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Abstract: The homography estimation of infrared and visible images, a key technique for assisting
perception, is an integral element within the 6G Space–Air–Ground Integrated Network (6G SAGIN)
framework. It is widely applied in the registration of these two image types, leading to enhanced en-
vironmental perception and improved efficiency in perception computation. However, the traditional
estimation methods are frequently challenged by insufficient feature points and the low similarity in
features when dealing with these images, which results in poor performance. Deep-learning-based
methods have attempted to address these issues by leveraging strong deep feature extraction capabil-
ities but often overlook the importance of precisely guided feature matching in regression networks.
Consequently, exactly acquiring feature correlations between multi-modal images remains a complex
task. In this study, we propose a feature correlation transformer method, devised to offer explicit
guidance for feature matching for the task of homography estimation between infrared and visible
images. First, we propose a feature patch, which is used as a basic unit for correlation computation,
thus effectively coping with modal differences in infrared and visible images. Additionally, we pro-
pose a novel cross-image attention mechanism to identify correlations between varied modal images,
thus transforming the multi-source images homography estimation problem into a single-source
images problem by achieving source-to-target image mapping in the feature dimension. Lastly, we
propose a feature correlation loss (FCL) to induce the network into learning a distinctive target feature
map, further enhancing source-to-target image mapping. To validate the effectiveness of the newly
proposed components, we conducted extensive experiments to demonstrate the superiority of our
method compared with existing methods in both quantitative and qualitative aspects.

Keywords: homography estimation; feature matching; transformer; infrared image; visible image;
6G SAGIN

1. Introduction

With the development of 6G Space–Air–Ground Integrated Network (6G SAGIN) [1]
technology, distributed intelligent-assisted sensing, communication, and computing have
become important aspects of future communication networks. This provides the possibility
for more extensive perception, real-time transmission, and the real-time computation
and analysis of data. Smart sensors capture information from various modalities, such
as visible images and infrared images, and then transmit this information in real time
to edge computing [2–4] devices for perception computational solving. The registration
techniques of infrared and visible images can provide highly accurate perceptual images,
which support more effective perceptual computations and applications, such as image
fusion [5,6], target tracking [7,8], semantic segmentation [9], surveillance [10], and the
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Internet of Vehicles [11]. In addition, image registration techniques have received extensive
attention in other interdisciplinary fields. Using various remote sensing techniques, Shugar
et al. [12] effectively chronicled substantial rock and ice avalanche hazards in Chamoli,
Himalayas, India. Their research emphasized the importance of accurate registration and
data integration from multiple sources. Muhuri et al. [13] achieved high accuracy through
accurate synthetic aperture radar (SAR) image sequence registration in estimating glacier
surface velocities. Schmah et al. [14] compared computational methods in longitudinal
fMRI studies, where accurate image registration is crucial. These studies show that image
registration technology is vital in natural disaster monitoring, glacier movement tracking,
and neuroimaging. In this context, an accurate homography estimation method is crucial.

Homography estimation, as an auxiliary perception technique, is widely used in the
registration of infrared and visible images to further enhance the environmental perception
capability of 6G SAGINs [15]. It not only provides real-time and accurate perception infor-
mation in a distributed environment but can also be closely integrated with communication
and computation to assist the network in achieving more efficient resource scheduling and
decision-making. Due to the significant differences between infrared and visible images
in terms of imaging principles, spectral range, and contrast, it is extremely challenging to
directly estimate the homography matrix between them [16].

1.1. Related Studies

A homography matrix is a two-dimensional geometric transformation describing the
projection relationship between two planes [17,18]. The traditional homography estimation
method mainly includes the following key steps: feature extraction, feature matching, and
solving the direct linear transform (DLT) [19] with outlier rejection. In the feature extrac-
tion stage, feature extraction algorithms are used to find feature points with stability and
saliency in two images, such as Scale Invariant Feature Transform (SIFT) [20], Speeded Up
Robust Features (SURFs) [21], Oriented FAST and Rotated BRIEF (ORB) [22], Binary Robust
Invariant Scalable Keypoints (BRISK) [23], Accelerated-KAZE (AKAZE) [24], KAZE [25],
Locality Preserving Matching (LPM) [26], Grid-Based Motion Statistics (GMS) [27], Boosted
Efficient Binary Local Image Descriptor (BEBLID) [28], Learned Invariant Feature Trans-
form (LIFT) [29], SuperPoint [30], Second-Order Similarity Network (SOSNet) [31], and
Order-Aware Networks (OANs) [32]. Meanwhile, some recent studies [33–35] have per-
formed a comparative analysis of detectors and feature descriptors in image registration,
providing a more comprehensive reference for the selection of feature extraction algorithms.
Next, feature matching is achieved by computing the similarity between feature descriptors.
Some incorrect matching pairs may occur in this process; therefore, robust estimation algo-
rithms (e.g., Random Sample Consensus (RANSAC) [36], Marginalizing Sample Consensus
(MAGSAC) [37], and MAGSAC++ [38]) are needed to reject outliers and utilize DLT [19]
to solve the homography. However, infrared and visible images have significant imaging
differences. This may lead to limited keypoint stability, descriptor matching accuracy, and
outlier handling ability during homography estimation, which affects the accuracy of the
homography matrix.

In recent years, the emergence of deep learning technology has provided a new per-
spective to solve this problem. Deep learning-based homography estimation can be divided
into supervised and unsupervised methods. Supervised methods [39–41] require many
paired images and homography matrix labels. However, obtaining many accurate homogra-
phy matrix labels can be challenging, especially in complex scenes. Shao et al. [41] utilized
cross-attention to compute the correlation between different images. However, they used
pixels as the basic unit to calculate attention, which are susceptible to modal differences.
Unlike supervised methods, unsupervised methods do not rely on explicit homography
matrix labels but perform unsupervised training by designing a loss function. Nguyen
et al. [42] proposed an unsupervised deep homography estimation method that guides the
network to learn the correct homography matrix through photometric loss. The method
exhibited difficulties with convergence during training due to the significant grayscale
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difference between infrared and visible images [43–47], usually cascading the image pairs
themselves or their feature maps in channels and then feeding them into a regression
network to obtain the homography matrix. Such methods learn the associations and depen-
dencies between the two features through regression networks to implicitly guide feature
matching. Due to the significant feature differences between infrared and visible images,
implicit feature matching may have difficulty accurately capturing feature correspondence
between the two modal images, thus affecting the performance of homography estimation.
Moreover, channel cascading may lead to feature distortion, occlusion, or interference,
making matching difficult and less interpretable. In addition, Refs. [44,45] adopted the
concept of homography flow to estimate homography. Their significant grayscale and
contrast differences for infrared and visible images tend to lead to unstable homography
flow, making it difficult for the network to converge. Although a self-attention mechanism
has been used to capture the correspondence between features [45], it still faces significant
difficulties in feature matching on the feature map after channel cascading.

In addition, methods based on the Swin Transformer [48] have attracted researchers’
attention. The Swin Transformer [48] is a novel visual transformer architecture that has
achieved remarkable results in various computer vision tasks. Its main innovation is to
replace the global self-attention mechanism in the traditional transformer with local self-
attention, thus reducing computational complexity and improving computational efficiency.
Huo et al. [49] proposed a homography estimation model based on the Swin Transformer.
This model uses the Swin Transformer [48] to obtain a multi-level feature pyramid of
image pairs and then uses the features of different levels in the subsequent homography
estimation from coarse to fine. However, the Swin Transformer [48] in this model is only
used for deep feature extraction.

1.2. Contribution

To solve the problems of difficult feature correspondence capture, difficult feature
matching, and poor interpretability in regression networks, we propose a new feature
correlation transformer, called FCTrans, for the homography estimation of infrared and
visible images. Inspired by the Swin Transformer [48], we employed a similar structure to
explicitly guide feature matching. We achieved explicit feature matching by computing the
correlation between infrared and visible images (one is the source image; the other is the
target image) in the feature patch unit within the window instead of in the pixel unit and
then derived a homography matrix, as shown in Figure 1. Specifically, we first propose a
feature patch, a basic unit for computing correlations, to better cope with the modal differ-
ences between infrared and visible images. Second, we propose a cross-image attention
mechanism to calculate the correlation between source and target images to effectively
establish feature correspondence between different modal images. The method finds the
correlation between source and target images in a window in the unit of the feature patch,
thus projecting the source image to the target image in the feature dimension. However,
infrared and visible images have significant pixel grayscale differences and weak image
correlation. This may result in very small attention weights during the training process,
which makes it difficult to effectively capture the relationship between features. To address
this problem, we propose a method called feature correlation loss (FCL). This approach
aims to encourage the network to learn discriminative target feature mapping, which we
call the projected target feature map. Then, we use the projected target feature map and
the unprojected target feature map to obtain the homography matrix, thus converting the
homography estimation problem between multi-source images into a problem between
single-source images. Compared with previous methods, FCTrans explicitly guides feature
matching by computing the correlation between infrared and visible images with a feature
patch as the basic unit; additionally, it is more interpretable.
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Figure 1. (a) The Swin Transformer computes attention in the unit of pixels (shown in gray) in each
local window (shown in red). (b) The proposed FCTrans computes attention in the unit of the feature
patch (shown in blue), 2 × 2 in size, in each local window (shown in red), thus efficiently capturing
high-level semantic features and adapting to differences between multi-source images.

The contributions of this paper are summarized as follows:

• We propose a new transformer structure: the feature correlation transformer (FCTrans).
The FCTrans can explicitly guide feature matching, thus further improving feature
matching performance and interpretability.

• We propose a new feature patch to reduce the errors introduced by imaging differences
in the multi-source images themselves for homography estimation.

• We propose a new cross-image attention mechanism to efficiently establish feature
correspondence between different modal images, thus projecting the source images
into the target images in the feature dimensions.

• We propose a new feature correlation loss (FCL) to encourage the network to learn a
discriminative target feature map, which can better realize mapping from the source
image to the target image.

The rest of the paper is organized as follows. In Section 2, we detail the overall
architecture of the FCTrans and its components and introduce the loss function of the
network. In Section 3, we present some experimental results and evaluations from an
ablation study performed to demonstrate the effectiveness of the proposed components. In
Section 4, the proposed method is discussed. Finally, some conclusions are presented in
Section 5.

2. Methods

In this section, we first provide an overview of the overall architecture of the network.
Second, we further give an overview of the proposed FCTrans and introduce the architecture
of cross-image attention and the feature patch in the FCTrans. Finally, we show some details
of the loss function, where the proposed FCL is described in detail.

2.1. Overview

Given a pair of visible and infrared grayscale image patches, Iv and Ir, of size H×W × 1
as the input to the network, we produced a homography matrix from Iv to Ir, denoted by
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Hvr. Similarly, we obtained the homography matrix, Hrv, by exchanging the order of image
patches Iv and Ir. The proposed model consisted of four modules: two shallow feature
extraction networks (an infrared shallow feature extraction network, fr(·), and a visible
shallow feature extraction network, fv(·)), an FCTrans generator, and a discriminator, as
shown in Figure 2.
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Figure 2. Overall architecture of the deep homography estimation network. The network architecture
consists of four modules: two shallow feature extraction networks (an infrared shallow feature
extraction network, fr(·), and a visible shallow feature extraction network fv(·)), an FCTrans genera-
tor, and a discriminator. Two consecutive blocks of FCTans used to output different feature maps
(Fl+1

v , Fl+1
r , and Fl+1

c ) are shown at the top of the figure. W-CIA and SW-CIA are cross-image attention
modules with regular and shifted window configurations, respectively.

First, we converted images Iv and Ir into shallow feature maps Fv and Fr using shallow
feature extraction networks fv(·) and fr(·) which did not share weights, respectively.
The purpose of shallow feature extraction networks is to extract fine features that are
meaningful for homography estimation from both channel and spatial dimensions. Next,
we employed the FCTrans (generator) to continuously query the correlation between feature
patches of the target feature map and the source feature map to explicitly guide feature
matching, thus achieving mapping from the source image to the target image in the feature
dimension. Then, we utilized the projected target feature map and the unprojected target
feature map to obtain the homography matrix, thus converting the homography estimation
problem between multi-source images into that between single-source images. Finally, we
applied the homography matrix to the source image to generate the warped image and
distinguish the warped image from the target image by a discriminator to further optimize
the homography estimation performance. We adopted the Spatial Transformation Network
(STN) [50] to implement the warping operation.

The core innovation of our method is to design a new transformer structure for
homography estimation: FCTrans. By taking the feature patch as the computing unit,
FCTrans constantly queries the feature correlation between infrared and visible images to
explicitly guide feature matching, thus realizing mapping from the source image to the
target image. We employed a method to output the homography matrix by converting the
homography estimation problem of multi-source images to that of single-source images.
Compared with the previous HomoMGAN [47], we deeply optimized the generator to
effectively improve the performance of homography estimation.
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2.2. FCTrans Structure

Previous approaches [43–47] usually input the features of image pairs into a regression
network by channel cascading, thus implicitly learning the association between image pairs
but not directly comparing their feature similarity. However, considering the significant
imaging differences between infrared and visible images, this implicit featurematching
method may not accurately capture the feature correspondence between the two images,
thus affecting the performance of homography estimation. To solve this problem, we
propose a new transformer structure (FCTrans). This structure continuously queries the
correlation between a feature patch in the source feature map and all feature patches
in the corresponding window of the target feature map within the window to achieve
explicit feature matching, thus projecting the source image into the target image in the
feature dimension. Then, we use the projected target feature map and the unprojected
target feature map to obtain the homography matrix, thus converting the homography
estimation problem between multi-source images into that between single-source images.
The structure of the FCTrans network is shown in Figure 3.
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map), and Fl
r as the reference feature map (unprojected target feature map).

Assuming that the source and target images are the visible image, Iv, and infrared
image, Ir, respectively, then the corresponding source shallow feature map and target
shallow feature map are Fv and Fr, respectively. The same assumptions are applied in the
rest of this paper. First, we input Fv and Fr into the patch partition module and linear
embedding module, respectively, to obtain the feature maps F0

v and F0
r of size H

2 ×
w
2 .

Meanwhile, we made a deep copy of F0
r to obtain F0

c , subsequently distinguishing the
projected target feature map from the unprojected target feature map.

Then, we applied two FCTrans blocks with cross-image attention to F0
v , F0

r , and F0
c . In

the l-th FCTrans block, we regard Fl
v as the query feature map (source feature map), Fl

c as
the key/value feature map (projected target feature map), and Fl

r as the reference feature
map (unprojected target feature map). In addition, the cross-image attention operation in
each FCTrans block requires Fl−1

v and Fl−1
c as inputs to obtain the projected target feature

map Fl
c , as shown at the top of Figure 2. Fl−1

v and Fl−1
r are regarded as the query image

and the reference image, respectively, and do not need to be projected; therefore, Fl
v and Fl

r
are obtained through the FCTrans block without cross-image attention, respectively. The
computations in the FCTrans block are as follows:

Fl
k = MLP

(
LN
(

LN
(

Fl−1
k

)))
+ LN

(
Fl−1

k

)
, k = v, r

F̂l
c = f l−1

c + Fl−1
c

Fl
c = MLP

(
LN
(

F̂l
c

))
+ F̂l

c

(1)

where LN(·) denotes the operation of the LayerNorm layer; MLP(·) denotes the operation
of MLP; Fl

k indicates the feature map output by the l-th FCTrans block, where Fl
v, Fl

c , and
Fl

r denote the source feature map, the projected target feature map and the unprojected
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target feature map, respectively; f l−1
c represents the feature map obtained with Fl−1

v and
Fl−1

c as the input of cross-image attention; F̂l
c represents the output feature map of Fl−1

c in
the S(W)-CIA module.

To generate a hierarchical representation, we halved the feature map size and doubled
the number of channels using the patch merging module. The two FCTrans blocks, together
with a patch merging module, are called “Stage 1”. Similarly, “Stage 2” and “Stage 3” adopt
a similar scheme. However, their FCTrans block numbers are 2 and 6, respectively, and
“Stage 3” does not have a patch merging module. After three stages, each feature patch
in F10

c implies a correlation with all the feature patches in the corresponding window of
the source feature map at different scales, thus achieving the goal of projecting feature
information from the source image into the target image.

Finally, we concatenated F10
r and F10

c to build
[
F10

r , F10
c
]

and then input it to the
homography prediction layer (including the LayerNorm layer, global pooling layer, and
fully connected layer) to output 4 offset vectors (8 values). With the 4 offset vectors, we
obtained the homography matrix, Hvr, by solving the DLT [19]. We use h(·) to represent
the whole process, i.e.:

Hvr = h
([

F10
r , F10

c

])
(2)

where F10
r represents the unprojected target feature map outputted by the 10th FCTrans

block and F10
c indicates the projected target feature map outputted by the 10th FCTrans block.

In this way, we converted the homography estimation problem for multi-source images
into the homography estimation problem for single-source images, simplifying the network
training. Similarly, assuming that the source and target images are infrared image Ir and
visible image Iv, respectively, then the homography matrix Hrv can be obtained based on
F10

v and F10
c . Algorithm 1 shows some training details of the FCTrans.

2.2.1. Feature Patch

In infrared and visible image scenes, the feature-based method shows greater robust-
ness and descriptive power compared with the pixel-based method in coping with modal
differences, establishing correspondence, and handling occlusion and noise, resulting in
more stable and accurate performance. In this study, we followed a similar idea, using a
2× 2 feature patch as an image feature to participate in the attention computation instead
of relying on pixels as the computational unit. Specifically, we further evenly partitioned
the window of size M×M (set to 16 by default) in a non-overlapping manner and then
obtained M

2 ×
M
2 feature patches of size 2× 2, as shown in Figure 4. In Figure 4, we assume

that the size of the window is 4× 4, which results in 2× 2 feature patches. By involving
the feature patch as the basic computational unit in the attention calculation, we can cap-
ture the structural information in the image effectively while reducing the effect of modal
differences on the homography estimation.
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Figure 4. An illustration of the feature patch in the proposed FCTrans architecture. In layer l
(illustrated on the left), we employ a regular window partitioning scheme to partition the image into
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In the next layer, l + 1 (illustrated on the right), we apply a shifted window partitioning scheme
to generate new windows and similarly evenly partition them into feature patches inside these
new windows.
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Algorithm 1: The training process of the FCTrans

Input:Fv and Fr
Output: FCL and homography matrix
Select the Fv input to the patch partition layer and linear embedding layer: F0

v ;
Select the Fr input to the patch partition layer and linear embedding layer: F0

r ;
Select F0

r for deep copy : F0
c ;

for n < number_of_stages do
for k < number_of_blocks do

Select Fl−1
v input to LayerNorm layer : LN(F l−1

v

)
;

Select Fl−1
r input to LayerNorm layer : LN

(
Fl−1

r

)
;

Select Fl−1
c input to LayerNorm layer : LN(F l−1

c

)
;

Select Fl−1
v and Fl−1

c input to (S)W-CIA module:

yl−1
c = so f tmax

(
QKT
√

d
+ B

)
V, F̂l

c = f l−1
c + Fl−1

c ;

Select LN(F l−1
v

)
input to LayerNorm layer and MLP:

Fl
v = MLP

(
LN
(

LN
(

Fl−1
v

)))
+ LN

(
Fl−1

v

)
;

Select LN(F l−1
r

)
input to LayerNorm layer and MLP:

Fl
r = MLP

(
LN
(

LN
(

Fl−1
r

)))
+ LN

(
Fl−1

r

)
;

Select F̂l
c input to LayerNorm layer and MLP:

Fl
c = MLP

(
LN
(

F̂l
c

))
+ F̂l

c ;

Calculate and save loss : Ll
f c

(
Fl

v, Fl
c , Fl

r

)
;

End
if n < (number_of_stages-1) do

Select Fl
v input to patch merging layer;

Select Fl
r input to patch merging layer;

Select Fl
c input to patch merging layer;

end

Calculate FCL : L f c(Fv, Fr) =
10
∑

l=1
Ll

f c

(
Fl

v, Fl
c , Fl

r

)
;

Calculate homography matrix : Hvr = h
([

F10
r , F10

c
])

;
Return: L f c(Fv, Fr) and Hvr;

2.2.2. Cross-Image Attention

In image processing, the cross-attention mechanism [51] can help models capture de-
pendencies and correlations between different images or images and other modal data, thus
enabling effective information exchange and fusion. In this study, we borrowed a similar
idea and designed a cross-image attention mechanism for the homography estimation task,
as shown in Figure 5. Cross-image attention takes the feature patch as the unit and finds
the correlation between a feature patch in the source feature map and all feature patches in
the target feature map within the window, thus projecting the source image into the target
image in the feature dimension. The dimensionality of the feature patch is small; therefore,
we use single-headed attention to compute cross-image attention.

First, we take Fl−1
v and Fl−1

c of size H
2k × W

2k (where k denotes the number of stages)
processed by the LayerNorm layer as the query feature map and key/value feature map.
We adopt a (shifted) window partitioning scheme and a feature patch partitioning scheme
to partition them into windows of size M×M containing M

2 ×
M
2 feature patches. Next, we

flatten these windows in the feature patch dimension, thus reshaping the window size to
N×D, where N denotes the number of feature patch ( M

2 ×
M
2 ) and D represents the number

of pixels in the feature patch (2× 2). Then, the window of Fl−1
v passes through the fully

connected layer to obtain the query matrix, and the window of Fl−1
c passes through two

different fully connected layers to obtain the key matrix and the value matrix, respectively.
We compute the similarity between the query matrix and all key matrices to assign weights
to each value matrix. The similarity matrix is usually computed using the dot product and
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then normalized to a probability distribution via the softmax function. In this way, we can
query the similarity between each feature in Fl−1

v (represented by feature patch) and all
features in Fl−1

c within the corresponding windows of Fl−1
v and Fl−1

c , thus achieving the
effect of explicit feature matching. Finally, we multiply the value matrix and the similarity
matrix to obtain the final output matrix, yl−1

c , after obtaining the weighted similarity matrix.
Each feature patch in this output matrix, yl−1

c , implies the correlation between all the feature
patches in the window corresponding to the source feature map, thus achieving a mapping
from the source image to the target image in the feature dimension. This implementation
process can be described as follows:

yl−1
c = so f tmax(

QKT
√

d
+ B)V (3)

where Q, K, and V represent the query, key, and value matrices, respectively; d stands
for the Q/K dimension, which is 2× 2 in the experiment; and B represents the relative
position bias. We used a feature patch as the unit of computation; therefore, the relative
positions along each axis were in the range

[
−M

2 + 1, M
2 + 1

]
. We parameterized a bias

matrix, B̂ ∈ R(M−1)×(M−1), and the values in B were taken from B̂. We rescaled the output
matrix yl−1

c of size N × D to match the size of the original feature map, i.e., H
2k × W

2k . This
adjustment could facilitate subsequent convolution operations or other image processing
steps. In addition, we performed residual concatenation by adding the output feature
map and the original feature map, Fl−1

c , to obtain the feature map, F̂l
c , thus alleviating the

gradient disappearance.
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In particular, there may be multiple non-adjacent sub-windows in the shifted window,
so the Swin Transformer [48] employs a masking mechanism to restrict attention to each
window. However, we now adopt the feature patch as the basic unit of attention calculation
instead of the pixel level, which makes the mask mechanism in the Swin Transformer [48]
no longer applicable to our method. Considering that the size of the feature patch is 2× 2
and the size of the window is set to be a multiple of 2, we generate the mask adapted to
our method in steps of 2 based on the mask in the Swin Transformer.

2.3. Loss Function

In this study, the generative adversarial network architecture was used to train the
network, which consists of two parts: a generator (FCTrans) and a discriminator (D). The



Remote Sens. 2023, 15, 3535 10 of 21

generator is responsible for generating the homography matrix to obtain the warped image.
The discriminator aims to distinguish the shallow feature maps of the warped image and
the target image. To train the network, we define the generator loss function and the
discriminator loss function. In particular, we introduce the proposed FCL in detail in the
generator loss function.

2.3.1. Loss Function of the Generator

To solve the problem of the network having difficulty adequately capturing the feature
relationship between infrared and visible images, we propose a constraint called “Feature
Correlation Loss” (FCL). FCL aims to minimize the distance between the projected target
feature map, Fl

c , and the source feature map, Fl
v, while maintaining a large distance between

the unprojected target feature map, Fl
r , and the source feature map, Fl

v. This scheme
encourages the network to continuously learn the feature correlation between the projected
target feature map (Fl

c) and the source feature map (Fl
v) within the window, and then

continuously weight the projected target feature map under multiple stages to achieve better
feature matching with the source feature map. Our FCL constraint is defined as follows:

Ll
f c

(
Fl

v, Fl
c , Fl

r

)
= max

(∥∥∥Fl
c − Fl

v

∥∥∥
1
−
∥∥∥Fl

r − Fl
v

∥∥∥
1
+ 1, 0

)
L f c(Fv, Fr) =

10
∑

l=1
Ll

f c(Fl
v, Fl

c , Fl
r )

(4)

where Fl
v, Fl

c , and Fl
r represent the source feature map, the projected target feature map,

and the unprojected target feature map output by the l-th FCTrans block, respectively.
Ll

f c

(
Fl

v, Fl
c , Fl

r

)
denotes the loss generated by the l-th FCTrans block. Fv and Fr stand for the

visible shallow feature map and infrared shallow feature map, respectively. Our FCL is the
sum of the losses generated by all FCTrans blocks, i.e., L f c(Fv, Fr).

To perform unsupervised learning, we minimize three other losses in addition to
constraining the FCL of FCTrans network training. The first one is the feature loss, which is
used to encourage the feature maps between the warped and target images to have similar
data distributions [47], written as:

L f (Ir, Iv) = max
(∥∥F′r − Fv

∥∥
1 − ‖Fr − Fv‖1 + 1, 0

)
(5)

where Iv and Ir represent the visible image patch and the infrared image patch, respectively.
Fv and Fr indicate the visible shallow feature map and the infrared shallow feature map,
respectively. F′r denotes the warped infrared shallow feature map obtained by warping Fr
with the homography matrix, Hrv.

The second term is the homography loss, which is used to force Hrv and Hvr to be
mutually inverse matrices [47], and is computed by:

Lhom = ‖Hvr Hrv − E‖2
2 (6)

where E denotes the third-order identity matrix. Hvr represents the homography matrix
from Iv to Ir. Hrv denotes the homography matrix from Ir to Iv.

The third term is the adversarial loss, which is used to force the feature map of the
warped image to be closer to that of the target image [47], i.e.:

Ladv(F′r) =
N

∑
n=1

(
1− logDθD

(F′r
)
) (7)

where logDθD
(·) indicates the probability of the warped shallow feature map like a target

shallow feature map, N represents the size of the batch, and F′r stands for the warped
infrared shallow feature map.
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In practice, we can derive the losses L f (Iv, Ir), Ladv
(

F’
v
)
, and L f c(Fr, Fv) by exchanging

the order of image patches Iv and Ir. Thus, the total loss function of the generator can be
written as:

LG = L f (Ir, Iv) + L f (Iv, Ir) + λLhom + µ(Ladv(F′r)) + Ladv(F′v)))

+ξ
(

L f c(Fv, Fr) + L f c(Fr, Fv)
) (8)

where Iv and Ir stand for the visible image patch and infrared image patch, respectively.
Fv and Fr indicate the visible shallow feature map and infrared shallow feature map,
respectively. F′v and F′r represent the warped visible shallow feature map and the warped
infrared shallow feature map, respectively. λ, µ, and ξ are the weights of each term set as
0.01, 0.005, and 0.05, respectively. We provide an analysis of parameter ξ in Appendix A.

2.3.2. Loss Function of the Discriminator

The discriminator aims to distinguish the feature maps between the warped image
and the target image. According to [47], the loss between the feature map of the infrared
image and the warped feature map of the visible image is calculated by:

LD(Fr, F′v) =
N

∑
n=1

(a− logDθD
(Fr)) +

N

∑
n=1

(b− logDθD
(F′v)) (9)

where Fr indicates the infrared shallow feature map; F′v represents the warped visible
shallow feature map; N represents the size of the batch; a and b represent the labels of the
shallow feature maps Fr and F′v, which are set as random numbers from 0.95 to 1 and 0 to
0.05, respectively; and logDθD

(·) indicates the probability of the warped shallow feature
map to be similar to the target shallow feature map.

In practice, we can obtain the loss LD
(

Fv, F’
r
)

by swapping the order of Iv and Ir. Thus,
the total loss function of the discriminator can be defined as follows:

LD = LD
(

Fr, F′v
)
+ LD

(
Fv, F′r

)
(10)

where Fv and Fr indicate the visible shallow feature map and infrared shallow feature
map, respectively; F′v and F′r represent the warped visible shallow feature map and warped
infrared shallow feature map, respectively.

3. Experimental Results

In this section, we first briefly introduce the synthetic benchmark dataset and the
real-world dataset, and then describe some implementation details of the proposed method.
Next, we briefly present the evaluation metrics used in the synthetic benchmark dataset and
the real-world dataset. Second, we perform comparisons with existing methods on synthetic
benchmark datasets and real-world datasets to demonstrate the performance of our method.
We compare our method with traditional feature-based methods and deep-learning-based
methods. The traditional feature-based methods include eight methods that are combined
by four feature descriptors (SIFT [20], ORB [22], BRISK [23], and AKAZE [24]) and two
outlier rejection algorithms (RANSAC [36] and MAGSAC++ [38]). The deep-learning-based
methods include three methods (CADHN [43], DADHN [46], and HomoMGAN [47]).
Finally, we also performed some ablation experiments to demonstrate the effectiveness of
all the newly proposed components.

3.1. Dataset

We used the same synthetic benchmark dataset as Luo et al. [47] to evaluate our
method. The dataset consists of unregistered infrared and visible image pairs of size
150× 150, which include 49,738 training pairs and 42 test pairs. In particular, the test
set also includes the corresponding infrared ground-truth image IGT for each image pair,
thus facilitating the presentation of channel mixing results in qualitative comparisons.
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Meanwhile, the test set provides four pairs of ground-truth matching corner coordinates
for each pair of test images for evaluation calculation.

Furthermore, we utilized the CVC Multimodal Stereo Dataset [52] as our real-world
dataset. This collection includes 100 pairs of long-wave infrared and visible images, pri-
marily taken on city streets, each with a resolution of 506× 408. Figure 6 displays four
representative image pairs from the dataset.
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3.2. Implementation Details

Our experimental environment parameters are shown in Table 1. During data pre-
processing, we resized the image pairs to a uniform size of 150× 150 and then randomly
cropped them to image patches of size 128× 128 to increase the amount of data. In addition,
we normalized and grayscaled the images to obtain patches Iv and Ir as the input of the
model. Our network was trained under the PyTorch framework. To optimize the network,
we employed the adaptive moment estimation (Adam) [53] optimizer with the initial value
of the learning rate set to 0.0001 and adjusted by the decay strategy during the training
process. All parameters of the proposed method are shown in Table 2. In each iteration
of model training, we first updated the discriminator (D) parameters and then the gener-
ator (FCTrans). Its loss function is optimized by backpropagation in each iteration step.
Specifically, we first utilized the generator to generate a homography matrix through which
the source image is warped to a warped image. Thus, we trained the discriminator using
the warped and target images. We calculated the loss function of the discriminator using
Equation (8) and then updated the discriminator’s parameters by backpropagation. Next,
we trained the generator. We computed the loss function of the generator using Equation
(10) and updated the generator’s parameters by backpropagation. We made the network
continuously tuned to the homography matrix through the adversarial game between the
generator and the discriminator. Meanwhile, we periodically saved the model state during
the training process for subsequent analysis and evaluation.

Table 1. The experiment’s environmental parameters.

Parameter Experimental Environment

Operating System Windows 10
GPU NVIDIA GeForce RTX 3090

Memory 64 GB
Python 3.6.13

Deep Learning Framework Pytorch 1.10.0/CUDA 11.3



Remote Sens. 2023, 15, 3535 13 of 21

Table 2. Network parameters of the proposed method.

Parameter Value

Image Size 150× 150
Image Patch Size 128× 128

Initial Learning Rate 0.0001
Optimizer Adam

Weight Decay 0.0001
Learning Rate Decay Factor 0.8

Batch Size 32
Epoch 50

Window Size (M) 16
Feature Patch Size 2

Channel Number (C) 18
Block Numbers {2,2,6}

3.3. Evaluation Metrics

The real-world dataset lacks ground-truth matching point pairs; therefore, we em-
ployed two distinct evaluation metrics: the point matching error [43,44] for the real-world
dataset and the corner error [40,41,47] for the synthetic benchmark dataset. The corner er-
ror [40,41,47] is calculated as the average l2 distance between the corner points transformed
by the estimated homography and those transformed by the ground-truth homography. A
smaller value of this metric signifies a superior performance in homography estimation.
The formula for computing the corner error [40,41,47] is expressed as follows:

$c =
1
4∑4

i=1‖xi − yi‖2 (11)

where xi and yi are the corner point, i, transformed by the estimated homography and the
ground-truth homography, respectively.

The point matching error [43,44] is a measure of the average l2 distance between
pairs of manually labeled matching points. Lower values of this metric indicate superior
performance in homography estimation. The calculation of the point matching error [43,44]
is performed as follows:

Lp =
1
N ∑N

i=1‖xi − yi‖2 (12)

where xi denotes point i transformed by the estimated homography, yi denotes the matching
point corresponding to point i, and N represents the number of manually labeled matching
point pairs.

3.4. Comparison on Synthetic Benchmark Datasets

We conducted qualitative and quantitative comparisons between our method and all
the comparative methods on synthetic benchmark dataset to demonstrate the performance
of our method.

3.4.1. Qualitative Comparison

First, we compared our method with eight traditional feature-based methods, as
shown in Figure 7. The traditional feature-based methods had difficulty obtaining stable
feature matching in infrared and visible image scenes, which led to severe distortions in
the warped image. More specifically, SIFT [20] and AKAZE [24] demonstrate algorithm
failures in both examples, as shown in (2) and (3). However, our method shows better
adaptability in infrared and visible image scenes, and its performance is significantly better
than the traditional feature-based methods. Although SIFT [20] + RANSAC [36] in the
first example is the best performer among the feature-based methods and does not exhibit
severe image distortion, it still shows a large number of yellow ghosts in the ground region.
These yellow ghosts indicate that the corresponding regions between the warped and
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ground-truth images are not aligned. However, our method shows significantly fewer
ghosts in the ground region compared with the SIFT [20] + RANSAC [36] method, showing
superior results. This indicates that our method has higher accuracy in processing infrared
and visible image scenes.
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in (1), (3) and (2), (4). The “Nan” in (2) and (3) indicates that the algorithm failed and the warped 
image could not be obtained. From left to right: (a) visible image; (b) infrared image; (c) ground-
truth infrared image; (d) SIFT [20] + RANSAC [36]; (e) SIFT [20] + MAGSAC++ [38]; (f) ORB [22] + 
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Figure 7. Comparison with the eight traditional feature-based methods in the two examples, shown
in (1), (3) and (2), (4). The “Nan” in (2) and (3) indicates that the algorithm failed and the warped
image could not be obtained. From left to right: (a) visible image; (b) infrared image; (c) ground-
truth infrared image; (d) SIFT [20] + RANSAC [36]; (e) SIFT [20] + MAGSAC++ [38]; (f) ORB [22] +
RANSAC [36]; (g) ORB [22] + MAGSAC++ [38]; (h) BRISAK [23] + RANSAC [36]; (i) BRISAK [23] +
MAGSAC++ [38]; (j) AKAZE [24] + RANSAC [36]; (k) AKAZE [24] + MAGSA C++ [25]; and (l) the
proposed algorithm. We mixed the blue and green channels of the warped infrared image with the
red channel of the ground-truth infrared image to obtain the above visualization and the remaining
visualizations in this paper using this method. The unaligned pixels are presented as yellow, blue,
red, or green ghosts.

Secondly, we compared our method with three deep learning-based methods, as
shown in Figure 8. Our method exhibited higher accuracy in image alignment compared
with the other methods. In addition, CHDHN [43], DADHN [46], and HomoMGAN [47]
showed the different extents of green ghosting when processing door frame edges and door
surface textures in (1). However, these ghosts were significantly reduced by our method,
which fully illustrates its superiority. Similarly, our method achieves superior results on
the alignment of cars and people in (2) compared with other deep-learning-based methods.
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in (1) and (2). From left to right: (a) visible image; (b) infrared image; (c) ground-truth infrared
image; (d) CADHN [43]; (e) DADHN [46]; (f) HomoMGAN [47]; and (g) the proposed algorithm.
Error-prone regions are highlighted using red and yellow boxes, and the corresponding regions are
zoomed in.

3.4.2. Quantitative Comparison

To demonstrate the performance of the proposed method, we performed a quantitative
comparison with all other methods. We classify the testing results into three levels based on
performance: easy (top 0–30%), moderate (top 30–60%), and hard (top 60–100%). We report
the corner error, the overall average corner error, and the failure rate of the algorithm for
the three levels in Table 3, where rows 3–10 are for the traditional feature-based methods
and rows 11–13 are for the deep-learning-based methods. In particular, the failure rate in
the last column of Table 3 indicates the ratio of the number of test images in which the
algorithm failed against the total number of test images. I3×3 in row 2 denotes the identity
transformation, whose error reflects the original distance between point pairs. The “Nan”
in Table 3 indicates that the corner error is not present at this level. This usually means
that the method has a large number of failures in the test set; thus, no test results can be
classified into this level.

Table 3. Comparison of corner errors between the proposed algorithm and all other methods on the
synthetic benchmark dataset.

(1) Method Easy Moderate Hard Average Failure Rate

(2) I3×3 4.59 5.71 6.77 5.79 0%

(3) SIFT [20] + RANSAC [36] 50.87 Nan Nan 50.87 93%
(4) SIFT [20] + MAGSAC++ [38] 131.72 Nan Nan 131.72 93%
(5) ORB [22] + RANSAC [36] 82.64 118.29 313.74 160.89 17%
(6) ORB [22] + MAGSAC++ [38] 85.99 109.14 142.54 109.13 19%
(7) BRISAK [23] + RANSAC [36] 104.06 126.8 244.01 143.2 24%
(8) BRISAK [23] +MAGSAC++ [38] 101.37 136.01 234.14 143.4 24%
(9) AKAZE [24] + RANSAC [36] 99.39 230.89 Nan 159.66 43%
(10) AKAZE [24] + MAGSAC++ [38] 101.36 210.05 Nan 139.4 52%

(11) CADHN [43] 4.09 5.21 6.17 5.25 0%
(12) DADHN [46] 3.84 5.01 6.09 5.08 0%
(13) HomoMGAN [47] 3.85 4.99 6.05 5.06 0%

(14) Proposed algorithm 3.75 4.70 5.94 4.91 0%

The black bold number indicates the best result.

As can be seen in Table 3, our method achieved the best performance at all three
levels. In particular, the average corner error of our method significantly decreased from
5.06 to 4.92 compared with the suboptimal algorithm HomoMGAN [47]. Specifically, the
performance of the feature-based method is significantly lower than that of the deep-
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learning-based method under all three levels, and all of them show algorithm failures.
Meanwhile, although the average corner error of SIFT [20] + RANSAC [36] is 50.87, the
average corner error of other feature-based methods is above 100. This illustrates the
generally worse performance of the traditional feature-based methods. Although SIFT [20]
+RANSAC [36] has the most excellent performance among all feature-based methods, it
fails on most of the test images. As a result, most traditional feature-based methods in
infrared and visible image scenes usually fail to extract or match enough key points, which
leads to algorithm failure or poor performance and is difficult to be applied in practice.

In contrast, deep-learning-based methods can easily avoid this problem. They not
only avoid algorithm failure but also significantly improve performance. CADHN [43],
DADHN [46], and HomoMGAN [47] achieved excellent performance in the test images
with average corner errors of 5.25, 5.08, and 5.06, respectively. However, they are guided im-
plicitly in the regression network for feature matching, which leads to limited performance
in homography estimation. In contrast, our method converts the homography estimation
problem for multi-source images into a problem for single-source images by explicitly
guiding feature matching, thus significantly reducing the difficulties incurred due to the
large imaging differences of multi-source images for network training. As shown in Table 3,
our method significantly outperforms existing deep-learning-based methods in terms of
error at all three levels and overall average corner error, and the average corner error can be
reduced to 4.91. This sufficiently demonstrates the superiority of explicit feature matching
in our method.

3.5. Comparison on the Real-World Dataset

We performed a quantitative comparison with 11 methods on the real-world dataset
to demonstrate the effectiveness of our method, as shown in Table 4. The evaluation results
of the feature-based methods on the real-world dataset are similar to the results on the
synthetic benchmark dataset, and both show varying degrees of algorithm failure and poor
algorithm performance. In contrast, the deep-learning-based methods performed signifi-
cantly better than the feature-based methods, and no algorithm failures were observed. The
proposed algorithm achieves the best performance among the deep-learning-based meth-
ods; the performance of CADHN [43] and DADHN [46] is comparable with the average
point matching errors of 3.46 and 3.47, respectively. Notably, our algorithm significantly
improves the performance by explicitly guiding feature matching in the regression network
compared to HomoMGAN [47], and the average point matching error is significantly re-
duced from 3.36 to 2.79. This fully illustrates the superiority of explicitly guided feature
matching compared to implicitly guided feature matching.

Table 4. Comparison of point matching error between the proposed algorithm and all other methods
on the real-world dataset.

(1) Method Easy Moderate Hard Average Failure Rate

(2) I3×3 2.36 3.63 4.99 3.79 Nan

(3) SIFT [20] + RANSAC [36] 135.43 Nan Nan 135.43 96%
(4) SIFT [20] + MAGSAC++ [38] 165.54 Nan Nan 165.54 96%
(5) ORB [22] + RANSAC [36] 40.05 63.23 159.70 76.57 22%
(6) ORB [22] + MAGSAC++ [38] 61.69 109.96 496.02 158.87 27%
(7) BRISAK [23] + RANSAC [36] 44.22 81.51 483.76 151.47 24%
(8) BRISAK [23] +MAGSAC++ [38] 66.09 129.58 350.06 142.75 27%
(9) AKAZE [24] + RANSAC [36] 71.77 170.03 Nan 83.33 66%
(10) AKAZE [24] + MAGSAC++ [38] 122.64 Nan Nan 122.64 71%

(11) CADHN [43] 2.07 3.27 4.65 3.46 0%
(12) DADHN [46] 2.10 3.27 4.66 3.47 0%
(13) HomoMGAN [47] 2.00 3.15 4.54 3.36 0%

(14) Proposed algorithm 1.69 2.55 3.79 2.79 0%
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3.6. Ablation Studies

In this section, we present the results of the ablation experiments performed on the
FCTrans, feature patch, cross-image attention, and FCL and combine some visualization
results to demonstrate the effectiveness of the proposed method and its components.

3.6.1. FCTrans

The proposed FCTrans is an architecture similar to the Swin Transformer [48]. To
evaluate the effectiveness of FCTrans, we replaced it with the Swin Transformer [48] to
serve as the backbone network of the generator; the results are shown in row 2 of Table 5.
In this process, we channel-cascade the shallow features of the infrared and visible images
and feed them into the Swin Transformer [48] to generate four 2D offset vectors (eight
values), which, in turn, are solved by DLT [19] to obtain the homography matrix. By
comparing the data in rows 2 and 6 of Table 5, we observe a significant decrease in the
average corner error from 5.13 to 4.91. This result demonstrates that the proposed FCTrans
can effectively improve the homography estimation performance compared with the Swin
Transformer [48].

Table 5. Results of the ablation studies. Each row is the result from our method, with specific
modifications. For more details, please refer to the text.

(1) Modification Easy Moderate Hard Average

(2) Change to the Swin Transformer backbone 4.01 5.02 6.08 5.13
(3) w/o. feature patch 3.82 4.97 5.99 5.02
(4) Change to self-attention and w/o. FCL 3.96 4.96 5.91 5.03
(5) w/o. FCL 3.94 5.01 6.06 5.10

(6) Proposed algorithm 3.75 4.70 5.94 4.91

3.6.2. Feature Patch

To verify the validity of the feature patch, we removed all operations related to the
feature patch from our network; the results are shown in row 3 of Table 5. Due to the
removal of the feature patch, we performed the attention calculation in pixels within the
window. By comparing the data in rows 3 and 6 of Table 5, our average corner error
is reduced from 5.02 to 4.91. This result shows that the feature patch is more adept at
capturing structural information in images, thus reducing the effect of modal differences
on homography estimation.

3.6.3. Cross-Image Attention

To verify the effectiveness of cross-image attention, we used self-attention [48] to
replace cross-image attention in our experiments; the results are shown in row 4 of Table 5.
In this process, we channel-concatenated the shallow features of the infrared image and
the visible image as the input of self-attention [48] to obtain the homography matrix.
The replaced network no longer applies the FCL; therefore, we removed the operations
associated with the FCL. By comparing rows 4 and 6 in Table 5, we found that the average
corner error significantly decreases from 5.03 to 4.91. This is a sufficient indication that cross-
image attention can effectively capture the correlation between different modal images,
thus improving the homography estimation performance.

3.6.4. FCL

We removed the term of Equation (4) from Equation (8) to verify the validity of the
FCL; the results are shown in row 5 of Table 5. By comparing the data in rows 5 and 6 of
Table 5, we found that the average corner error was significantly reduced from 5.10 to 4.91.
In addition, we visualized the attention weights of the window to further verify the validity
of the FCL; the results are shown in Figure 9. As shown in the comparison of (a) and (c),
the FCL allows the network to better adapt to the modal differences between infrared and
visible images, thus achieving better performance in capturing inter-feature correlations.
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Additionally, the performance of the proposed method in (b) and (d) is slightly superior to
the “ w/o. FCL”, with the average corner error reduced from 5.17 to 4.71.
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FCL; (b) the channel mixing result w/o. FCL with an average corner error of 5.17; (c) visualization
of attention weights on the proposed algorithm; and (d) the channel mixing result for the proposed
algorithm with an average corner error of 4.71. In particular, we normalized the attention weights of
the first window in the last FCTrans block to range from 0 to 255 for visualization.

4. Discussion

In this study, we proposed a feature correlation transformer method which signifi-
cantly improves the accuracy of homography estimation in infrared and visible images.
By introducing feature patch and cross-image attention mechanisms, our method dramati-
cally improves the precision of feature matching. It tackles the challenges induced by the
insufficient quantity and low similarity of feature points in traditional methods. Exten-
sive experimental data demonstrate that our method significantly outperforms existing
techniques in terms of both quantitative and qualitative results. However, our method
also has some limitations. Firstly, although our method performs well in dealing with
modality differences in infrared and visible images, it might need further optimization and
adjustment when processing images in large-baseline scenarios. In future research, we aim
to further improve the robustness of our method to cope with challenges in large-baseline
scenarios. Moreover, we will further explore combining our method with other perception
computing tasks to enhance the perception capability of 6G SAGINs.

5. Conclusions

In this study, we have proposed a feature correlation transformer method for the
homography estimation of infrared and visible images, aiming to provide a higher-accuracy
environment-assisted perception technique for 6G SAGINs. Compared with previous
methods, our approach explicitly guides feature matching in a regression network, thus
enabling the mapping of source-to-target images in the feature dimension. With this
strategy, we converted the homography estimation problem between multi-source images
into that of single-source images, which significantly improved the homography estimation
performance. Specifically, we innovatively designed a feature patch as the basic unit for
correlation queries to better handle modal differences. Moreover, we designed a cross-
image attention mechanism that enabled mapping the source-to-target images in feature
dimensions. In addition, we have proposed a feature correlation loss (FCL) constraint that
further optimizes the mapping from source-to-target images. Extensive experimental results
demonstrated the effectiveness of all the newly proposed components; our performance is
significantly superior to existing methods. Nevertheless, the performance of our method
may be limited in large-baseline infrared and visible image scenarios. Therefore, we intend
to further explore the problem of homography estimation in large-baseline situations in
future studies in order to further enhance the scene perception capability of the 6G SAGIN.
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Abbreviations

The following abbreviations are used in this manuscript:
6G SAGIN 6G Space–Air–Ground Integrated Network
SAR Synthetic Aperture Radar
DLT Direct Linear Transformation
FCL Feature Correlation Loss
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
ORB Oriented FAST and Rotated BRIEF
BRISK Binary Robust Invariant Scalable Keypoints
AKAZE Accelerated-KAZE
LPM Locality Preserving Matching
GMS Grid-Based Motion Statistics
BEBLID Boosted Efficient Binary Local Image Descriptor
LIFT Learned Invariant Feature Transform
SOSNet Second-Order Similarity Network
OAN Order-Aware Networks
RANSAC Random Sample Consensus
MAGSAC Marginalizing Sample Consensus
W-CIA Cross-image attention with regular window
SW-CIA Cross-image attention with shifted window
STN Spatial Transformation Network
Adam Adaptive Moment Estimation

Appendix A Dependency on ξ

The values of the λ, µ, a, and b parameters in the loss function are with reference to
HomoMGAN [47]; therefore, we only analyzed the ξ parameter. The evaluation results for
the ξ parameter at different values is shown in Table A1, thus presenting our fine-tuning
process. The best performance of the homography estimation was obtained for a value of
0.05 for the ξ parameter.

Table A1. Dependency on ξ; the results of the evaluation of parameter ξ at different values.

ξ Easy Moderate Hard Average

0.001 4.15 5.28 6.26 5.33
0.005 3.75 4.70 5.94 4.91
0.01 3.83 4.88 6.06 5.03
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