD). Convolutional Neural Networks (CNNs) are
often employed to capture fine spatial features, but they do not effectively exploit the spectral
sequence information. Furthermore, existing Siamese-based networks ignore the interaction of
change information during feature extraction. To address this issue, we propose a novel architecture,
the Spectral–Temporal Transformer (STT), which processes the HSI CD task from a completely
sequential perspective. The STT concatenates feature embeddings in spectral order, establishing a
global spectrum–time-receptive field that can learn different representative features between two
bands regardless of spectral or temporal distance, thereby strengthening the learning of temporal
change information. Via the multi-head self-attention mechanism, the STT is capable of capturing
spectral–temporal features that are weighted and enriched with discriminative sequence information,
such as inter-spectral correlations, variations, and time dependency. We conducted experiments on
three HSI datasets, demonstrating the competitive performance of our proposed method. Specifically,
the overall accuracy of the STT outperforms the second-best method by 0.08%, 0.68%, and 0.99% on
the Farmland, Hermiston, and River datasets, respectively.

Keywords: hyperspectral image; change detection; spectral–temporal attention; transformer

1. Introduction

Recently, hyperspectral images (HSIs) have received remarkable interest as a result of
their numerous continuous spectral bands, large spectral range, and high spectral resolution.
This prominent spectral resolution enables more precise observations of land cover, making
HSIs invaluable resources for remote sensing change detection (CD). CD is the process
used to identify and analyze differences between images of the same area taken at different
times. This can be used for agricultural monitoring [1], resource exploration, land-change
monitoring, potential anomaly identification [2–4], and various other applications. With
the help of rich spectral information, HSI CD has the potential to identify finer changes.

Traditional CD methods for HSIs can be classified into three categories: (i) image
algebra-based methods; (ii) image transformation; and (iii) classification-based methods.
They obtain the similarities among HSI pixels by applying hand-crafted feature extraction
techniques. Specifically, image algebra-based methods employ algebraic techniques, such
as image difference [5] and image log ratio [6], to measure the difference in images and
further generate a change detection map. Change Vector Analysis (CVA) [7] is a classical
image algebra method that calculates the magnitude and direction between two pixels of
bi-temporal images. Later, many variants of the CVA method were developed, such as
Deep CVA (DCVA) [8] and Robust CVA (RCVA) [9], to improve detection performance.
DCVA employs a pretrained Convolutional Neural Network (CNN) to extract deep fea-
tures. To reduce spurious changes, RCVA accounts for pixel neighborhood effects. Image
algebra methods are fast and easy to implement because they directly perform mathe-
matical operations on the corresponding bands. Meanwhile, the simple operation makes
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them susceptible to imaging conditions and noise. Image-transformation-based methods
transfer temporal variants into a specific feature space to identify the changes. Principal
Component Analysis (PCA) [10] is utilized to reduce redundancy and noise within data
while simultaneously extracting essential information and characteristics from HSIs. Mul-
tivariate Alteration Detection (MAD) utilizes canonical correlation analysis to transform
the hyperspectral data into a new coordinate system to statistically detect changes [11].
Iterative Reweighted MAD (IR-MAD) [12] incorporates weights for each pixel based on
the chi-squared distribution at every iteration to enhance change detection performance.
By assigning appropriate weights, IR-MAD can effectively mitigate the influence of noisy
or outlier pixels. Hou et al. [13] proposed a tensor-based framework, Tensor Decomposi-
tion and Reconstruction Detector (TDRD), which uses tensor representation and Tucker
decomposition to extract high-level semantic information and remove the effects of irrel-
evant changes to improve accuracy. These image transformation methods are capable
of enhancing the discrimination between changed and unchanged features by reducing
dimension and noise. However, it is time-consuming to transform complicated images.
Classification-based methods [14,15] compare the classification results of bi-temporal im-
ages to generate “from-to” change detection results. Therefore, the detection results are
heavily dependent on the classification accuracy. In summary, these traditional methods
exploit shallow features to generate change maps, resulting in a lack of robustness across
different or complex scenes, and they do not easily select appropriate thresholds. In ad-
dition, these approaches do not consider the intrinsic connection between HSI bands and
ignore the physical meaning of continuous spectral signatures.

To overcome the constraints of traditional methods, recent research has focused on in-
tegrating Deep Learning (DL) techniques with a particular emphasis on CNNs as powerful
tools for HSI CD. Due to their ability to capture spatial semantic information effectively,
CNNs have made remarkable progress in the domains of computer vision (CV) [16–18]
and remote sensing [19–21]. Wang et al. [22] presented a two-dimensional (2D) CNN to
integrate local information and learn meaningful features from a subpixel-represented,
mixed-affinity matrix. With the help of CNN’s own structure, Saha et al. [23] extracted
low-level semantic features from bi-temporal images without any training. In [24,25], both
a one-dimensional (1D) CNN and a 2D CNN were used to explore spectral and spatial
information, respectively. Zhan et al. [26] employed a three-dimensional (3D) CNN to
extract tensor features and generate a change map with the similarity measurement of
tensor pairs. Ou et al. [27] proposed a band selection strategy to alleviate band redun-
dancy before feeding the difference image into a CNN-based framework. Wang et al. [28]
designed self-calibrated convolution to make full use of inter-spatial and inter-spectral
dependencies by heterogeneously exploiting convolutional filters. In [29], Zhao et al. ex-
tracted spatial–spectral features using a simplified autoencoder without requiring prior
information. Seydi et al. [30] employed multi-dimensional convolution and depth-wise
dilated convolution to extract different features. The above algorithms improved the accu-
racy of change detection by designing different network structures to effectively leverage
spatial information. However, they compare the characteristics of bi-temporal images using
difference [23,24,27] or concatenation [22,25,28–30] and are unable to learn temporal change
information well. This becomes a key factor restricting further improvements in change
detection accuracy.

Therefore, several researchers [31–33] introduced Recurrent Neural Networks (RNNs)
to extract change information, and Long Short-Term Memory (LSTM) is most often used to
overcome the problem of gradient vanishing. Lyu et al. [31] introduced RNNs to change
detection to learn a change rule with good transferability for the first time. In [32], convolu-
tional LSTM was employed to model temporal change information while maintaining the
spatial structure. Recurrent CNN (ReCNN) [34] also employs LSTM to capture the temporal
change information of change after exacting spatial features using a 2D CNN. Shi et al. [33]
used multipath convolutional LSTM to extract temporal–spatial–spectral features, and the
various hidden states of LSTM were combined to exploit multiscale features. Although
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the introduction of RNNs improves the utilization of time information, these methods still
extract the time dependency after extracting the features of bitemporal images. Moreover,
they lack consideration of the importance of different types of information.

Attention mechanisms can help deep learning models selectively focus on relevant
input features and suppress irrelevant ones, improving their ability to represent and process
complex input data. This can lead to improvements in various AI tasks such as natural
language processing (NLP) [35–37], and CV [38–41]. In HSI CD, attention mechanisms have
been incorporated into different methods and shown considerable potential to boost CD
performance. Gong et al. [42] incorporated spectral and spatial attention mechanisms to
selectively weight the various bands and regions in the input images for CD. Wang et al. [43]
introduced a simple attention mechanism to measure the weights of different features before
concatenating them. Huang et al. [44] integrated parallel spatial and spectral attention to
adaptively enhance the relevant global dependencies. Qu et al. [45] designed an attention
module to better capture the contextual relationships between different regions and spectral
bands, yielding more effective information transfer between different levels of feature maps.
Wang et al. [46] proposed a Siamese-based network that incorporated a Convolutional
Block Attention Module (CBAM) to adaptively reform the semantic features. In [47], an
improved CBAM module was used to emphasize meaningful information and suppress
irrelevant information during feature transformation. Qu et al. [48] introduced the graph
attention network to HSI CD for the first time, which leveraged the spatial–temporal joint
correlations to explore multiple features. In [49], cross-temporal attention was designed
to explore the temporal change information between bi-temporal features. Ou et al. [50]
performed attention operations on image patches of different scales at the same time so
that the central pixel to be detected in the fused feature map has a higher weight. The
Transformer [37] is a network built on the multi-head self-attention (MHSA) mechanism to
selectively attend to relevant information and disregard irrelevant input, allowing for it
to model long-range dependencies without considering the actual distance. Transformer
models have shown considerable potential for sequential data analysis. They have also been
successfully applied in the HSI CD task [51,52]. Ding et al. [51] employed the Transformer
encoders to capture spatial–temporal change information from the concatenated pixel
sequences. Wang et al. [52] used a temporal transformer to capture change information
from the spatial–spectral features extracted using the transformer-based Siamese network.
Although they achieved a good performance, [51] neglects the exploitation of spectral
information, and the network structure of [52] is still based on the Siamese network.
It should be noted that the method proposed in this paper has a different perspective
from the Transformer used in [52]. We constructed a single-branch network to extract
spectral and temporal information simultaneously. Although the aforementioned DL-based
algorithms have demonstrated favorable change detection outcomes, they still have the
following limitations:

(1) HSIs consist of a number of spectral bands that afford detailed spectral information.
CNNs are vector-based methods that process input data as collections of pixel vec-
tors. Consequently, due to this narrow perception, CNNs are deemed unsuitable for
effectively processing the rich spectral information in HSIs.

(2) CNN-based methods are designed to extract features from local regions of an image
and typically perform poorly when capturing long-distance sequential dependencies.
This is because CNNs lack the ability to model nonlinear relationships between distant
inputs and require larger receptive fields to capture such relationships.

(3) The identification of subtle changes in HSIs is heavily reliant on the temporal depen-
dency between bi-temporal features. The above methods, which employ Siamese-
based networks to extract bi-temporal image features independently, are insufficient
when addressing the regions of change and exploiting the temporal dependency
of HSIs.

Hyperspectral data can be viewed as a collection of spectral sequences in spectral
space [53], and each position on the image corresponds to a temporal variation. This
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motivates us to explore the representation of hyperspectral pixels and their temporal
correlation from a sequential perspective. The Transformer can be adapted to address HSI
CD problems by utilizing its long-range modeling ability to characterize the correlation
and variability between different spectral bands, as well as the temporal dependency.
In this context, we proposed a novel Spectral–Temporal Transformer (STT) for HSI CD. By
concatenating the feature embeddings of each image in spectral order, the STT effectively
extracts and integrates rich sequence information of the spectrum and time space. With the
help of the MHSA mechanism, spectral and temporal information is refined to obtain fused
weighted features, which enhances the utilization of temporal information and makes the
change features more discriminative.

The main contributions of this paper are summarized as follows:

(1) The STT is designed with a global spectrum–time-receptive field, enabling the joint
capture of spectral information and temporal dependency. By concatenating the
feature embeddings in spectral order, the STT learns different representative features
between two bands, regardless of spectral or temporal distance, strengthening the
utilization of temporal change information.

(2) We propose a Spectral–Temporal Transformer (STT) for HSI CD, which is the first time
the HSI CD task is processed from a completely sequence-based perspective. This
enables us to adaptively capture the discriminative sequential properties, e.g., the
correlation and variability between different spectral bands and temporal dependency.

The remainder of this paper is organized as follows: Section 2 elaborates on the
proposed Spectral–Temporal Transformer (STT) method. Section 3 presents the comparative
outcomes of various algorithms on three HSI CD datasets. In Section 4, there is a discussion
of the entire paper. Finally, Section 5 provides conclusive remarks.

2. Proposed Method

This section commences with a concise review of the vanilla Transformer architecture,
following which we provide a detailed illustration of the structure of our proposed STT
method. The overview of our proposed architecture is depicted in Figure 1.

Spectral
Signatures T1 HSI T2 HSI

...

... ...

Spectral bands (from 1 to C ) of T1 Spectral bands (from 1 to C ) of T2

...

Linear Projection of Locally Neighboring Spectral Bands

Group-wise Spectral 
Embedding (GSE)

Transformer Encoders × L

Position Embedding

...0 1 2 3 4 5

MLP HeadDetection 
Results

Embedded Spectrum

c

(2)

(1)

(1): Group-wise Spectral Embedding
(2): Position Embedding
     : Concatenatec

2n

Figure 1. The structure of our proposed STT, which processes the HSI CD task from a completely
sequential perspective.
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2.1. Vanilla Transformer

The Transformer architecture was originally developed to address NLP tasks, and
has demonstrated an exceptional performance by capturing correlations between arbitrary
positions throughout the entire sequence. Due to its powerful architecture, Transformer
has been explored in CV, resulting in the development of the Vision Transformer (ViT). This
novel architecture has demonstrated a superior performance compared to state-of-the-art
(SOTA) CNN-based models in a variety of vision-related tasks. This provides new insights,
inspiration, and creative opportunities in the field of vision-related tasks. Subsequently,
we will explain the elegantly structured architecture of the vanilla Transformer in the
following context.

In general, a standard Transformer module contains the following parts: MHSA block,
layer normalization (LN), Feed-Forward Network (FFN), and residual connections. The MHSA
block can effectively capture various pieces of long-range contextual information by leverag-
ing the SA mechanism. The FFN primarily introduces nonlinearity into the model. The MHSA
module conducts multiple parallel attention operations, and subsequently concatenates and
projects the resulting outputs to obtain the final values.

MultiHead = Concat(head1, head2, . . . , headh)WO (1)

where headi is the i-th head of the multi-head attention, WO represents the learned parame-
ters of the linear projection layer, and Concat represents the concatenation operation. Each
headi is computed as:

headi = Attention(Qi, Ki, Vi) (2)

where Qi, Ki, and Vi are matrices representing the queries, keys, and values of headi, respec-
tively. The calculation process of Qi, Ki, and Vi can be described using the following formula:

Qi, Ki, Vi = EWQ
i , EWK

i , EWV
i (3)

where WQ ∈ Rd×d/h, WK ∈ Rd×d/h, and WV ∈ Rd×d/h are the learned parameters.
The scaled dot-product attention mechanism [37] is generally utilized to calculate the

attention score.
Attention(Q, K, V) = softmax(

QKT
√

dk
)V (4)

where dk is the dimension of the keys. The MHSA mechanism employs different attention
heads to learn distinct attention patterns that attend to intrinsic features from diverse
representation subspaces across varying bands of the concatenated spectral embedding.

The FFN module is utilized further to transform the learned features of all attention
heads. This module comprises two linear transformations separated by a Gaussian Error
Linear Unit (GELU) activation function.

FFN(E) = GELU(EW1)W2 (5)

The parameters of the linear transformations remain consistent across different posi-
tions, but they vary from layer to layer.

In addition, the data are normalized by layer normalization. To handle the challenge of
vanishing gradients, residual connections are incorporated into each MHSA and FFN block.

2.2. Spectral–Temporal Transformer

The structure of our STT is presented in Figure 1. To efficiently capture spectral–
temporal features, our proposed STT mainly consists of group-wise spectral embedding,
linear projection, transformer encoders with an efficient MHSA, and an MLP head for final
change detection.

2.2.1. Global Spectral–Temporal Receptive Filed

Spectral sequence and time sequence attributes are crucial for accurate HSI CD, en-
abling the identification of subtle changes over time and heightening the effectiveness of
change detection models. In contrast to using image patches as input, our approach utilizes
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Group-wise Spectral Embedding (GSE) [54] to leverage the local spectral information. As
shown in Figure 2, given an image cube Pt ∈ RC×h×w with spectral bands of C and spatial
size of h× w in Tt(t = 1, 2) HSI, N neighboring bands can be sequentially selected to form
local spectral groups with each band as the center.

P
′
G = f (P) = [P1, . . . , PQ, . . . , PC] (6)

where P
′
G ∈ RC×N×h×w is the local spectral groups, f () is the function that generates

the overlapping groups of bands, and PQ ∈ RN×h×w represents the Q-th local spectral
group, with the number of neighboring bands being N. Afterwards, the bands in each
local spectral group are separately flattened into a sequence to obtain the sequence form
PG ∈ RC×Nhw of the local spectral groups.

1 2 3 4 5 C-1 CC-2

. . .

C 1 2 1 2 3 2 3 4 1C-1 C

. . .

Spectral bands of an image cube (from 1 to C)

P 1 P 2 P C
Local spectral group

w

h

w

h

Figure 2. The illustration of local spectral group, where the number of bands is C and the number of
neighboring bands N is 3.

Then, the spectral groups of bi-temporal images are concatenated along the spectral
dimension and linearly transformed to generate the embedded features.

EG = [P1,G; P2,G]W (7)

where W ∈ RNhw×d and EG ∈ R2C×d with the feature dimension of d.
Our method involves the concatenation of bi-temporal image data along the spectral

dimension to establish a global spectrum–time receptive field. Our proposed STT allows
for the simultaneous exploration of both spectral information and temporal dependencies.
By concatenating feature embeddings in the spectral dimension, the SST can learn the
relationship and difference between any two bands regardless of their spectral and temporal
distances, which strengthens the utilization of temporal information. Moreover, this allows
for the STT to extract spectral features guided by temporal change information, enhancing
the feature discrimination.

Before feeding the embedded features into the transformer encoders, we add position
encoding to the sequences.

E = [CLS; EG] + S (8)

where CLS and S = (s0, s1, . . . , sC, s1, . . . , sC) denote the class token and positional encod-
ing, respectively. The learned encoding is capable of encoding information related to the
absolute or relative position within the spectrum-time domain. This position information
can be utilized to direct transformers towards effectively leveraging change information
pertaining to the spectrum and time domains.
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2.2.2. Efficient Multi-Head Self-Attention Block

The time complexity of the SA mechanism used in transformers is O(n2 × d), where n
is the length of the input sequence and d is the dimension of feature embedding. The com-
putational intensity of this mechanism is due to the dot products and softmax operations,
which dictate an individual pairwise computation for each position within the input se-
quence. The computational cost may be prohibitive for large values of n or d. Researchers
have developed several methods to mitigate this issue to reduce the complexity of the
self-attention mechanism. Downsampling is an effective technique for reducing the compu-
tational complexity of Transformer models by decreasing the resolution of feature maps.
However, the HSI consists of numerous bands, with each band carrying important in-
formation. Consequently, directly reducing the number of spectral bands may lead to a
notable loss of important spectral information. Wang et al. [55] designed an efficient MHSA
(EMHSA) block to ease the computational pressure when extracting spectral features
using transformers.

The introduced EMHSA block is illustrated in Figure 3b, which provides a detailed
overview of its specific components. This block operates on an input sequence X with a
sequence length (spectral bands) of n (where n = 2C) and a feature-embedding dimension
of d. Query (Q) is generated through a linear projection layer, as shown in Equation (3).
Before computing the Key (K) and Value (V) components, a 1D convolutional layer is
applied to cut down the length of the input sequence.

Ki, Vi = Conv(E)WK
i , Conv(E)WV

i (9)

where Conv denotes the 1D convolutional layer. The sequence length is controlled by setting
different stride sizes s called the reduction ratio, which determines the number of overlaps
between adjacent spectral bands that the convolutional kernel processes. Following the
initial 1D convolutional layer, the quantity of bands (sequence length) is diminished from
n to ns =

n
s . Then, the improved attention distribution with a size of h× n× ns is yielded

by the K and V components. Compared to the attention distribution of h× n× n in vanilla
self-attention, the reduction in sequence length significantly reduces the computational
cost of the attention mechanism. Moreover, a 2D depth-wise convolution layer is utilized
to enhance the feature representations. In conclusion, the EMHSA mechanism in this paper
can be represented as follows:

EMHSA(Q, K, V) = softmax(DWConv(
QKT
√

dk
))V (10)

where DWConv denotes the 2D depth-wise convolutional layer. As for the remaining
operations in EMHSA, they are all the same as the vanilla MHSA mechanism. The compu-
tational loads and memory costs are greatly reduced by the efficient self-attention compared
to the vanilla MHSA block.

Utilizing the MHSA mechanism, the transform encoders simultaneously focus on
varying information across distinct representation subspaces at different bands. This
approach effectively leverages the spectral and temporal features within the embedded
sequence from a completely sequence-based perspective. This allows us to adaptively
capture discriminative sequential properties, such as the correlation and variability between
different spectral bands, as well as temporal dependency.

Finally, the CLS token originating from the transformer encoders is fed into the Multi-
Layer Perceptron (MLP) Head to produce the final change map. It is notable that the
detection result of each CLS token represents whether the central pixel of the image cube
has changed.



Remote Sens. 2023, 15, 3561 8 of 20

MatMul & Scale

DWConv & SoftMax

MatMul

MatMul & Scale

DWConv & SoftMax

MatMul

Q V

LinearLinearLinear

1D CNN

ns × dn × d

n × d

K

h

h × n × dh h × ns × dh h × ns × dh

h × n × ns

h × n × ns

Linear

n × d

X: n × d

MatMul & Scale

DWConv & SoftMax

MatMul

MatMul & Scale

SoftMax

MatMul

Q V

LinearLinearLinear

n × dn × d

n × d

K

h

h × n × dh h × n × dh h × n × dh

h × n × n 

h × n × n 

Linear

n × d

X: n × d

n × d

(a)

MatMul & Scale

DWConv & SoftMax

MatMul

MatMul & Scale

DWConv & SoftMax

MatMul

Q V

LinearLinearLinear

1D CNN

ns × dn × d

n × d

K

h

h × n × dh h × ns × dh h × ns × dh

h × n × ns

h × n × ns

Linear

n × d

X: n × d

MatMul & Scale

DWConv & SoftMax

MatMul

MatMul & Scale

DWConv & SoftMax

MatMul

Q V

LinearLinearLinear

n × dn × d

n × d

K

h

h × n × dh h × n × dh h × n × dh

h × n × n 

h × n × n 

Linear

n × d

X: n × d

n × d

(b)

Figure 3. The illustration of (a) the vanilla self-attention block and (b) the efficient multi-head
self-attention block.

2.3. Loss Function

The Binary Cross-Entropy (BCE) loss function is widely used in change detection,
given its ability to solve binary classification problems. The change detection task involves
determining whether each pixel in one image is the same as the corresponding pixel in the
other, which can be achieved using binary classification algorithms. Consequently, the BCE
loss provides a natural optimization framework for this task.

BCE(ŷ, y) = −[y · log(ŷ) + (1− y) · log(1− ŷ)] (11)

where ŷ is the predicted probability and y is the ground truth label of the given sample.

3. Results

This section begins with an introduction to three HSI CD datasets, along with details
on the evaluation measures and implementation. Subsequently, experiments are conducted
to assess the efficiency of the proposed Spectral–Temporal Transformer (STT) method.

3.1. Data Description

All the datasets used in this study are collocated by the Earth Observing-1 (EO-1)
Hyperion sensor, and the detailed descriptions are shown as follows:

3.1.1. Farmland

The first dataset, Farmland, is shown in Figure 4. It covers a region of farmland
located in Yancheng, Jiangsu Province, China. The images in this dataset were acquired
on 3 May 2006 and 23 April 2007, respectively. The spatial size of the two images is
420 × 140 pixels. After band removal, the image retains 154 bands for change detection.
Notably, the main change in this dataset is the extent of farmland.
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(a) (b) (c)

Figure 4. Farmland dataset. (a) 3 May 2006; (b) 23 April 2006; (c) Ground Truth. (Changed: white,
unchanged: black).

3.1.2. Hermiston

The second dataset, Hermiston, is shown in Figure 5. The dataset used in this study
includes two HSIs of an irrigated agricultural field located in Hermiston City, OR, USA.
The images were acquired on 1 May 2004 and 8 May 2007, respectively, with a resolution of
307 × 241 pixels and comprising 154 spectral bands. In this scene, the main changes are
farmland land cover and the edge of the river.

(a) (b) (c)

Figure 5. Hermiston dataset. (a) 1 May 2004; (b) 8 May 2007; (c) Ground Truth. (Changed: white,
unchanged: black).

3.1.3. River

The third dataset, River, is displayed in Figure 6. The River dataset was acquired in
Jiangsu Province, China, on 3 May 2013 and 31 December 2013, respectively. The dataset
contains two HSIs with a size of 463 × 241 pixels and retains 198 spectral bands after noisy
band removal. The main type of change is the disappearance of the substance in the river.
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(a) (b) (c)

Figure 6. River dataset. (a) 3 May 2013; (b) 31 December 2013; (c) Ground Truth. (Changed: white,
unchanged: black).

3.2. Experimental Settings
3.2.1. Evaluation Metrics

For a quantitative assessment of the three hyperspectral change detection datasets,
the Overall Accuracy (OA) and the Kappa coefficient are adopted to evaluate detection
performance. The Kappa coefficient can measure whether the model prediction results
are consistent with the actual change results. The closer the value is to 1, the better the
consistency of the model. In their calculation, four indexes: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN), are first counted by the
confusion matrix of the detection results. Formally,

OA =
TP + TN

TP + TN + FN + FP
(12)

Kappa =
OA− pe

1− pe
(13)

pe =
(TP× TN) + (TP× TN) + (TP× TN) + (TP× TN)

(TP + FP + TN + FN)2 (14)

3.2.2. Comparative Methods

The following widely used or SOTA methods are compared with the proposed STT approach.

(1) CVA [7] is a classical method for CD that measures the differences in each band to
detect the change regions.

(2) PCA–CVA [10] employs principal component analysis to maximize the change infor-
mation, and then CVA is used to detect the change regions.

(3) TDRD [13] is a tensor-based framework that exploits the high-level semantic infor-
mation of hyperspectral data by tensor decomposition and reconstruction.

(4) Untrained CNN (UTCNN) [23] extracts low-level semantic features with the help of
CNN’s own structure, which is not trained.

(5) Recurrent 3D Fully Convolutional Network (Re3FCN) [32] combines a 3D convolu-
tional layer and a ConvLSTM layer to model the temporal change information while
maintaining the spatial structure.
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(6) ReCNN [34] combines the strengths of both CNN and RNN to extract fused fea-
tures from bi-temporal images. To expand the receptive field, dilated convolution
is employed.

(7) Cross-temporal interaction Symmetric Attention Network (CSANet) [49] designs
an attention-enhanced symmetric network that employs cross-temporal attention to
strengthen the change information obtained from different temporal features.

(8) SST–Former [52] is a Transformer-based model that sequentially extracts the spatial,
spectral, and temporal information of HSIs for CD.

3.2.3. Implementation Details

Our network is implemented using Pytorch on a single NVIDIA GeForce GTX 1660S
GPU. We used a batch size of 64 with the Adam optimizer to train the network. The initial
learning rate was set to 1× 10−3, decaying with a γ factor of 0.9 every ten epochs. Some of
the optimal experimental parameters vary on different datasets, so we summarize them in
Table 1. The dimensionality of the spectrum embeddings is 64.

Table 1. The experimental parameters for the three datasets.

Patches Layer Head Training Epochs

Farmland 5 4 4 150
Hermiston 5 4 4 150

River 3 4 2 100

3.3. Experimental Results
3.3.1. Results of Farmland Dataset

Figure 7 presents the visual observations of the Farmland dataset. Obviously, the
dividing boundaries between farmlands at the top of the images are falsely detected as
changed regions for CVA. Though PCA–CVA, TDRD, and UTCNN have better visual
observations, they still have many missed detections in the lower middle area. Moreover,
the boundaries of the changed regions are glued together for TDRD and UTCNN. Because
of the difficulty extracting discriminative features without labeled samples, these unsuper-
vised methods tend to have a lower accuracy than other methods. The supervised methods
have fewer misclassified pixels, and our proposed method even maintains the change
region’s edges well. As reported in Table 2, all the unsupervised methods yield OA lower
than 90%, while the supervised methods achieve higher OA and Kappa values. Compared
to CVA, PCA–CVA reduces data redundancy and noise, TDRD increases the utilization
of spatial and temporal information, and UTCNN extracts deep features, which makes
their performance better than CVA. It is notable that although the OA of PCA–CVA, TDRD,
and UTCNN are similar, the Kappa of PCA–CVA is smaller than the latter two, indicating
poor consistency. The ReCNN method, which solely employs 2D convolutions to extract
spatial features, exhibits the poorest performance among all supervised methods. While
Re3FCN enhances the utilization of spatial and spectral information through 3D convolu-
tions, CSANet employs attention mechanisms to improve the use of temporal information,
resulting in a superior performance. Although SST–Former incorporates global modeling
capabilities through the Transformer, it is still based on the Siamese network, so it does not
achieve satisfactory results. Its Kappa does not exceed 0.90, making it significantly worse
than supervised methods other than ReCNN. Our proposed STT has the best detection
performance, with an OA of 96.56% and Kappa of 0.9209, showing that the STT with
the global spectrum–time receptive-field extracts joint weighted features, improving the
utilization of temporal change information.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Detection results for Farmland dataset. (a) CVA; (b) PCA; (c) TDRD; (d) UTCNN;
(e) Re3FCN; (f) ReCNN; (g) CSANet; (h) SST–Former; (i) STT; (j) Ground Truth. (Changed: white,
unchanged: black).

Table 2. Quantitative change detection results on Farmland dataset.

CVA PCA–CVA TDRD UTCNN Re3FCN ReCNN CSANet SST–Former Proposed

OA 0.8749 0.8827 0.8847 0.8859 0.9626 0.9496 0.9644 0.9523 0.9652
Kappa 0.6998 0.7178 0.7309 0.7344 0.9130 0.8822 0.9166 0.8896 0.9188

3.3.2. Results of Hermiston Dataset

The detection results on the Hermiston dataset are displayed in Figure 8 and Table 3.
The major changes detected in this dataset occurred in the farmland areas and the edge
of the river. As shown in Figure 8a–d, many changed regions cannot be detected by the
unsupervised methods. PCA–CVA performs slightly worse than CVA, with OA and Kappa
lower by 0.47% and 0.0185, respectively, which also reflects the lack of robustness of these
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traditional methods. UTCNN is a neural network-based approach, but it scores the worst
among all the compared methods because it is not trained with any prior information.
Although the visual performance of Re3FCN and ReCNN is very close, since they are both
based on CNN and RNN, ReCNN is significantly better than Re3FCN on OA and Kappa.
CSANet cannot detect the river’s edge, but its quantitative performance is relatively ideal,
0.52% higher than ReCNN in OA and 0.0164 in Kappa. This also confirms the importance
of attention mechanisms. SST–Former obtains the second-best performance because it
fully exploits spectral information but lacks the interaction of temporal information during
feature extraction. Our proposed STT method achieves the best results among the compared
methods, with the fewest missed or false detections. This is particularly evident in the
upper right area of the hyperspectral images, where the changes are more complex and
difficult to detect. By adaptively fusing the discriminative information of different bands,
the STT achieves an OA of 96.91% and a Kappa of 0.9101, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Detection results for Hermiston dataset. (a) CVA; (b) PCA; (c) TDRD; (d) UTCNN;
(e) Re3FCN; (f) ReCNN; (g) CSANet; (h) SST–Former; (i) STT; (j) Ground Truth. (Changed: white,
unchanged: black).

Table 3. Quantitative change detection results on Hermiston dataset.

CVA PCA–CVA TDRD UTCNN Re3FCN ReCNN CSANet SST–Former Proposed

OA 0.9200 0.9153 0.9285 0.9026 0.9370 0.9502 0.9557 0.9635 0.9703
Kappa 0.7410 0.7225 0.7778 0.6855 0.8114 0.8536 0.8700 0.8935 0.9136

3.3.3. Results of River Dataset

Figure 9 and Table 4 detail the comparison results for the River dataset. Based on a
thorough analysis of all the visual and quantitative results, it can be concluded that the
STT exhibits the best detection results among all the tested approaches. Specifically, the
results obtained by UTCNN show that the changing regions are almost entirely connected,
yielding the worst OA and Kappa. This also reflects the inadequacy of untrained neural
networks in extracting discriminative features. PCA–CVA yields a higher OA and Kappa
than CVA; because of dimension reduction, PCA–CVA removes more redundant infor-
mation and noise. While the OA of PCA–CVA is lower than that of TDRD, its Kappa is
slightly higher, indicating that PCA–CVA exhibits better consistency than TDRD. Among
all unsupervised methods, TDRD yields the best results, even surpassing the performance
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of some supervised approaches, e.g., its OA and Kappa exceed ReCNN by 0.27% and 0.0346,
respectively. These findings suggest that the River dataset has more complicated scenes
than the Farmland and Hermiston datasets. Therefore, at the current ratio of samples,
ReCNN and CSANet struggle to fit the training data well and exhibit poor learning capa-
bilities. SST–Former produces the second-best result among all results but still lags behind
our proposed method by a large margin, and its OA and Kappa are 0.99% and 0.0633 lower
than ours, respectively. Our proposed STT earns the best results on all evaluation metrics,
including an OA of 97.74% and a Kappa coefficient of 0.8493. The results indicate that our
proposed STT is better-suited to mining the spectral sequence properties of hyperspectral
data on datasets with more spectral bands.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Detection results for River dataset. (a) CVA; (b) PCA; (c) TDRD; (d) UTCNN; (e) Re3FCN;
(f) ReCNN; (g) CSANet; (h) SST–Former; (i) STT; (j) Ground Truth. (Changed: white, unchanged: black).

Table 4. Quantitative change detection results on River dataset.

CVA PCA–CVA TDRD UTCNN Re3FCN ReCNN CSANet SST–Former Proposed

OA 0.9267 0.9517 0.9615 0.8848 0.9626 0.9588 0.9592 0.9675 0.9774
Kappa 0.6575 0.7477 0.7475 0.4946 0.7381 0.7129 0.7170 0.7860 0.8493

3.4. Parameter Sensitivity Analysis
3.4.1. The Number of Neighboring Bands

The number of neighboring bands determines how many local spectral embeddings
are utilized to facilitate feature extraction. The model’s performance is analyzed through
verification experiments, wherein the number of neighboring bands varies between 1 and 9.
As observed in Table 5, an increased number of neighboring bands proves advantageous in



Remote Sens. 2023, 15, 3561 15 of 20

excavating subtle spectral discrepancies, thus significantly improving the detection accu-
racy. However, too many neighbors will introduce more noise and redundant information,
causing the model to deteriorate. The optimal scaling must ensure adequate spectral texture
while simultaneously avoiding excessive noise interference. The results indicate that the
optimal model performance on the Farmland and Hermiston datasets is obtained when the
number of neighboring bands is 5. Similarly, although the best results on the River dataset
are achieved when the number of neighboring bands is 7, the difference in performance
compared to when the number of neighboring bands is 5 is not significant. Moreover, as
selecting the former significantly increases memory consumption, opting for 5 neighboring
bands is a more cost-effective decision.

Table 5. Change detection results of STT in different numbers of neighboring bands.

Dataset Metric
The Number of Neighboring Bands

1 3 5 7 9

Farmland
OA 0.9637 0.9645 0.9652 0.9618 0.9612

Kappa 0.9158 0.9178 0.9188 0.9115 0.9103

Hermiston
OA 0.9696 0.9676 0.9703 0.9677 0.9678

Kappa 0.9126 0.9070 0.9136 0.9072 0.9070

River
OA 0.9761 0.9748 0.9774 0.9778 0.9727

Kappa 0.8425 0.8445 0.8493 0.8556 0.8181

3.4.2. The Reduction Ratio of Efficient Self-Attention Design

Determining an appropriate ratio s is very important to strike a balance between model
accuracy and computational efficiency. We investigate the effectiveness of the EMHSA
block and the suitable choices for the reduction ratio for the spectral–temporal transformer.
As presented in Figure 10, the structure with the EMHSA block outperforms vanilla MHSA
in the STT. This can be attributed to the 1D convolution inthe EMHSA block, which enhances
the utilization of local information while simultaneously mitigating redundancy amidst
different bands of hyperspectral data. Then, Figure 10 delves deeper into the investigation
of the requirement and reduction ratio for diminishing the sequence length. Regarding the
Farmland and Hermiston datasets, the optimal detection outcomes are attained when s = 2,
surpassing the vanilla Transformer’s OA and Kappa, respectively. This can be attributed
to the efficacy of the EMHSA mechanism in eliminating band redundancy and noise. As
for the River dataset, both s = 2 and s = 4 yield satisfactory results. This can be explained
by the fact that the River dataset has a larger number of bands, resulting in increased
redundancy. Nonetheless, while the above results corroborate the efficacy of sequence length
reductions, an excessively large s may lead to diminished model representation abilities and,
consequently, worse change detection results.
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0.97

0.97

0.98

0.98

vanilla 1 2 4 8

A
cc

ur
ac

y

Reduction Ratio
Farmland Hermiston River

Figure 10. Accuracy comparison among different reduction ratios of efficient self-attention design.
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3.4.3. The Number of Training Samples

To comprehensively analyze the impact of varied training sample sizes on detection
performance, we employ several supervised methods to test the detection results on the
Hermiston and River datasets. Specifically, we train Re3FCN, ReCNN, CSANet, SST–
Former, and STT models using labeled samples of 1%, 3%, 5%, 10%, and 20% in strata
while keeping the samples consistent across all the methods. As presented in Figure 11, our
proposed STT outperforms other methods across various training data sizes, only slightly
lower than SST–Former when the training ratio is 1% on the River dataset. The reason
is that the proposed STT with a global spectrum–time receptive field takes advantage of
the temporal dependency and adaptively fuses the discriminative information of different
bands, capable of learning the subtle change features. It is notable that the OA of the other
CNN-based methods decreases significantly as the training sample size reduces, while the
transformer-based methods have better robustness. However, in contrast to the STT, the
performance of SST–Former does not exhibit notable improvements as the ratio of training
data increases. This observation highlights that our proposed STT exhibits a superior
generalization performance, as it is not merely memorizing the examples but learning the
general patterns.
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Figure 11. Accuracy comparison among different training size on (a) Hermiston dataset and
(b) River dataset.

3.5. Ablation Experiments

To illustrate the effectiveness of group-wise spectral embedding and efficient multi-
head self-attention, we perform ablation experiments on three datasets.

3.5.1. Group-Wise Spectral Embedding

GSE allows for us to leverage the local spectral information. As shown in Table 6,
Model (1) achieves the worst performance for all the datasets, especially the Farmland
dataset. The OA and Kappa of Model (2) with GSE are improved compared to Model (1).
Model (4) further improves the detection performance with the addition of GSE to Model (3)
and achieves the best performance. This is because GSE is able to extract local spectral
features, thus improving the accuracy of CD.



Remote Sens. 2023, 15, 3561 17 of 20

Table 6. Experimental results of ablation study on three datasets.

Model (1) (2) (3) (4)

GSE X X
EMHSA X X

Farmland
OA 0.9575 0.9639 0.9637 0.9652

Kappa 0.9012 0.9166 0.9158 0.9188

Hermiston
OA 0.9664 0.9688 0.9696 0.9703

Kappa 0.9024 0.9097 0.9126 0.9136

River
OA 0.9688 0.9719 0.9761 0.9778

Kappa 0.7932 0.8097 0.8425 0.8556

3.5.2. Efficient Multi-Head Self-Attention

The EMHSA block is able to reduce the redundancy of spectral embedding and
improve computational efficiency. The experimental results are presented in Table 6. Com-
pared with Model (1), Model (3) significantly improved OA and Kappa on three datasets
after changing from the vanilla MHSA to the EMHSA. Moreover, the best performance was
produced by Model (4), which was obtained after the addition of EMHSA to Model (2).
This indicates that EMHSA is able to remove spectral redundancy and noise, enhancing the
performance of CD.

4. Discussion

To verify the effectiveness of the proposed Spectral–Temporal Transformer, we perform
a series of experiments with varying parameters on three widely used hyperspectral image
change detection datasets and compare the results with those obtained from eight other
methods: CVA, PCA–CVA, TDRD, UTCNN, Re3FCN, ReCNN, CSANet, and SST–Former.

Aiming to fully explore the discriminative sequential properties of bi-temporal HSIs,
e.g., the correlation and variability between different spectral bands, and temporal depen-
dency, we construct a global spectrum–time-receptive field based on Transformer in the
proposed STT method. Group-wise band embedding and efficient multi-head self-attention
are employed to strengthen the use of local band information and improve computation
efficiency, respectively.

We utilize OA and Kappa scores as objective evaluation measures to comprehensively
assess the performance of the proposed methods in HSI CD, enabling a rigorous comparison
of different approaches. As presented in Figures 7–9, our proposed method exhibits the
best visual performance. As presented in Tables 4–6, the proposed method offers superior
detection abilities compared to other algorithms. In particular, on the River dataset with
more bands, our proposed method has a significant lead thanks to the full exploitation
of the sequence properties of HSIs. Based on the analysis of the detection results, we
can conclude that the STT has an excellent detection performance compared to the above
methods. These results highlight the effectiveness and potential of STT in addressing the
HSI CD task, providing valuable insights into the performance of different methods.

While our algorithm demonstrates a superior detection performance, it is important
to note that several limitations still exist, which must be addressed in future research.
The incorporation of spatial information is essential in remote sensing image processing.
Although we can obtain spatial information from image patches, the spatial structure is lost
in the subsequent feature-extraction process. This highlights the need for further research
to address the challenge of preserving spatial information.

5. Conclusions

This study introduced a novel Transformer-based method for HSI CD called the
Spectral–Temporal Transformer (STT). The proposed STT simultaneously considers both
the intrinsic sequential structure of hyperspectral data and time sequence information.
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This is the first time the HSI CD task has been processed from a completely sequential
perspective. The experimental results for three HSI datasets demonstrate the competitive
performance of our proposed method for HSI CD. Further, we find that improving the
utilization of the local information of the spectrum and reducing the redundancy between
bands are beneficial to improving the performance of CD through parametric analysis and
ablation experiments.

Although our proposed method improves the accuracy of CD by extracting joint
spectral–temporal information, it lacks the mining of spatial information. Therefore, in
future work, CNNs or other techniques that help extract spatial information will be intro-
duced to further improve the performance of CD.
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