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Abstract: Due to the limited transmission gain of ubiquitous radar systems, it has become necessary
to use a long-time coherent integration method for range-Doppler (RD) analysis. However, when the
target exhibits high-speed and high-maneuver capabilities, it introduces challenges, such as range
migration (RM), Doppler frequency migration (DFM), and velocity ambiguity (VA) in the RD domain,
thus posing significant difficulties in target detection and tracking. Moreover, the presence of VA
further complicates the problem. To address these complexities while maintaining integration
efficiency, this study proposes a hybrid integration approach. First, methods called Keystone-
transform (KT) and matched filtering processing (MFP) are proposed for compensating for range
migration (RM) and velocity ambiguity (VA) in Radar Detection (RD) images. The KT approach
is employed to compensate for RM, followed by the generation of matched filters with varying
ambiguity numbers. Subsequently, MFP enables the production of multiple RD images covering
different but contiguous Doppler frequency ranges. These RD images can be compiled into an
extended RD (ERD) image that exhibits an expanded Doppler frequency range. Second, an improved
particle-filter (IPF) algorithm is raised to perform incoherent integration among ERD images and
to achieve track-before-detect (TBD) for a target. In the IPF, the target state vector is augmented
with ambiguous numbers, which are estimated via maximum posterior probability estimation.
Then, to compensate for the DFM, a line spread model (LSM) is proposed instead of the point
spread model (PSM) used in traditional PF. To evaluate the efficacy of the proposed method, a
radar simulator is devised, encompassing comprehensive radar signal processing. The findings
demonstrate that the proposed approach achieves a harmonious equilibrium between integration
efficiency and computational complexity when it comes to detecting and tracking high-speed and
high-maneuvering targets with intricate maneuvers. Furthermore, the algorithm’s effectiveness is
authenticated by exploiting ubiquitous radar data.

Keywords: ubiquitous radar; hybrid integration method; keystone transform; matched filtering
processing; improved particle filter; track-before-detect

1. Introduction

Ubiquitous radar is also referred to as holographic staring radar or floodlight radar [1–3].
In 2017, the IEEE Radar Definition Standard gave the first definition of ubiquitous radar,
which is a radar that looks everywhere all the time and performs multiple functions simul-
taneously instead of sequentially [4]. Ubiquitous radar employs a wide-beam transmitting
antenna to uniformly irradiate a wide area with transmitted signal energy. On the receiving
end, a digital array antenna incorporates digital beam forming (DBF) technology to obtain
multiple narrow beams that cover the entire transmitting area simultaneously. This enables
uninterrupted monitoring and detection of the entirety of the airspace under surveillance.
Ubiquitous radar adopts the long-time coherent accumulation (LTCA) technique [5], which
can improve the radar transmission power utilization, enhance the detection performance,
and improve the target information acquisition ability under the same power aperture
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conditions. However, during the LTCA process, the motion characteristics of the high-
speed and high-maneuvering target result in range migration (RM), Doppler frequency
migration (DFM), and velocity ambiguity (VA), which can degrade the performance of
coherent accumulation and seriously affect the subsequent tracking.

Currently, extensive research is being conducted on compensating for target move-
ment in the LTCA process. In this regard, Keystone transform (KT) has emerged as a widely
used method for compensating reference motion (RM) [6–8]. Additionally, both Radon
Fourier Transform (RFT) [9–11] and Generalized Radon Fourier Transform (GRFT) [12]
have been proposed to compensate for first-order RM and high-order RM, respectively.
Furthermore, numerous algorithms, such as the Keystone-Transform and Lv’s distribution
(KT-LVD) [13], Radon-Lv’s distribution (RLVD) [14], and Radon-Fractional Fourier Trans-
form (RFRFT) [15], have been developed to compensate for RM and Doppler frequency
modulation (DFM) in targets exhibiting uniformly accelerated motion. These methodolo-
gies offer invaluable remedies for mitigating the detrimental impact of motion-induced
artifacts in the LTCA process. Nevertheless, it is essential to note that these computa-
tional algorithms necessitate a substantial amount of processing power. There are some
hybrid integration algorithms, consisting of coherent and incoherent integration, that can
reduce computational complexity, but they often come at the cost of significantly reducing
integration gain [16–18].

The track-before-detect (TBD) method is capable of achieving incoherent integration.
This method involves exploiting a signal processing algorithm to perform detections
even when there is significant noise interference. Additionally, TBD establishes tracks for
potential targets even before they are officially detected. This technique is used to improve
the detection performance of radar systems in situations where the target signal is weak
or difficult to distinguish from surrounding clutter or interference [19,20]. In contrast to
the detect-before-track algorithm, which is a popular technique to track targets after the
detection process [21], TBD does not need threshold the raw data for detection, it can
operate detection and tracking jointly on the raw data [22]. Furthermore, the TBD can
achieve a more robust detection via tracking all data up to the current time step, instead of
depending solely on the current time step [23].

Numerous algorithms are available for implementing the TBD, which can be broadly
classified into two categories: batch algorithms and recursive algorithms. Batch algorithms,
such as the Hough transform (HT) algorithm [24,25] and dynamic programming (DP)
algorithm [26–28], store and then process received data within a certain period of time,
which implies that several scan times are required for making a more accurate result. This
feature determines that these algorithms cannot be adapted to a maneuvering target.
Furthermore, as a type of batch algorithm, the multi-frame (MF) algorithm can be applied
for the TBD of maneuvering mobile targets [29–31].

Recursive algorithms predict and then update the estimation of the target state recur-
sively, which is perfectly consistent with the full space and time domain coverage property
of ubiquitous radar. As a typical recursive algorithm, a particle filter (PF) is usually chosen
for implementing the TBD approach [32–35], as it provides a significant advantage for non-
linear and non-Gaussian filtering problems. PF-TBD was first proposed by Salmond [36],
enjoying several advantages over previous approaches. In Salmond’s PF method, a variable
is added to represent the target existence state into the state vector, which can cause the
degradation of the particle group. Rutten [37] has improved the PF by formulating the
target existence probability more efficiently.

The objective of this paper is to explore the application of a hybrid integration tech-
nique for effectively achieving simultaneous detection and tracking of a weak and maneu-
vering target in ubiquitous radar. The compensation for RM and VA occurs during coherent
integration, while compensating for DFM occurs during incoherent integration. During the
coherent integration step, compensation for the first-order RM is achieved by employing
KT, followed by the application of matched filtering processing (MFP) to mitigate the
effects arising from VA. In this step, each ambiguity number can be utilized to generate



Remote Sens. 2023, 15, 3507 3 of 23

a corresponding matched filter. The use of different matched filters enables the creation
of sub-RD images with distinct yet contiguous Doppler frequency ranges. These sub-RD
images can then be combined to form an extended RD (ERD) image encompassing the
entire Doppler frequency spectrum. In the incoherent integration step, an improved particle
filter (IPF) is proposed and applied in ERD images to realize the TBD. In this approach, the
IPF incorporates an ambiguous number in the target state vector, which can be estimated
using maximum posterior probability. Furthermore, to compensate for the DFM, a line
spread model (LSM) is proposed as a replacement for the traditional point spread model
(PSM) used in conventional PFs [37]. The proposed method is named KT-MFP-IPF-TBD in
this paper.

The experiments show that the IPF-TBD method has better detection and tracking
performance compared to the traditional PF-TBD method, and The integration gain of
the KT-MFP-IPF-TBD method is close to LTCA, but its computational complexity is much
lower than the LTCA.

The rest of this paper is organized as follows. Section 2 shows the deduction of ERD-
image generation, including RM correction and VA compensation. Section 3 describes
the IPF algorithm based on the Bayesian theory and presents a major implementation of
the filter. Next, the simulation and measurement results are displayed and discussed in
Section 4. Section 5 presents our conclusion.

2. Keystone-Transform and Matched Filter Processing

The transmission signal employed by the commonly used ubiquitous radar is charac-
terized as a linear frequency modulated (LFM) signal.

s(t, tm) = rect
(

t− tm

Tp

)
× exp

[
j
(

2π fc(t− tm) + πγ(t− tm)
2
)]

,
(1)

where Tp is the pulse width, γ is the frequency modulated rate, fc is the carrier frequency,
tm = mTr m = 0, 1, ..., M− 1 is the slow time, Tr denotes the pulse repetition interval (PRI),
M is the number of coherent integrated pulses, t is the fast time, and

rect(u) =
{

1 |u| ≤ 1
2

0 |u| > 1
2

(2)

is a rectangle window function.
The received baseband signal can be stated as

s1
(
t̂, tm

)
= A0rect

(
t̂− 2R(tm)

c
Tp

)
rect

(
tm

TI
− 1

2

)

× exp

[
j

(
4π fc

R(tm)

c
+ πγ

(
t̂− 2R(tm)

c

)2
)]

,

(3)

where c is the light speed, A0 is the amplitude, t̂ = t− tm represents new fast time and
R(tm) is the instantaneous range between radar and target. TI is the integration time and is
defined as

TI = MTr. (4)

Assume that there is a moving target given an initial radial range R0 at tm = 0. There-
fore the instantaneous radial range R(tm) between the radar and a maneuvering target
with constant acceleration can be written as

R(tm) = R0 + votm +
1
2

a0t2
m, (5)
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where vo and a0 are defined as the radial velocity and acceleration of the target, respectively.
After the pulse compression in the range-frequency domain, the compressed signal

can be expressed as

S1( f , tm) = A1rect
(

f
B

)
rect

(
tm

TI
− 1

2

)
× exp

[
−j4π( f + fc)

R(tm)

c

]
, (6)

where A1 is the amplitude and B is the bandwidth of the transmitted signal. Then, inserting
(5) into (6), we have

S1( f , tm) = A1rect
(

f
B

)
rect

(
tm

TI
− 1

2

)
× exp

[
−j4π( f + fc)

R0

c

]
× exp

[
−j4π( f + fc)

votm

c

]
× exp

[
−j2π( f + fc)

a0t2
m

c

]
.

(7)

However, for a fast-moving target, its Doppler frequency may exceed the pulse repeti-
tion frequency (PRF), according to [5], vo can be written as

vo = vbase +
λ · PRF

2
η, (8)

where λ is the wavelength and is defined as λ = c
/

fc. vbase represents the baseband velocity
and it satisfies vbase ∈ [−λ · PRF/4, λ · PRF/4]. η denotes the ambiguity number. After
substituting (8) into (7), S1( f , tm) can be rewritten as

S1( f , tm) = A1rect
(

f
B

)
rect

(
tm

TI
− 1

2

)
× exp

[
−j4π( f + fc)

R0

c

]
× exp

[
−j4π( f + fc)

vbasetm

c

]
× exp

[
−j2π( f + fc)

a0t2
m

c

]
× exp

[
−j2π( f + fc)η

λ · PRF
c

tm

]
.

(9)

Consider the following equation:

exp
(
−j2π fcη

λ · PRF
c

tm

)
= exp(−j2πηm) = 1. (10)

S1( f , tm) can be further simplified as

S1( f , tm) = A1rect
(

f
B

)
rect

(
tm

TI
− 1

2

)
× exp

[
−j4π( f + fc)

R0

c

]
× exp

[
−j4π( f + fc)

vbasetm

c

]
× exp

[
−j2π( f + fc)

a0t2
m

c

]
× exp

(
−j2π f η

λ · PRF
c

tm

)
.

(11)

In a number of works [38–40], the expression of KT is denoted as

tm =
fc

fc + f
τm, (12)

where τm denotes the new slow-time variable.
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To eliminate the coupled term between f and tm, we apply KT to (11),

S1( f , τm) ≈ A1rect
(

f
B

)
rect

(
τm

TI
− 1

2

)
× exp

[
−j4π( f + fc)

R0

c

]
× exp

[
−j4π

vbaseτm

λ

]
× exp

[
−j2π

f 2
c

( f + fc)

a0τ2
m

c

]
× exp

(
−j2πη

f
fc + f

τm · PRF
)

.

(13)

Because fc � f , we can obtain

fc

fc + f
≈ 1

f̂
fc + f

≈ f
fc

. (14)

Therefore, (13) can be simplified as

S1( f , τm) = A1rect
(

f
B

)
rect

(
τm

TI
− 1

2

)
× exp

[
−j4π( f + fc)

R0

c

]
× exp

(
−j4π

vbaseτm

λ

)
× exp

(
−j2π

a0τ2
m

λ

)
× exp

(
−j2πη

f
fc

m
)

.
(15)

According to (15), it can be inferred that despite the successful compensation of first-
order RM, there still remains a linear RM induced by the ambiguity velocity (as indicated
by the final term). Therefore, we can construct a matched filter to solve the residual coupled
terms between f and η.

Hη̂
match( f , m) = exp

(
j2π

f
fc

η̂m
)

(16)

where η̂ is the estimated value of the ambiguity number. After multiplying Hη̂
match( f , m) by

S1( f , tm) in (15), one has

Sη̂
2 ( f , τm) = S1( f , τm) · Hη̂

match( f , m)

= A1rect
(

f
B

)
rect

(
τm

TI
− 1

2

)
× exp

[
−j4π( f + fc)

R0

c

]
× exp

(
−j2π(η − η̂)

f
fc

m
)
× exp

(
−j4π

vbaseτm

λ

)
× exp

(
−j2π

a0τ2
m

λ

)
.

(17)

When η = η̂, the VA can be compensated.

Sη
2 ( f , τm) = A1rect

(
f
B

)
rect

(
τm

TI
− 1

2

)
× exp

[
−j4π( f + fc)

R0

c

]
× exp

(
−j4π

vbaseτm

λ

)
× exp

(
−j2π

a0τ2
m

λ

)
.

(18)

After performing the Inverse Fourier transform (IFT) of f in Sη
2 ( f , τm), we can obtain

s2
(
t̂, τm

)
= A2rect

(
τm

TI
− 1

2

)
sinc

(
B
(

t̂− 2R0

c

))

× exp

−j4π

(
R0 + vbaseτm + 1

2 a0τ2
m

)
λ

,
(19)
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where A2 is the new amplitude. From (19), it shows that the combined product of a0 and τ2
m

will introduce the DFM, which can lead to the spread of the target’s Doppler. Next, we can
calculate the Fourier transform (FT) of τm based on the stationary phase principle [41,42].

S3
(
t̂, ξ
)
= FTτm

(
s2
(
t̂, τm

))
≈ A3rect

(
λ(ξ − ξ0)

2a0TI

)
sin c

(
B
(

t̂− 2R0

c

))
× exp

[
jπ

λ

2a0
(ξ − ξ0)

2
]

× exp
(

jπ
−4R0

λ
+ j

π

4

)
,

(20)

where A2 is the new amplitude. ξ0 can be expressed as

ξ0 = −2vbase
λ
− a0TI

λ
. (21)

From (20), the width of DFM is given as

Width(DFM) =
2a0TI

λ
. (22)

In Figure 1, the RD images with DFM and without DFM are displayed. As the Doppler
frequency of the target has broadened, the PSM is not applicable when there is DFM in
RD image.

(a) (b)

Figure 1. Sub-RD imaging. (a) With DFM. (b) Without DFM.

According to the above description, each ambiguity number can produce a corre-
sponding matched filter, different matched filters generate sub-RD images with different
Doppler frequency ranges, which are defined as

[
(2η−1)λ·PRF

4 , (2η+1)λ·PRF
4

]
. Since they are

consecutive, we can stitch them together to obtain an ERD image, as Figure 2 shows. Ψ
represents the number of ambiguous numbers, which are odd. The velocity range of ERD
images is given as

[
−Ψλ·PRF

4 , Ψλ·PRF
4

]
. A simulation result of an ERD image with Ψ = 3 is

shown in Figure 3. The substructures present in areas A, B, and C correspond to different
values of η, specifically η = −1, η = 0, and η = 1, respectively. When the ambiguity
number is matched (area B), RM is small. In contrast, when the ambiguity number is not
matched (area A and area C), RM becomes very large.

Denote Ts as the sampling interval, the length of pulse is N = Tr/Ts. Hence, the size
of the ERD image is N ×Ψ ·M.
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Figure 2. Demonstration of stitching RD images.

Figure 3. Simulation of an ERD image.

3. Improved Particle Filter
3.1. The Target Motion Model

In a tracking system, the performance of the filter can be guaranteed when the target
model matches the actual target motion. In this paper, the state vector of a target is given as:

x̃p =
[

rp, ηp, vp
base, ap, Ip

]T , (23)

where p is the time index, ηp is ambiguity number, rp is radial distance, vbase
p is the baseband

radial velocity, ap is the radial acceleration and Ip represents the intensity of the target at
index p.

To simplify calculations, the state vector is rewritten as

xp =
[

rp, vp, ap, Ip
]T , (24)

where vp = vbase
p + ηpvmax and vmax = λ·PRF

2 .
Then the state-transition function is

xp = F · xp−1 + g ·w, (25)

where F is the transition matrix and g is the corresponding process noise input matrix.
They can be defined as

F =


1 TI

1
2 TI

2 0
0 1 TI 0
0 0 1 0
0 0 0 1

 (26)

and

g =

[ 1
6 TI

3 1
2 TI

2 TI 0
0 0 0 1

]T

. (27)
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w represents the statistically independent, two-dimensional white Gaussian noise
with zeros mean and its covariance matrix is

Q =

[
q1 0
0 q2

]
. (28)

The variable q1 describes the model uncertainties in the state-transition equation.
Target tracking typically uses the maximum acceleration rate as its value. q2 is the power
spectral density of the noise in the rate of change in the target reflection amplitude.

The presence of the target at time p is described by a target existence variable Ep,
Ep = 1 represents the target is alive, otherwise, Ep = 0. The probability of the target
existence is modeled as a first-order Markov process and the corresponding probability
transition matrix is

Π =

[
1− Pd Pb

Pd 1− Pb

]
, (29)

where Pb = P{Ek = 1|Ek−1 = 0} is the probability of target birth and Pd = P{Ek = 0|Ek−1 = 1}
represents the probability of target death. Furthermore, P{Ek = 1|Ek−1 = 1} is continu-
ing probability.

3.2. Observation Model

Following the above description, we use the ERD images as the observation data. The
measurement sets are

zp =
{

z(n,k)
p , k = 1, 2, ..., ΨM; n = 1, 2, ..., N

}
. (30)

where n and k represent the index of the axes. zn,k
p is the value of the ERD image cell and

can be expanded as

z(n,k)
p =

{
Iph(n,k)(xp

)
+ v(n,k)

p

v(n,k)
p

. (31)

where h(n,k)(xp
)

is a contribution from the intensity of the target in the cell (n, k) and v(n,k)
p

is the measurement noise in the cell, which is a known Gaussian distribution with zeros
mean, variance σv

2. Some paper use the PSM as h(n,k)(xp
)

[19]. In this paper, we propose a
new spread function named LSM expressed in (32) and (33) to compensate the DFM.

While ap ≥ 0

h(n,k)(xp
)
=

∣∣∣∣sin c
(

2B
c
(
n∆r − rp

))∣∣∣∣× [rect
(

k∆v − vp

apTI
− 1

2

)

+ exp

[
−
(
k∆v − vp − apTI

)2

2Σ2

]
·
[
k∆v > vp + apTI

]
+ exp

[
−
(
k∆v − vp

)2

2Σ2

]
·
[
k∆v < vp

]]
.

(32)

While ap < 0

h(n,k)(xp
)
=

∣∣∣∣sin c
(

2B
c
(
n∆r − rp

))∣∣∣∣× [rect
(

k∆v − vp

apTI
− 1

2

)

+ exp

[
−
(
k∆v − vp − apTI

)2

2Σ2

]
·
[
k∆v < vp + apTI

]
+ exp

[
−
(
k∆v − vp

)2

2Σ2

]
·
[
k∆v > vp

]]
.

(33)
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where Σ is a known parameter that controls the blurring. ∆r and ∆v are the length of each
ERD cell in the range and the velocity axes. Figure 4 shows a example of h(n,k)(xp

)
.

Figure 4. The line spread model.

3.3. Filter Derivation

The filter estimates xp based on a set of all available measurements z1:p = {zi, i = 1, 2, ..., p}.
In the Bayesian setting, the tracking problem can be transformed to a recursive approxi-
mation of the posterior probability density function (PDF) [43], P

(
xp, Ek

∣∣z1:p
)
, and thus

can be split into two stages: prediction and update. We use the PF method proposed by
Rutten [37], where the target existence is separated from the target state.

P
(
xp, Ep = 1

∣∣z1:p
)
= P

(
xp
∣∣z1:p, Ep = 1

)
× P

(
Ep = 1

∣∣z1:p
)
.

(34)

In (34), P
(
xp
∣∣z1:p, Ep = 1

)
denotes the joint state densities and P

(
Ep = 1

∣∣z1:p
)

is the
probability of target existence.

The joint state densities can be expanded as

P
(
xp
∣∣z1:p, Ep = 1

)
= ∑

Ep−1={1,0}
P
(
Ep−1

∣∣z1:p, Ep = 1
)

×P
(
xp
∣∣z1:p, Ep = 1, Ep−1

)
.

(35)

where

P
(
xp
∣∣z1:p, Ep = 1, Ep−1

)
=

P
(
zp
∣∣Ep = 1, xp

)
P
(
xp
∣∣z1:p−1, Ep = 1, Ep−1

)
P
(
zp
∣∣z1:p−1, Ep = 1, Ep−1

)
=

l
(
zp
∣∣Ep = 1, xp

)
P
(
xp
∣∣z1:p−1, Ep = 1, Ep−1

)
l
(
zp
∣∣z1:p−1, Ep = 1, Ep−1

) ,

(36)
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and

P
(
Ep−1

∣∣z1:p, Ep = 1
)
=

[
P
(
zp
∣∣z1:p−1, Ep = 1, Ep−1

)
×

P
(
Ep = 1

∣∣Ep−1
)

P
(
Ep−1

∣∣z1:p−1
) ]

∑
Ep−1∈{0,1}

[
P
(
zp
∣∣z1:p−1, Ep = 1, Ep−1

)
×

P
(
Ep = 1

∣∣Ep−1
)

P
(
Ep−1

∣∣z1:p−1
) ]

=

[
l
(
zp
∣∣z1:p−1, Ep = 1, Ep−1

)
×

P
(
Ep = 1

∣∣Ep−1
)

P
(
Ep−1

∣∣z1:p−1
) ]

∑
Ep−1∈{0,1}

[
l
(
zp
∣∣z1:p−1, Ep = 1, Ep−1

)
×

P
(
Ep = 1

∣∣Ep−1
)

P
(
Ep−1

∣∣z1:p−1
) ] .

(37)

The likelihood ratio in the formula is defined as:

l(·) = P(·)
P
(
zp
∣∣Ep = 0

) . (38)

From [37], We can obtain

l
(

z(n,k)
p

∣∣Ep = 1, xp

)
= I0

 z(n,k)
p

∣∣∣Iph(n,k)(xp
)∣∣∣

σv2

 exp

−
∣∣∣Iph(n,k)(xp

)∣∣∣2
2σv2

, (39)

where I0(·) is the modified Bessel function with an order of zero [44]. The assumption is
made that the noise in each bin is independent. Consequently, the complete likelihood
function can be expressed as a product of all individual contributions from each bin.

l
(
zp
∣∣Ep = 1, xp

)
=

N

∏
n=1

Ψ·M
∏
k=1

l
(

z(n,k)
p

∣∣Ep = 1, xp

)
. (40)

The update step is shown in (36), and then the prediction step can be expressed as

P
(
xp
∣∣z1:p−1, Ep = 1, Ep−1 = 1

)
=
∫

P
(
xp
∣∣xp−1, Ep = 1, Ep−1 = 1

)
× P

(
xp−1

∣∣z1:p−1, Ep−1 = 1
)
dxp−1,

(41)

and

P
(
xp
∣∣z1:p−1, Ep = 1, Ep−1 = 0

)
= P

(
xp
∣∣Ep = 1, Ep−1 = 0

)
. (42)

The probability of existence is

P
(
Ep = 1

∣∣z1:p
)
=

P
(
zp
∣∣Ep = 1, z1:p−1

)
P
(
Ep = 1

∣∣z1:p−1
)

∑
Ep∈{0,1}

P
(
zp
∣∣Ep, z1:p−1

)
P
(
Ep
∣∣z1:p−1

)
=

l
(
zp
∣∣Ep = 1, z1:p−1

)
P
(
Ep = 1

∣∣z1:p−1
)

∑
Ep∈{0,1}

l
(
zp
∣∣Ep, z1:p−1

)
P
(
Ep
∣∣z1:p−1

)
=

l
(
zp
∣∣Ep = 1, z1:p−1

)
P
(
Ep = 1

∣∣z1:p−1
)[

l
(
zp
∣∣Ep = 1, z1:p−1

)
P
(
Ep = 1

∣∣z1:p−1
)
+

1− P
(
Ep = 1

∣∣z1:p−1
) ] .

(43)
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where

P
(
Ep = 1

∣∣z1:p−1
)
= P

(
Ep = 1

∣∣Ep−1 = 1
)

P
(
Ep−1 = 1

∣∣z1:p−1
)

+ P
(
Ep = 1

∣∣Ep−1 = 0
)

P
(
Ep−1 = 0

∣∣z1:p−1
)
,

(44)

and

l
(
zp
∣∣Ep = 1, z1:p−1

)
= ∑

Ep−1∈{0,1}

[
l
(
zp
∣∣Ep = 1, Ep−1, z1:p−1

)
×P
(
Ep−1

∣∣Ep = 1, z1:p−1
) ]

= ∑
Ep−1∈{0,1}

[
l
(
zp
∣∣Ep = 1, Ep−1, z1:p−1

)
×P
(
Ep−1

∣∣Ep = 1, z1:p
) ]

.
(45)

3.4. Implementation of Improved Particle Filter

Sequential importance sampling (SIS) can be used to approximate the P(xp|z1:p, Ep = 1,
Ep−1) in (35), with an importance density function, q

(
x0:p

∣∣z1:p, E0:p
)
, which is the first-order

Markov chain. Assume the important density can be decomposed as follows:

q
(
x0:p

∣∣z1:p, E0:p
)
= q

(
xp
∣∣xp−1, zp, E0:p

)
× q
(
x0:p−1

∣∣z1:p−1, E0:p−1
)
. (46)

The particle weights can be defined as

ωp =
P
(
x0:p

∣∣z1:p, E0:p
)

q
(
x0:p

∣∣z1:p, E0:p
)

∝ ωp−1l
(
zp
∣∣xp, Ep

) P
(
xp
∣∣xp−1, Ep−1, Ep

)
q
(
xp
∣∣xp−1, zp, Ep−1, Ep

) ,

(47)

where ∝ denotes the proportionality.
If the importance density satisfies the following equations:

q
(
xp
∣∣xp−1, zp, Ep−1, Ep

)
= P

(
xp
∣∣xp−1, Ep−1, Ep

)
, (48)

the weights of particles can be expressed as

ωi
p ∝ ωi

p−1l
(

zp

∣∣∣xi
p, Ei

p

)
. (49)

where i is the index of particle.
The normalized weights of particles are

ω̃i
p = ωi

p

/
K

∑
i=1

ωi
p, (50)

K represents the number of particles.
Nevertheless, the SIS method frequently encounters the challenge of degeneracy.

Degeneracy refers to the phenomenon in which only specific weights are consistently
chosen after multiple iterations of SIS The resampling process can be employed to alleviate
the degradation of the particles. There are several resampling methods, such as multinomial
resampling, residual resampling, systematic resampling, etc. [45,46]. The systematic
resampling is used in this paper and the pseudo-code is given in Algorithm 1.

The distribution U(·) in Algorithm 1 is uniform distribution and x̂i
p is the particles

after resampling. K1 and K2 denote the quantities of particles prior to and subsequent to
resampling, correspondingly. After resampling, the weight of all particles will be set to
1/K2.
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Algorithm 1 Systematic Resampling Pseudo-code.

c0 = ω̃0
p

for i = 1 : K1 − 1
ci = ci−1 + ω̃i

p
end for
i = 0
u0 ∼ U

(
0, 1

K

)
for j = 0 : K2 − 1

u = u0 +
1

K2
while ci < u

i = i + 1
end while
x̂i

p = xi
p

ω̂i
p = 1

K2
end for

We can summarize the implementation steps of the proposed approach as follows:

1. Based on (48), generate Nb newborn particles and Nc continuing particles.{
x(b)ip ∼ P

(
xp
∣∣xp−1, Ep−1 = 1, Ep = 1

)
x(c)j

p ∼ P
(
xp
∣∣Ep−1 = 0, Ep = 1

) . (51)

where i and j represent the index of newborn and continuing particles, respectively.
For the continuing particles, the target state-transition function can be obtained
from (25). For the newborn particles, a uniform distribution can be used.

2. Calculate the weights of the particles and normalize them. For the newborn particles:
ω
(b)i
p = l

(
zp

∣∣∣x(b)ip , E(b)i
p = 1

)
ω̃
(b)i
p = ω

(b)i
p

/
Nb
∑

i=1
ω
(b)i
p

. (52)

For the continuing particles:
ω
(c)i
p = l

(
zp

∣∣∣x(c)ip , E(c)i
p = 1

)
ω̃
(c)i
p = ω

(c)i
p

/
Nc
∑

i=1
ω
(c)i
p

. (53)

3. Calculate l
(
zp
∣∣z1:p−1, Ep = 1, Ep−1

)
.

l
(
zp
∣∣z1:p−1, Ep = 1, Ep−1

)
=
∫

l
(
zp
∣∣xp, Ep = 1

)
× P

(
xp
∣∣z1:p−1, Ep = 1, Ep−1

)
dxp.

(54)

We can use the Monte Carlo sampling method to calculate the integral, and the value is

l
(
zp
∣∣z1:p−1, Ep = 1, Ep−1

)
=


1

Nb

Nb
∑

i=1
ω
(b)i
p , Ep−1 = 0

1
Nc

Nc
∑

i=1
ω
(c)i
p , Ep−1 = 1

. (55)
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4. Calculate P
(
Ep−1

∣∣z1:p, Ep = 1
)

in (37). For Ep−1 = 1, define continuing mixing term.

M̃c = l
(
zp
∣∣z1:p−1, Ep = 1, Ep−1 = 1

)
P
(
Ep = 1

∣∣Ep−1 = 1
)

P
(
Ep−1 = 1

∣∣z1:p−1
)

=
1

Nc

Nc

∑
i=1

ω
(c)i
p ·(1− Pd)P

(
Ep−1 = 1

∣∣z1:p−1
)
.

(56)

And for Ep−1 = 0, the newborn mixing term is

M̃b = l
(
zp
∣∣z1:p−1, Ep = 0, Ep−1 = 1

)
P
(
Ep = 1

∣∣Ep−1 = 0
)

P
(
Ep−1 = 0

∣∣z1:p−1
)

=
1

Nb

Nb

∑
i=1

ω
(b)i
p ·P

(
Ep−1 = 0

∣∣z1:p−1
)

Pb.
(57)

Then P
(
Ep−1

∣∣z1:p, Ep = 1
)

can be calculated

Mc = P
(
Ep−1 = 1

∣∣z1:p, Ep = 1
)

=
M̃c

M̃c + M̃b
,

(58)

and

Mb = P
(
Ep−1 = 0

∣∣z1:p, Ep = 1
)

=
M̃b

M̃c + M̃b
.

(59)

5. Calculate the probability of existence, P
(
Ep = 1

∣∣z1:p
)

in (43).
First, from (45), we can obtain

l
(
zp
∣∣Ep = 1, z1:p−1

)
=

Mc

Nc

Nc

∑
i=1

ω
(c)i
p +

Mb
Nb

Nb

∑
i=1

ω
(b)i
p . (60)

Then, based on (43) and (44), the probability of existence can be calculated.

6. Calculate the posterior target state density from (35).{
ω̂
(b)i
p = Mbω̃

(b)i
p

ω̂
(c)i
p = Mcω̃

(c)i
p

. (61)

Combine the newborn particles set and the continuing particles set into a large set
as follows: {(

x(t)ip , ω̂
(t)i
p

)
|i = 1, 2, ..., Nt; t = c, b

}
. (62)

7. Resample Nb + Nc particles down to the Nc particles set,
{(

xi
p, 1

Nc

)
|i = 1, 2, ..., Nc

}
.

8. First, Estimate the ambiguity number of the target.

P
(
ηp
∣∣z1:p, Ep = 1

)
=

Nc
∑

i=1

[
gt
((

1
2 + ηp

)
vmax, vi

p

)
&gt

(
vi

p,
(
− 1

2 + ηp

)
vmax

)]
Nc

(63)

where gt(A, B) is the logical operation, when A > B it equal to logic 1, in contrast,
equal to logic 0. vi

p is the velocity of a particle with index i and & is the logic
AND operation.
Then estimate the other motion state:
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P
(

xi
p
∣∣z1:p, Ep = 1

)
=

Nc
∑

i=1
xi

p ×
[

gt
((

1
2 + ηp

)
vmax, vi

p

)
&gt

(
vi

p,
(
− 1

2 + ηp

)
vmax

)]
Nc
∑

i=1

[
gt
((

1
2 + ηp

)
vmax, vi

p

)
&gt

(
vi

p,
(
− 1

2 + ηp

)
vmax

)] (64)

4. Simulations and Results
4.1. Design of the Simulation System

In the simulation experiment, the echo signals are generated with the true parameters
of a ubiquitous radar. The parameters of radar are shown in Table 1.

The echoes are produced by mixing the desired signal with zeros mean Gaussian
white noise and can be expressed as

secho
(
t̂, tm

)
= s1

(
t̂, tm

)
+ w

(
t̂, tm

)
, (65)

where w
(
t̂, tm

)
is the additive Gaussian white noise with zero mean and variance σw

2.
Then the SNR of the echoes is defined as

SNRr = 10 lg
(

E
σw2

)
, (66)

where E is the power of the desired signal:

E =
∫
t̂

s1
(
t̂, tm

)
dt̂ (67)

Table 1. Parameters of Radar.

Parameter Name Parameter Value

Pulse Repetition Frequency (PRF) 5 kHz
Carrier Frequency 1.36 GHz

Bandwidth 4 MHz
Pulse Width 2 us

Complex Sampling Frequency 5 MHz
Integration Number 2048
Ambiguity Number {−1, 0, 1}
Range of Distance 0 ∼ 30 km
Range of velocity −827.2 ∼ 827.2 m/s

In the simulation, the target appears first in the sixth frame of ERD images and then
disappears in the twenty-sixth frame. The motion state of the target is shown in Table 2. The
initial radical velocity is −300 m/s, hence the corresponding ambiguity number is −1. As
time progresses, the ambiguity number corresponding to the target velocity approaches 0.

Table 2. Motion State of Target.

Parameter Name Parameter Value

Initial Radical Distance 15 km
Initial Radical Velocity −300 m/s

Initial Radical Acceleration 10 m/s2

q1 1
q2 5

Then the birth probability (Pb) and the death probability (Pd) are both set to 0.05.
The prior density of birth particles follows the following uniform distributions: r0 ∼
U(10, 000 m, 20, 000 m), v0 ∼ U(−500 m/s, 500 m/s), a0 ∼ U

(
−20 m/s2, 20 m/s2), I0 ∼

U(30, 100). The numbers of particles are set to Nb = 100, 000 and Nc = 100, 000.
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The Monte Carlo test times are set to 50 and the root mean square error (RMSE ) is
defined as 

RMSE
(
rp
)
=

√
1

50

50
∑

e=1

(
r̂e

p − rp

)2

RMSE
(
vp
)
=

√
1
50

50
∑

e=1

(
v̂e

p − vp

)2

RMSE
(
ap
)
=

√
1

50

50
∑

e=1

(
âe

p − ap

)2

, (68)

where r̂e
p, v̂e

p and âe
p represent the estimation of the target’s distance, velocity, and accelera-

tion, respectively, at the frame p in the eth Monte Carlo test. rp, vp, and ap denote the true
distance, velocity, and acceleration, respectively.

To compare the performance of the LSM and PSM, we first calculate the weights based
on the deviations of distance and velocity between the particles and real target, as Figure 5
shows. It indicates that given the same SNRr, the weight of LSM is higher than that of PSM.
Therefore, the integration efficiency of IPF is higher than traditional PF in the presence
of DFM.

The ERD images with the various SNRr are shown in Figure 6. It is obvious that it is
hard to detect the target using Constant False Alarm Rate (CFAR) technology.

To evaluate the effectiveness of the proposed method in this paper, we conducted four
group experiments at different SNRr levels. The first experiment involved implementing
the IPF on ERD images. In the second experiment, we utilized the traditional PF as proposed
in [37], using the PSM as the spread function, on sub-RD images. The third experiment
employed the method outlined in [37], again utilizing PSM as the spread function, on ERD
images. Finally, the IPF was implemented on sub-RD images for the fourth experiment.
These experimental methods are referred to as Method A, Method B, Method C, and
Method D, respectively.

Figure 7 illustrates the estimation of the target existence probability for the three
methods under various SNR. When the probability exceeds the detection threshold, the
target can be considered alive at that moment. In this simulation, the value of the threshold
is set to 0.7, which is denoted as a dotted line in Figure 7. It shows that due to the lack of
consideration of VA, the energy of the target cannot be sufficiently accumulated, which
results in the complete useless of Method B and Method D. Subsequently, a comparison
between Method A and Method C reveals that the IPF exhibits superior performance in the
presence of DFM within ERD imagery when contrasted with the conventional PF. Although
the performance of traditional PF can reach the IPF under relatively high SNRr. LSM can
achieve far better performance than PSM under low SNRr.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. Relationship Between Weights and the Deviations. (a) LSM with SNRr −15 db. (b) PSM
with SNRr −15 db. (c) LSM with SNRr −18 db. (d) PSM with SNRr −18 db. (e) LSM with SNRr

−21 db. (f) PSM with SNRr −21 db.

(a) (b) (c)

Figure 6. (a) ERD image with SNRr −15 db. (b) ERD image with SNRr −18 db. (c) ERD image with
SNRr −21 db.

RMSE reflects the deviation between the estimated data value and the true value. The
RMSEs of Method A and Method C with different SNRr are shown in Figure 8. With the
decline of SNRr, the tracking accuracy of the two methods degrades. Meanwhile, Method A
shows a better performance than Method C, especially under low SNRr. It indicates that the
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distance and velocity of the target can be estimated more accurately by Method A. The RMSE
of the two methods increases as the SNRr decreases.

(a) (b)

(c) (d)

Figure 7. Estimation of the Target Existence Probability. (a) With SNRr −15 db. (b) With SNRr

−18 db. (c) With SNRr −21 db. (d) With SNRr −24 db.

(a)

Figure 8. Cont.
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(b)

(c)

(d)

Figure 8. The RMSE of: (a) Distance with SNRr −15 db. (b) Velocity with SNRr −15 db. (c) Distance
with SNRr −18 db. (d) Velocity with SNRr −18 db.

4.2. Integration Efficiency Analysis

The proposed KT-MFP-IPF-TBD algorithm in this paper is a hybrid integration algo-
rithm, which can achieve integrated detection and tracking. However, the target integration
efficiency remains an important reference for evaluating its algorithmic performance. The
detection capability of an algorithm is closely related to its integration efficiency, hence
detection capability can be used to evaluate integration efficiency. This paper compared the
detection capability of three methods: A hybrid integration method proposed in [16], which
is consisted of moving target detection and generalized radon transform (MTD-GRT); A
coherent integration method proposed in [8], which is consisted of second-order Keystone
transform, Fractional Fourier Transform and radon Fourier transform (SoKT-FrFT-RFT); KT-
MFP-IPF-TBD method proposed in this paper. For the methods proposed in papers [8,16], a
target detector is also required to detect the targets. In this paper, the Cell Average Constant
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False Alarm Rate (CA-CFAR) is adopted as the detector [47]. The number of target’s echoes
is 20,480, the three methods perform detection based on these echoes. To prevent RM
and DFM, the coherent integration number of MTD in the MTD-GRT method is set to 256,
therefore the GRT is used to perform incoherent integration among 80 sub-RD images. In
the SoKT-FrFT-RFT method, all of the 20,480 echoes are used in coherent integration. In
the KT-MFP-IPF-TBD method, the coherent integration number is set to 2048, therefore
the IPF is used to perform incoherent integration among 10 ERD images. The False alarm
probability of CA-CFAR is set to 10−7. Performing 1000 times Monte Carlo tests, The exper-
iment results are shown in Figure 9. The computational complexity of the three methods is
shown in Table 3, where flops are used to represent complexity.

From the experiment result, it can be seen that KT-MFP-IPF-TBD, as a hybrid accu-
mulation approach, has a detection performance very close to the coherent accumulation
approach SoKT-FrFT-RFT. Specifically, for the needed 80% detection probability, the needed
SNR of the SoKT-FrFT-RFT method is −22.5 dB and that of KT-MFP-IPF-TBD is –21.5 dB,
i.e., the proposed method only suffer from 1 dB SNR loss. However, the computational
complexity of KT-MFP-IPF-TBD is two orders of magnitude lower than that of SoKT-FrFT-
RFT. For the needed 80% detection probability, the needed SNR of the MTD-GRT method
is −17.5 dB. Hence, as with MTD-GRT, which is also a hybrid integration method, its
detection performance is significantly lower than that of KT-MFP-IPF-TBD and has a 4 dB
higher SNR loss compared to method KT-MFP-IPF-TBD.

Figure 9. Detection capability of the three methods.

Table 3. Calculation complexity of the three methods.

Method Name Complexity (Flops)

KT-FrFT-RFT+CA-CFAR 2.4785× 1012

MTD-GRT+CA-CFAR 1.3571× 109

KT-MFP-IPF-TBD 2.0547× 1010

4.3. Ubiquitous Radar Actual Data Validation

In this paper, the algorithms were validated using holographic radar echo data from
high-speed and highly maneuverable aircraft targets. The aircraft hovers in the air with a
maximum speed exceeding 275 m/s, resulting in VA and ambiguity number values of −1,
0, and 1. The ERD plane is composed of three sub-RD and 200 frames of turning data are
selected for experimentation. The ERD plane under two different motion states is shown in
Figure 10. It can be observed that when the acceleration is low, the target energy is more
concentrated and the SNR is higher; when the acceleration is high, the target energy is
scattered and the SNR is lower. The estimation results of the target state are shown in
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Figure 11, it can be seen that the proposed method in this paper is effective in detecting
and tracking high-speed and highly maneuverable targets.

(a) (b)

Figure 10. ERD images of aircraft. (a) With lower acceleration. (b) With higher acceleration.

(a) (b)
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(a) (b)

(c) (d)

Figure 11. Estimation of aircraft. (a) Probability of target existence. (b) Radial range. (c) Radial
velocity. (d)(c) Radial acceleration.
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Due to the low transmission gain of ubiquitous radar, the LTCA is a key technique for 436

ubiquitous radar signal processing. However, both RM and DFM can deteriorate actual 437

performance of this technique. To compensate RM and DFM, this paper proposes an 438

KT-MFP-IPF-TBD method compatible with ubiquitous radar. First, we apply the KT to 439

mitigate the effects of first-order RM. Subsequently, we employ the MFP to resolve the VA. 440

This sequence of steps yields an ERD image that encompasses a broader range of Doppler 441

frequencies. The ubiquitous radar system, known for its comprehensive coverage in both 442

space and time domains, enables the utilization of recursive TBD algorithms for improved 443

performance. To this end, we propose an IPF incorporating an LSM for the purpose 444

of target tracking and detection.We first use KT to compensate the first-order RM and 445
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domain coverage in ubiquitous radar, the recursive TBD can achieve a better application. 448

Therefore, the IPF with LSM is proposed for targets tracking and detection. 449

In our simulation, with a total number of 200000 particles, the final results have shown 450

that this method can detect and track targets reliably and presents a better performance 451

than the traditional PF. Compared to the SoKT-FrFT-RFT method, the proposed approach 452

Figure 11. Estimation of aircraft. (a) Probability of target existence. (b) Radial range. (c) Radial
velocity. (d) Radial acceleration.
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5. Conclusions

Due to the low transmission gain of ubiquitous radar, the LTCA is a key technique
for ubiquitous radar signal processing. However, both RM and DFM can deteriorate the
actual performance of this technique. To compensate for RM and DFM, this paper proposes
a KT-MFP-IPF-TBD method compatible with ubiquitous radar. First, we apply the KT to
mitigate the effects of first-order RM. Subsequently, we employ the MFP to resolve the VA.
This sequence of steps yields an ERD image that encompasses a broader range of Doppler
frequencies. The ubiquitous radar system, known for its comprehensive coverage in both
space and time domains, enables the utilization of recursive TBD algorithms for improved
performance. To this end, we propose an IPF incorporating an LSM for the purpose of
target tracking and detection.

In our simulation, with a total number of 200,000 particles, the final results showed
that this method can detect and track targets reliably and presents a better performance
than the traditional PF. Compared to the SoKT-FrFT-RFT method, the proposed approach
in this paper can reduce computational complexity by two orders of magnitude with only
a 1 dB loss in signal-to-noise ratio. Moreover, compared with other hybrid integration
methods, the detection performance of KT-MFP-IPF-TBD is significantly higher resulting in
a 4dB greater SNR improvement. Finally, we validated the proposed method by utilizing
empirical data from high-speed and high-maneuver targets. The results demonstrate that
the algorithm put forth in this study yields excellent efficacy.
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