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Abstract: To effectively monitor the spatio–temporal dynamics of the surface water extent (SWE)
in Lake Victoria, this study introduced a novel methodology for generating a seamless SWE time
series with fine resolution by integrating daily a Moderate-resolution Imaging Spectroradiometer
(MODIS) and Landsat imagery. In the proposed methodology, daily normalized difference vegetation
index (NDVI) time series data with 30 m resolution were first generated based on the constructed
pixel-by-pixel downscaling models between the simultaneously acquired MODIS-NDVI and Landsat-
NDVI data. In the compositing process, a Minimum Value Composite (MinVC) algorithm was used
to generate monthly minimum NDVI time series, which were then segmented into a seamless SWE
time series of the years 2000–2020 with 30 m resolution from the cloud background. A comparison
with the existing Landsat-derived JRC (European Joint Research Centre) monthly surface water
products and altimetry-derived water level series revealed that the proposed methodology effectively
provides reliable descriptions of spatio–temporal SWE dynamics. Over Lake Victoria, the average
percentage of valid observations made using the JRC’s products was only about 70% due to persistent
cloud cover or linear strips, and the correlation with the water level series was poor (R2 = 0.13). In
contrast, our derived results strongly correlated with the water level series (R2 = 0.54) and efficiently
outperformed the JRC’s surface water products in terms of both space and time. Using the derived
SWE data, the long-term and seasonal characteristics of lake area dynamics were studied. During the
past 20 years, a significant changing pattern of an initial decline followed by an increase was found
for the annual mean SWE, with the lowest area of 66,386.57 km2 in 2006. A general seasonal variation
in the monthly mean lake area was also observed, with the largest SWE obtained during June–August
and the smallest SWE observed during September–November. Particularly in the spring of 2006 and
the autumn of 2020, Lake Victoria experienced intense episodes of drought and flooding, respectively.
These results demonstrate that our proposed methodology is more robust with respect to capturing
spatially and temporally continuous SWE data in cloudy conditions, which could also be further
extended to other regions for the optimal management of water resources.

Keywords: water surface extent; high spatio–temporal monitoring; MODIS; Landsat; data integration;
Lake Victoria

1. Introduction

Lake Victoria is the second-largest freshwater lake in the world and the largest lake
in Africa. The lake supports more than 30 million people in the three countries (Uganda,
Kenya, and Tanzania) around it and modulates the regional climate [1–3]. It plays an
important role in regional sustainable development and in the protection of the ecological
environment [4,5]. In recent years, Lake Victoria has undergone unprecedented changes
that have remarkably impacted livelihoods in the region, giving rise to considerable hydro-
logical, ecological, and environmental concerns [6–9]. Detailed knowledge of the surface
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water extent (SWE) and its spatio–temporal dynamics is extremely crucial for coastal
water management, flood hazard assessment, and the ecological conservation of Lake
Victoria [10–12].

Satellite data with seamless spatial coverage have been widely employed for SWE
delineation [13–17]. Recently, the most used data are optical images from a Moderate
Resolution Imaging Spectroradiometer (MODIS) and Landsat images due to their free
accessibility. For Lake Victoria, Tong et al. [18] successfully estimated the variations in the
lake area from 2000 to 2012 based on MODIS optical imagery. Awange et al. [9] mainly
employed remotely sensed Landsat data to analyze the dynamics of Lake Victoria during
the 1984–2018 period. More recently, Lin et al. [19] also utilized long-term MODIS data to
perform a comprehensive analysis of surface water changes. Notably, some global surface
water datasets (e.g., the European Joint Research Centre’s (JRC) global surface water (GSW)
dataset [20] and the Global WaterPack (GWP) dataset [21]) that address the dynamics of
Lake Victoria have also been developed [9,17,22]. However, coarse resolution and cloud
contamination of satellite images always pose a challenge to capturing SWE with a suffi-
cient accuracy [19,20,22–25]. MODIS provides daily observations, yet omits local features
such as hotspot gulfs, complex shorelines, and even narrow rivers [24–26]. In contrast,
Landsat imagery offers relatively high spatial resolution (30 m), yet the 16-day revisit time
reduces the possibility of cloud-free images over tropical regions like Lake Victoria [27,28].
These limitations pose a significant challenge to capturing rapid-changing lake surface
dynamics, especially during flood/drought events [20,28,29]. To our knowledge, even the
widely used GSW dataset still has gaps and temporal discontinuity issues due to cloud
contamination [30,31].

Multi-sensor combination has been proposed to address these challenges, making the
best of MODIS’s fine temporal resolution and Landsat’s fine spatial resolution [17,31]. Based
on spatial dependence principles, current data fusion methods mainly include the spatial
and temporal adaptive reflectance fusion model (STARFM), the super-resolution mapping
(SRM), and machine learning algorithms [31–34]. However, the key idea of these methods
is generally based on the spatial dependence principle. It is usually assumed that spatially
close objects are likely to have the same class of attribute, which is not appropriate for water
bodies that make abrupt changes due to cloud contamination [20,35]. Therefore, cloud
contamination is actually a critical problem in the process of spatio–temporal fusion [36].
At present, various methods to address cloud removal issues have also been proposed,
including the Markov Random Field (MRF) model, spatio–temporally weighted regression
model, deep-learning model, and spatio–temporal dependence model [31,37,38]. Although
these methods have yielded results in some cases, the persistent tropical clouds largely
compromise the accuracies of data recovery under cloud cover [31]. In this regard, how
to fully leverage the synergistic benefits of multi-source data to develop a collaborative
framework for data fusion and cloud removal techniques would be of considerable value.

For this reason, to better understand surface water distribution and the dynamics of
Lake Victoria, it is critical to account for the above challenges. The primary objective of
this study, therefore, is to propose a methodology (Multi-sensor Integration Framework
for Surface Water Mapping, MIFSWM) to generate a high-resolution, seamless surface
water dataset for Lake Victoria by fusing daily MODIS and Landsat images. The dataset
generated would contribute to a better understanding of surface water dynamics in Lake
Victoria. The remainder of this study is organized as follows. Section 2 describes the study
area and data used. Section 3 presents the methodology of MIFSWM. Section 4 elucidates
the results, and Section 5 gives the conclusions and discussion.

2. Study Area and Data
2.1. Study Area

Lake Victoria (0◦31′N–3◦05′S, 31◦35′E–34◦54′E) is the world’s largest tropical lake,
with a surface area of ~69,000 km2 [3]. It is in the western part of the African Great Rift
Valley [1,2] (Figure 1), mainly located in north-western Tanzania and southern Uganda
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and bordering on eastern Kenya. Lake Victoria is a shallow lake with a mean depth of
~85 m and a mean water storage of ~2760 km3 [7]. The lake draws ~80% of its water from
precipitation and ~20% from tributary runoff [10,39,40]. The mean annual precipitation is
~1300 mm with a bi-annual seasonal pattern: the long-rains season in March–May (MAM)
and the short-rains season in September–November (SON) [19]. The recent two decades
have seen frequent extreme hydro-climatic events in Lake Victoria, bringing increasing
pressures on local government [10,41,42].
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Figure 1. Geographical location of Lake Victoria.

2.2. Datasets and GEE Platform

(1) Daily MODIS surface reflectance data

Daily MODIS surface reflectance products (MOD09GQ/MYD09GQ for Terra/Aqua)
(Collection version 061) were used to derive continuous surface water area (2000–2020).
The products are 250-m resolution atmospherically corrected surface reflectance at the
near-infrared band (841–876 nm) and red band (620–670 nm) [43].

(2) Landsat images

The 30 m resolution Landsat images were acquired from Landsat 5 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper-plus (ETM+), and Landsat 8 Operational Land
Imager (OLI) (2000–2020). A total of 11,295 high-quality cloud-free images were selected
based on the cloud detection and quality assessment bands (QA_PIXEL).

(3) The JRC GSW dataset

The JRC’s GSW monthly water history dataset (version 1.3, 2000–2020) was used for
validation. Produced by analyzing the entire archive of Landsat 5, 7, and 8 using an expert
system, it covers a long history (1984–present) with an overall accuracy of over 90% [20].
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(4) Satellite altimetry data

Satellite altimetry-based Hydroweb monthly mean water level data (2000–2020) were
also used for validation. The data were developed by LEGOS (Laboratoire d’Etudes en
Géophysique Océanographie Spatiales), merging measurements from different altimeters
(TOPEX/Poseidon, ERS-1/2, Envisat and Jason-1/2/3) in the same month [44].

(5) Topographic data

Terrain shadows are often misclassified as water bodies [30,35]. The Japan Aerospace
Exploration Agency (JAXA) Advanced Land Observing Satellite (ALOS) World 3D-30m
(AW3D30) dataset was used to eliminate shadow effects through slope masking.

The above datasets were gathered and processed via the Google Earth Engine (GEE)
platform (http://earthengine.google.com, accessed on 2 July 2023) [45], except for the
satellite altimetry data. Key information and purposes of these datasets are summarized
in Table 1.

Table 1. Summary of the datasets used in this study.

Data Name Temporal
Resolution

Spatial
Resolution Purpose Data Link (accessed on 2 March 2023)

MOD09GQ
MYD09GQ Daily 250 m Continuous surface

water detection

https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_MOD09GQ

https://developers.google.com/earth-engine/
datasets/catalog/MODIS_061_MYD09GQ

Landsat series
(L5, L7, L8) 16 days 30 m Construct

downscaling model

https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LT05_C02_T1_L2
https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LE07_C02_T1_L2
https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LC08_C02_T1_L2

JRC GSW Monthly 30 m
Results evaluation

https://developers.google.com/earth-engine/
datasets/catalog/JRC_GSW1_4

_MonthlyHistory

Hydroweb Monthly Depends on
footprint size http://hydroweb.theia-land.fr

AW3D30 Static 30 m Remove terrain
shadows

https://developers.google.com/earth-engine/
datasets/catalog/JAXA_ALOS_AW3D30_V3_2

3. Methodology

The Normalized Difference Vegetation Index (NDVI) is widely used to identify water
surfaces [46].

NDVI = (ρNIR − ρRed)/(ρNIR + ρRed) (1)

where ρRed and ρNIR refer to the visible red and near-infrared bands of satellite images.
Water bodies can be easily distinguished from background features with NDVI < 0 [47–49].
To generate SWE at a high spatio–temporal resolution, our MIFSWM method consists of
three steps (Figure 2). First, MODIS NDVI was downscaled to Landsat resolution via a
per-pixel regression-based method. Second, monthly Landsat-like cloud-free NDVIs were
generated via the Minimum Value Composite (MinVC) algorithm. Finally, monthly water
surfaces were delineated and validated. Each step is detailed below.

http://earthengine.google.com
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GQ
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GQ
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09GQ
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09GQ
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_4_MonthlyHistory
https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_4_MonthlyHistory
https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_4_MonthlyHistory
http://hydroweb.theia-land.fr
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2
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3.1. Downscaling MODIS NDVIs

In this study, a regression-based approach was used to downscale 250 m MODIS-
NDVI images to 30 m resolution. The approach assumes that concurrent NDVI values from
different sensors are highly correlated, and the correlations are consistent over the entire
time [50]. The algorithm comprises the following four steps:

(a) MODIS-NDVIs and Landsat-NDVIs were first calculated through Equation (1)
based on the daily MOD09GQ/MYD09GQ and Landsat data with the same overpass
time, respectively;

(b) The MODIS-NDVIs (250 m) were consistently resampled to a spatial resolution of
30 m to match the Landsat-NDVI pixel size;

(c) The resampled MODIS-NDVIs and Landsat-NDVIs were subsequently employed as
independent and dependent variables for function regression to establish a downscal-
ing model for each pixel. The model can be expressed as

NDVILandsat
i,j,t = ai,j ·NDVIMODIS

i,j,t + bi,j (2)

where NDVILandsat
i,j,t and NDVIMODIS

i,j,t represent the value of Landsat-NDVI and resam-
pled MODIS-NDVI at the pixel (i, j) and time t, respectively; ai,j and bi,j are fitting
coefficients of the linear regression models.

(d) Generating a daily time series of high-resolution NDVI images (30 m) using the
constructed downscaling models.

3.2. Generating Monthly Cloud-Free NDVI Time Series

Clouds are common in hot and humid regions, which hiders the efficient detection of
water bodies from satellite imagery [29]. To deal with this limitation, the MinVC algorithm
was used to construct monthly cloud-free Landsat NDVIs. In the visible and near-infrared
bands of MODIS and Landsat data, the spectral reflectance of clouds is spectrally flat,
having NDVI values close to zero [51]. Water bodies generally exhibit large negative NDVI
values and, if contaminated by clouds, show less but still negative NDVI values. Therefore,
searching for the minimum NDVI value in a month would most likely correspond to water
bodies. For a detailed explanation of this algorithm, please refer to our previous work [52].
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3.3. Quantifying and Evaluating Surface Water Dynamics

In order to efficiently distinguish water and no-water features for the derived time se-
ries of NDVI images, the Otsu algorithm was used to delineate water surfaces [53]. The Otsu
algorithm is one of the most popular dynamic threshold determination methods, which
aims to separate water bodies from background features by maximizing the inter-class
variance and minimizing intra-class variance in bimodal histograms of NDVI values [54].
To enhance water detection accuracy, we first divided NDVI images into equally sized
blocks, on which the Otsu algorithm was used to derive local threshold values [55,56]. To
evaluate the performance of our method, the Hydroweb water level data were correlated
with water surface data. The SWE data were also compared with the JRC’s GSW data
to examine their consistencies in describing water surface spatio–temporal dynamics in
2000–2020.

4. Results
4.1. Overall Performance of our Method
4.1.1. The Performance of Spatio–Temporal Resolution

Based on the proposed MIFSWM method, we detected SWE dynamic series at a
monthly time interval for Lake Victoria spanning a time period from 2000 to 2020. Figure 3
illustrates the comparison between monthly surface water surface area data derived from
different results and the water level variability of Lake Victoria. Time series values marked
with the green crosses (Figure 3a) and blue crosses (Figure 3b) are the monthly SWE results
developed by JRC’s GSW and our method, respectively. To compare the reliability of
different SWE results, altimeter water level time series were also produced, which are
marked with orange circles. As shown in Figure 3a, the JRC’s GSW areas are overall low
and vary considerably during 2000–2020. This was mainly caused by cloud contamination,
which finally led to some gaps and invalid observations in JRC’s GSW results. Further
examination (Figure 4) shows that the fraction of valid pixels is relatively low during our
study period (only 93 valid observations), insufficient to capture SWE dynamics, especially
during wet seasons (March–May) from 2000 to 2012. Our result, however, can well resolve
the cloud contamination issues and improve the number of observations (Figure 3b). In
particular, the MIFSWM-based SWE results have better temporal continuity and show quite
high consistency with the altimeter water level time series, which will certainly facilitates
the time series analysis.
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4.1.2. Correlation with Water Level Series

Figure 5 illustrates the scatter diagram between the monthly surface water area time
series and the altimeter water level measurements from 2000 to 2020. As can be seen in
Figure 5a, the linear least squares regression analysis resulted in low R2 values of 0.13
between the JRC’s GSW monthly water history records and altimeter water level time series,
indicating that obvious gaps exist between the two datasets. However, as illustrated in
Figure 5b, the monthly SWE data determined by our MIFSWM method are well-represented,
which achieved highly significant correlations (R2 = 0.54) with altimeter water level time
series. It suggested that the temporal variations of SWE data can be well captured using
our method.
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4.1.3. Visual Comparison of the SWE Results

Visual inspection also corroborates the good performance of our method. Figure 6
presents a comparison between JRC’s GSW monthly water body map and MIFSWM-based
SWE in April 2016 over Lake Victoria, which corresponds to the red frame in Figure 3. As
revealed in Figure 6, the resultant surface water distribution derived from JRC’s GSW loses
many spatial details and shows poor continuity (Figure 6b), probably due to the fact that
it originally contains large spatial gaps caused by the cloud effects on Landsat imagery
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(Figure 6a). By contrast, the MinVC algorithm was adopted in monthly composite NDVI
from daily surface reflectance data (Figure 6c), and clouds cover and cloud shadows were
efficiently removed in MIFSWM-based surface water extent (Figure 6d). The resultant
SWE of the MIFSWM method provides a continuous water body map and has better
visual results. The visual comparison indicates that MIFSWM is a robust and efficient
methodology for SWE detection, which allows better capturing of open surface water
extent in cloudy conditions that are incompetent to be detected by JRC’s GSW monthly
water history product.
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4.2. Temporal Dynamics of SWE
4.2.1. Surface Water Dynamics at the Inter-Annual and Seasonal Scale

Figure 7 illustrates the time series of annual maximum, minimum, and mean surface
water areas derived from our method in Lake Victoria. It is noticed that they all show
similar fluctuation trends during the period from 2000 to 2020, which exhibits a pattern of
an initial decline followed by an increase. From 2002 onwards, water areas were generally
declining until they reached the lowest value of 66,386.57 km2 in 2006 (Figure 7), with an
average descending rate of 8.79 km2 per year. While since 2006, on the whole, surface
water areas have transitioned into a significant increasing trend year by year. The linear
regression suggests that the inundation area was generally increasing at a rate of 5.51 km2

per year with several local fluctuations. These findings closely agree with the results of the
previous study by Awange et al. in 2019 [9]. Furthermore, during the past 20 years, such
inundation area fluctuations occurred in the extreme hydrological years of 2006 and 2020
were also well captured by our SWE results.
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Figure 7. Time series of annual maximum, minimum, and mean surface water areas from 2000 to
2020. The regression line (shown as a dotted line) between the annual mean area and time exhibits a
pattern of an initial decline followed by an increase.

In regard to the average SWE of each month, a seasonal analysis of the surface water
area was presented in Figure 8a. In the figure, a general seasonal variation pattern can be
observed that the average SWE data are gradually increasing with the change of seasons.
The largest lake area occurs in the southern hemisphere winter (June–August), and the
smallest lake area occurs in spring (September–November). According to the previous
studies of Nicholson [57] and Awange [12], most of Lake Victoria’s water supply comes
from regional rainfall, and heavier rainfall at Lake Victoria is concentrated in March–
June. Therefore, this seasonal variations in the lake area are generally consistent with
local precipitation characteristics, which manifests a general seasonality of dry in spring
and wet in winter. Particularly in the spring of 2006 and autumn of 2020, Lake Victoria
witnessed intense episodes of drought and flooding events, respectively (Figure 8b,c),
which have posed significant impacts on the lake’s shoreline communities in some hotspot
regions [7,10].
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Figure 8. Seasonal SWE variations of Lake Victoria (a). Subfigure (b) shows low SWE preventing fish-
ermen from docking fishing boats in the spring of 2006 (quoted from: https://www.ocala.com/story/
news/2006/12/10/lake-victorias-levels-drop-puts-african-nations-at-risk/31177621007/ (accessed
on 28 June 2023). Subfigure (c) shows shoreline communities flooded by large SWE in the autumn of
2020 (quoted from: https://eos.org/articles/heavy-rains-human-activity-and-rising-waters-at-lake-
victoria (accessed on 28 June 2023).

4.2.2. Extreme SWEs in 2006 and 2020

To determine the ability of our SWE result to capture extreme inundation conditions
in 2006 and 2020, we further focused on two detailed examples of surface water mapping
in Mwanza Gulf (in the south) and Winam Gulf (in the northeast) (Figure 9). Figure 9
shows two enlarged mapping results in the southern Mwanza Gulf and the northeastern
Winam Gulf. It was found that both the JRC’s GSW dataset and our result reflect extreme
inundation conditions, i.e., shrunk lake area in 2006 and expanded lake area in 2020.
However, the changes are not accurately reflected by JRC’s GSW dataset. In the Winam
Gulf, the lake area increased by 32.82% (from 1072.77 km2 to 1424.82 km2) as detected by
JRC’s GSW, whereas it only increased by 12.22% (from 1332.06 km2 to 1494.89 km2) based
on our method (Figure 9(e1,e2)). The change rate of JRC’s GSW seems higher, but the value
is spurious. Further inspection in Figure 9(a2–d2) shows that JRC’s GSW loses spatial
details, leading to consistent underestimation of lake areas. There are two possible reasons
for this phenomenon. For one thing, the resultant surface water maps of the JRC’s GSW
show poor continuity, which originally contained gaps due to sporadic clouds cover and
linear strips from Landsat images, making it easy to lose spatial details. For another, Winam
Gulf is characterized by extensive coastal floating vegetation or wetland floodplains [58].
These inundation conditions are difficult to be detected from the JRC’s GSW because the
spectral signature is confused by vegetation. By contrast, as shown in Figure 9(c4,d4),
our method is more robust and could capture this detailed inundation well owing to the

https://www.ocala.com/story/news/2006/12/10/lake-victorias-levels-drop-puts-african-nations-at-risk/31177621007/
https://www.ocala.com/story/news/2006/12/10/lake-victorias-levels-drop-puts-african-nations-at-risk/31177621007/
https://eos.org/articles/heavy-rains-human-activity-and-rising-waters-at-lake-victoria
https://eos.org/articles/heavy-rains-human-activity-and-rising-waters-at-lake-victoria
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available cloud-free MinVC NDVI, especially in the southeastern shore of Winam Gulf
(highlighted by red circles in Figure 9(d4)). It not only expresses relatively continuous
water maps with better visual results but also attains a higher performance regardless of the
weather conditions, which could provide a real representation of water safety and help to
guide regional water resource management such as water supply, fisheries, and navigation.
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Figure 9. Visual interpretation and comparison of surface water mapping under extreme inundation
conditions for JRC- and MIFSWM-based results. (a1–d1) are the false-color composite of the Landsat
imagery of Mwanza Gulf and Winam Gulf in November 2006 and November 2020, respectively.
(a2–d2) are JRC-based surface water maps derived from (a1–d1). (a3–d3,a4–d4) show the cloud-free
MinVC NDVI and MIFSWM-based inundation maps corresponding to each period. The histogram
(e1,e2) displays the surface water area statistics estimated by JRC’s GSW and our MIFSWM between
2006 and 2020.

5. Conclusions and Discussion
5.1. Conclusions

In this study, we developed a MIFSWM methodology to derive monthly 30 m SWE
time series over Lake Victoria from 2000 to 2022. The 250 m MODIS NDVI images were first
reconciled with the 30 m Landsat NDVI images, creating high-resolution daily NDVI time
series. Monthly cloud-free NDVI series were then composited via the MinVC algorithm
and were finally segmented to generate seamless SWEs. The result was evaluated based
on a satellite altimetry-based water level dataset and a state-of-the-art SWE product. Our
result is superior to the JRC’s GSW dataset, which underestimates lake areas due to several
gap issues. Moreover, it is more consistent with the water level series. Based on the new
dataset, we re-examined the long-term and seasonal SWE dynamics of Lake Victoria. In the
last 20 years, a significant changing pattern of an initial decline followed by an increase was
found in inundation areas. The annual mean inundation area showed a significant declining
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trend from 2002 to 2006 (−8.79 km2·a−1). The trend was overturned in 2006, when a
significant increasing trend (5.51 km2·a−1) was observed. The new dataset can successfully
capture extreme inundation conditions in two hotspot gulfs, further corroborating the
effectiveness of our method.

5.2. Future Outlook and Implications

To our knowledge, the MIFSWM method offers the first high-resolution, seamless
surface water maps at a monthly scale in Lake Victoria. Compared with the existing SWE
dataset, it can provide reliable descriptions of spatio–temporal dynamics of water bodies.
We believe this work provides several important implications for both managerial practice
and future research.

Firstly, as the largest freshwater lake in Africa, Lake Victoria supports the livelihood
of more than 30 million people living around it. It modulates regional climate and plays a
crucial role in regional sustainable development and biodiversity conservation, but it is also
prone to hydrological extremes [59,60]. Fortunately, time series of inundation information
permits effective monitoring of the long-term variations in SWE, including some hotspot
gulfs and even small water bodies. It would benefit the water safety management program
to minimize casualties and property damage. The long monitoring information reported
here may also potentially contribute to a more comprehensive understanding of regional
hydrological and biogeochemical processes. It would be helpful to provide new insights for
tracking and quantifying climate change and human influences on regional SWE variability.

Secondly, our proposed methodology shows obvious superiority compared with some
recent methods of surface water dynamic monitoring using Landsat and MODIS archives.
Although some methodologies have been presented for exploring surface water dynamics,
most of the current products are discontinuous in space or time. Our method makes the
best of MODIS and Landsat data to develop a collaborative framework for data fusion and
cloud removal. In this framework, an NDVI downscaling strategy and MinVC algorithm
are combined to efficiently overcome data gaps and coarse-resolution problems, which is
our key innovation. What is more, the MIFSWM methodology is implemented on the GEE
platform, where daily MODIS data, Landsat, and Sentinel-2 data are available worldwide.
It can be easily extended to other high-resolution images and to other regions. It may
prove as a useful tool to provide a unique opportunity for continuous and reliable surface
water mapping. Besides these practical contributions, the proposed methodology may have
limitations to be addressed in the future. It should be noted that NDVI is the most common
index to identify water body information. However, the land surface in water bodies’
environment is complex; it also faces problems of distinguishing shadows, buildings, or
dark soil from water. Thus, the algorithms used to effectively remove shadows should be
further improved to generate a more accurate SWE dataset.
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