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Abstract: Crop classification of large-scale agricultural land is crucial for crop monitoring and yield
estimation. Hyperspectral image classification has proven to be an effective method for this task.
Most current popular hyperspectral image classification methods are based on image classification,
specifically on convolutional neural networks (CNNs) and recurrent neural networks (RNNs). In
contrast, this paper focuses on methods based on semantic segmentation and proposes a new
transformer-based approach called HyperSFormer for crop hyperspectral image classification. The
key enhancement of the proposed method is the replacement of the encoder in SegFormer with
an improved Swin Transformer while keeping the SegFormer decoder. The entire model adopts a
simple and uniform transformer architecture. Additionally, the paper introduces the hyper patch
embedding (HPE) module to extract spectral and local spatial information from the hyperspectral
images, which enhances the effectiveness of the features used as input for the model. To ensure
detailed model processing and achieve end-to-end hyperspectral image classification, the transpose
padding upsample (TPU) module is proposed for the model’s output. In order to address the problem
of insufficient and imbalanced samples in hyperspectral image classification, the paper designs an
adaptive min log sampling (AMLS) strategy and a loss function that incorporates dice loss and focal
loss to assist model training. Experimental results using three public hyperspectral image datasets
demonstrate the strong performance of HyperSFormer, particularly in the presence of imbalanced
sample data, complex negative samples, and mixed sample classes. HyperSFormer outperforms state-
of-the-art methods, including fast patch-free global learning (FPGA), a spectral–spatial-dependent
global learning framework (SSDGL), and SegFormer, by at least 2.7% in the mean intersection over
union (mIoU). It also improves the overall accuracy and average accuracy values by at least 0.9% and
0.3%, respectively, and the kappa coefficient by at least 0.011. Furthermore, ablation experiments
were conducted to determine the optimal hyperparameter and loss function settings for the proposed
method, validating the rationality of these settings and the fusion loss function.

Keywords: crop classification; hyperspectral image classification; deep learning; transformer;
semantic segmentation

1. Introduction

Agriculture forms the foundation for human survival and development. The classifica-
tion of crops on large-scale agricultural land holds immense significance in various aspects,
including crop monitoring, yield estimation, and post-disaster compensation statistics.
In recent years, advanced scientific and technological approaches have been extensively
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employed in agriculture to reduce agricultural expenditure and advance scientific, precise,
and intelligent farming methods [1]. Remote sensing technology, specifically hyperspectral
remote sensing, has played a pivotal role in this regard. Hyperspectral images, known for
containing a wealth of spectral features, have found widespread applications in agriculture
and forestry, such as crop classification, geological exploration, forestry delineation, and
environmental monitoring [2].

Crop classification methods using hyperspectral images involve the processing of
hyperspectral data. In the realm of hyperspectral image classification, traditional methods
typically follow a data processing sequence composed of image data preprocessing, feature
extraction, and classification based on the extracted features. Multinomial logistic regres-
sion (MLR) and the support vector machine (SVM) are recognized as the most prominent
feature extraction and classification methods in this context [3].

The advancement of deep learning technologies has led to the widespread adoption
of recurrent neural networks (RNNs) for sequential tasks. Likewise, convolutional neural
networks (CNNs) have demonstrated their applicability across a range of computer vision
tasks. When compared to traditional machine learning approaches, CNNs offer notable
advantages in terms of prediction accuracy. Moreover, traditional methods often entail
stringent image acquisition requirements, resulting in considerably higher overall time
costs as compared to CNN-based approaches [4].

Hyperspectral image classification shares similarities with image classification meth-
ods in computer vision. In this study, we refer to this specific approach as the hyperspectral
image classification method based on image classification. This method entails partitioning
the H ×W hyperspectral image data into H ×W image blocks, each with a predetermined
size of S× S, during both model training and prediction. In this context, H and W rep-
resent the dimensions of the hyperspectral image being classified, while S denotes the
predefined block size determined by the model input. Subsequently, all blocks undergo
feature extraction utilizing an image classification model.

In contrast to traditional methods, this approach comprehensively leverages spatial
features by predicting the class assignment of each pixel based on its neighboring blocks.
However, this model exhibits high computational complexity due to repeated calculations
for pixels in the same position during inference. Furthermore, methods based on image clas-
sification solely concentrate on the fixed data within the divided image blocks, overlooking
the global spatial context information.

The primary objective of hyperspectral image classification is to assign a label to each
pixel within the hyperspectral image, a task akin to semantic segmentation in computer
vision. Consequently, certain researchers have tackled the challenge of hyperspectral image
classification by enhancing traditional semantic segmentation models such as U-Net and
the fully convolutional network (FCN). These improvements aim to enhance computational
efficiency and achieve higher accuracy [5].

However, the majority of studies focusing on hyperspectral image classification have
predominantly employed CNN and RNN approaches [6–8]. CNN-based methods primar-
ily emphasize local features within the hyperspectral images themselves, overlooking the
distinctive spectral features unique to hyperspectral data [9]. On the other hand, RNN
approaches solely attend to the distinct spectral sequence features, lacking the ability to
effectively process global sequence information due to their unidirectional nature. Further-
more, hyperspectral image data often exhibit imbalanced samples, with certain categories
having significantly more instances, sometimes even tens of times more, compared to other
categories [10]. In terms of sampling strategies, many methods only consider positive
samples that are annotated with corresponding crop classes within the dataset. This results
in a high misclassification rate for unlabeled negative samples that do not belong to any
crop class. Consequently, the visualization of prediction results tends to have low quality,
with unclear classification boundaries.

This paper revisits the structural characteristics of hyperspectral images, recognizing
their abundant sequence features and the need to capture both local and global spatial
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context information. In light of this, we turn to the transformer architecture, which has
gained popularity in computer vision. The main contributions of this paper are as follows:

(1) We propose an end-to-end hyperspectral image classification method called HyperS-
Former, which combines a transformer and semantic segmentation. HyperSFormer
enhances the SegFormer architecture by replacing its encoder with an improved Swin
Transformer while retaining the SegFormer decoder. By leveraging the powerful image
and sequence processing capabilities of the transformer, we address the limitations of
the traditional CNN and RNN frameworks in expressing global information entropy
due to insufficient contextual information [11].

(2) To extract detailed spectral and spatial context information more effectively from hy-
perspectral images, we introduce an adaptive hyperspectral image embedding method
called hyper patch embedding (HPE). Prior to the input encoder, the HPE module en-
codes hyperspectral images into fixed-dimensional embedding vectors, which are then
fed into the model’s encoder. The encoder leverages multiple levels of self-attention
operations to capture image feature information at different levels. Additionally, a
transpose padding upsample (TPU) module is integrated at the output of the decoder
to preserve the width and height information of the image during the encoding and
decoding process, ensuring end-to-end hyperspectral image classification.

(3) To ensure the effectiveness of training, this study proposes an adaptive min log
sampling (AMLS) strategy. This strategy determines the number of samples used for
training by setting sampling coefficients s based on the distribution of the different
datasets. Additionally, during training, random flips are applied to the images in
both vertical and horizontal directions, and samples are randomly selected from the
training set for parameter updating, allowing for different gradients and effective
training. Moreover, a novel loss function is designed that combines focal loss and
dice loss, considering the distinctions between positive and negative samples, as well
as between difficult and easy samples. This loss function aims to achieve efficient
training and accurate classification outcomes.

The rest of the paper is organized as follows. Section 2 introduces the methods in
hyperspectral image classification and describes the details of the proposed HyperSFormer,
and Section 3 details the comparative results obtained on the three datasets. Next, Section 4
presents the ablation experiments and a discussion on the model design. Finally, Section 5
concludes the paper.

2. Background

In recent years, deep learning approaches have demonstrated remarkable achieve-
ments in the field of hyperspectral remote sensing. Particularly, methods based on image
classification and semantic segmentation have proven successful for hyperspectral image
classification. Traditional CNN-based methods have encountered limitations, prompting
researchers to explore alternative approaches using the transformer architecture. More-
over, the persisting challenges of limited and unbalanced sample sizes remain significant
considerations in hyperspectral image classification.

2.1. Hyperspectral Image Classification Methods Based on Image Classification

Image classification methods are widely used in computer vision analysis and offer
significant advantages in terms of accuracy. Each pixel and its surrounding pixels need to
be divided into a hyperspectral image block based on the block size set by the model before
classification to enable feature extraction and model training. Zhong et al. [12] proposed the
spectral–spatial residual network (SSRN) that directly uses original three-dimensional (3D)
cubes as input to learn discriminative features from spectral features and spatial contexts in
hyperspectral images. Ma et al. [13] introduced a double-branch multi-attention mechanism
(DBMA) network, which applies two types of attention mechanisms to extract spectral
and spatial features separately, ensuring the extraction of more discriminative features.
Song et al. [14] developed a deep feature fusion network (DFFN) that incorporates residual
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learning to optimize multiple convolutional layers as identity maps, simplifying the train-
ing of deeper networks. The long short-term memory (LSTM), as a special deep learning
architecture, is highly capable of modeling in the spectral dimension. Hu et al. [9] intro-
duced the spatial–spectral convolutional LSTM 3D neural network (SSCL3DNN), which
utilizes data blocks within a local sliding window as input for each storage unit, leveraging
the capabilities of long short-term memory (LSTM) in modeling the spectral dimension.

Despite the remarkable classification accuracy achieved by these image classification
methods, computational redundancy and the lack of global information learning in over-
lapping parts of adjacent blocks are inevitable. This is due to the requirement of dividing
hyperspectral images into image blocks for model training.

2.2. Hyperspectral Image Classification Methods Based on Semantic Segmentation

Semantic segmentation is a fundamental task in computer vision, sharing similarities
with hyperspectral image classification by assigning a classification label to each pixel in an
image. Long et al. [15] introduced the FCN, the first deep learning model utilized for seman-
tic segmentation, which achieved remarkable success in the field by replacing the final fully
connected layer of the image classification model with a 1 × 1 convolutional kernel and
upsampling the image to the original size for segmentation output. Ronneberger et al. [16]
extended semantic segmentation to the medical domain and proposed U-Net, which inte-
grates feature maps from different layers to capture varying sizes of information within an
image. With the increasing popularity of the transformer architecture in computer vision, it
has also been applied to semantic segmentation. Xie et al. [17] put forward SegFormer, a
semantic segmentation network consisting of a transformer-based encoder and a multilayer
perceptron (MLP)-based decoder. It adopts the architecture of the transformer block in the
vision transformer (ViT), improves the downsampling method to generate feature maps of
different levels, and designs a more suitable lightweight decoder of transformer architecture
designed to obtain a good segmentation effect with only a four-MLP architecture.

Although the goal of hyperspectral image classification is the same as semantic segmen-
tation, it is infeasible to transfer the semantic segmentation model directly to hyperspectral
image classification. Because of the difficulty of hyperspectral image acquisition, the dataset
often has only one image, and the training samples are selected based on the whole image,
resulting in highly sparse training samples. The irregularity of the spectral bands of each
hyperspectral image dataset also leads to model input uncertainty.

To solve the above problem, Xu et al. [18] suggested a spectral–spatial fully convolu-
tional network (SSFCN) and a new mask matrix to assist in training for the sparse training
samples of hyperspectral images. Zheng et al. [19] proposed a fast patch-free global learn-
ing (FPGA) framework for hyperspectral image classification. The sampling strategy global
stochastic stratified (GS2) transforms all training samples into stratified samples to solve
the problem of the failure to converge during training. Moreover, in the design of the
network, FPGA applies a spectral attention encoder based on the FCN with the addition
of a lateral connection module to maximize the exploitation of the global spatial context
information and can effectively improve model performance.

The sampling strategy of FPGA only focuses on the stratified samples during each
training instance and does not balance the relationship between difficult and easy samples.
When the sample data are unbalanced, it is challenging for FPGA to extract the most dis-
criminative features. Addressing the problem of insufficient and imbalanced hyperspectral
image samples, Zhu [5] designed the spectral–spatial-dependent global learning frame-
work (SSDGL). The framework uses a hierarchically balanced (H-B) sampling strategy
and weighted softmax loss to solve the sample imbalance problem while introducing the
global convolutional long short-term memory (GCL) and global joint attention mechanism
(GJAM) modules to extract the long short-term dependency of spectral features and feature
representations in attention regions.

Niu et al. [20] propose a novel semantic segmentation model (HSI-TransUNet) for
crop mapping, which could make full use of the abundant spatial and spectral information
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of UAV HSI data simultaneously. The proposed HSI-TransUNet designed a spectral-
feature attention module for spectral features aggregation in the encoder, and sub-pixel
convolutions are adopted to avoid the chess-board effect in the segmentation results
in the decoder. The proposed HSI-TransUNet has achieved good performance in crop
classification. The 3D-CSAM-2DCNN proposed by Meng et al. [21] automatically learned
the spectral and spatial features of 14 rice varieties and deeply extracted them by u hybrid
convolutional neural network structure. The 3D-CSAM-2DCNN attempts to optimize the
model with the end-to-end trainable attention module and performed the best on the fine
classification of rice varieties.

2.3. Current Research on the CNN and Transformer

The CNN, as a current mainstream deep learning architecture, has the powerful ability
to extract local spatial information from hyperspectral images. However, CNNs encounter
performance bottlenecks due to the difficulty of the CNN architecture to capture the spectral
sequence information in hyperspectral images well, especially the global spectral similarity
information. The CNN can focus too much on the spatial context information in the data,
distorting the order of spectral feature learning and increasing the difficulty of mining
complete spectral information.

Vaswani et al. [11] found that the transformer architecture demonstrates powerful
performance in natural language processing (NLP) tasks. Dosovitskiy et al. [22] reflected
on the use of the transformer architecture in NLP tasks and proposed the ViT, the first
computer vision model based on the transformer architecture, which performed well in
vision tasks.

In the application of hyperspectral image classification, Hong et al. [23] observed
the impressive capability of the transformer architecture in processing sequence informa-
tion. To leverage this, they introduced a novel network for image classification known as
SpectralFormer, which utilizes the transformer’s ability to learn local spectral sequence
information from adjacent bands and generate group-wise spectral embeddings. Addi-
tionally, they designed a cross-layer skip connection to enable the transfer of memory-like
components from shallow to deep layers through adaptive learning, effectively integrating
the “soft” residuals across layers.

Nevertheless, the transformer architecture has the following drawbacks in the hyper-
spectral image classification methods based on semantic segmentation:

(1) The transformer architecture performs well in processing global sequence context
information. However, it is inferior to the CNN in processing local spatial information,
and each encoder in the ViT model outputs a feature map of the same size, which does
not consider the multiscale features of the image and cannot be used directly as an
encoder in semantic segmentation [24].

(2) The model based on the transformer architecture has strong generalization after train-
ing. However, training the model with the transformer architecture often requires
numerous training samples for good generalization. The small number of training sam-
ples and the unbalanced distribution of samples in hyperspectral image classification
datasets make it difficult to train the model. A sampling strategy and training scheme
must be fully adapted to the transformer architecture to obtain better results [25].

2.4. Current Research on Insufficient and Imbalanced Samples

Hyperspectral image datasets are often limited to a single image, posing significant
challenges to achieving high accuracy in hyperspectral image classification due to the
scarcity of training samples. Pretrained deep learning networks offer a potential solution
by leveraging knowledge from related domains. Yang et al. [26] pretrained a CNN network
with a two-channel architecture, preserving the trained bottom and middle layers while
initializing the top layer randomly for specific data training. Pan et al. [27] introduced the
multi-grained network (MugNet) to address the spectral relationships between different
bands using multi-grain scanning. They employed a semi-supervised approach in the
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convolution kernel generation process to maximize the utilization of finite samples. To
exploit both spatial and spectral information effectively, Mei et al. [10] devised a 3D
convolutional autoencoder (3D-CAE) along with an auxiliary 3D convolutional decoder
network. Their approach involved unsupervised training for the 3D convolutional decoder
and used it to guide the training of the 3D-CAE.

For the hyperspectral image classification method used for crop classification, the
following questions arise:

• How should the model based on semantic segmentation consider the relationship
between spectral bands?

• How can we fully use the global and local information in the transformer-based model?
• How can we solve the problem of insufficient and imbalanced samples in a hyperspec-

tral image dataset?

To overcome the above problems, we propose HyperSFormer, a transformer-based
end-to-end hyperspectral image classification method for crop classification.

3. HyperSFormer

This section reviews knowledge of the classical transformer architecture and proposes
the HyperSFormer method. The model is a complete end-to-end hyperspectral image classi-
fication model, which implements end-to-end image segmentation by learning the mapping
f ∗ : RH×W×B → RH×W×C . As illustrated in Figure 1, the model converts hyperspectral

images into embedding vectors that are suitable for the Swin Transformer architecture
through the HPE module. It initially extracts both local spatial and global spectral context
information from the images. The uniquely designed Swin Transformer encoder extracts
feature maps of various sizes and levels, which are then fused by the decoder using the
improved SegFormer. This fusion allows for thorough learning of the spatial context in-
formation within different sample ranges. The inclusion of the TPU module preserves the
original image size information during decoding, which is crucial for achieving end-to-end
hyperspectral image classification. Additionally, the AMLS sampling strategy addresses
the issue of insufficient and imbalanced training samples in the hyperspectral image classi-
fication dataset. To ensure fast model convergence, a loss function specifically tailored for
hyperspectral image classification is designed.
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3.1. Swin Transformer

The transformer architecture is a deep learning architecture utterly unlike the CNN
and RNN and was first used in NLP. Due to its good results in dealing with sequence-to-
sequence problems (e.g., machine translation and text summary generation), researchers
have stopped using the RNN, which is a one-way-only sequence processing architecture,
and enabled the model to capture global information at any position in the sequence
through the powerful self-attention mechanism in the transformer [28]. Beyond NLP, the
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computer vision field has also begun to re-evaluate the limitations of CNNs and explore
the potential of the transformer architecture in improving model performance [29].

The ViT pioneered using the transformer architecture for better results in computer
vision [24]. The model divides an image into blocks and encodes the position so that the
image is transformed into the embedding vector that can be input into the transformer
encoder while adding the cls embedding to the input to achieve the effect of image clas-
sification. The Swin Transformer proposed by Liu et al. [30] is another great success of
the transformer architecture in computer vision. After re-evaluating the limitations of the
ViT model, the Swin Transformer employs shifted windows and a multi-level feature map
design similar to that of the CNN model, achieving better results than the CNN-based
model in tasks in computer vision (image classification, object detection, semantic segmen-
tation, etc.). Because it is more suitable for extracting sequence information features, it
has attracted increasing attention in video understanding, multimodal, and other fields.
The transformer architecture provides a new solution and creative thinking for computer
vision-related tasks.

The success of the transformer architecture heavily relies on the self-attention module
for extracting internal information from the sequence. In contrast to CNN, the transformer
encoder decreases its reliance on external information by stacking and integrating multiple
self-attention modules, resulting in the formation of multihead self-attention (MSA). The
specific pseudocode for the MSA module is provided in Algorithm 1.

Algorithm 1 multi-head self-attention

1: Input: X = (x1, · · · , xn): a sequence data, where xi has m length
2: Wq, Wk, Wv: three transformation matrices of m×m
3: Nhead: the number of multi-head
4: Output: Z: a sequence data
5: Q = (q1, ..., qm)←−WqX
6: K = (k1, ..., km)←−WkX
7: V = (v1, ..., vm)←−WvX
8: d←− m

Nhead

9: Z←− softmax
(

QKT
√

d

)
V

10: return Z

However, the self-attentive module only operates on the encoded vector of the image
and does not preserve the location information. This module has specific restrictions on
the information extraction of image data containing local information; therefore, the ViT
conducts position coding to retain image position information when patch embedding. The
Swin Transformer improves based on the ViT and retains position information through
relative position encoding for each pixel during MSA. Additionally, the Swin Transformer
adopts a patch merging module to achieve a hierarchical architecture similar to that of
a CNN, thereby allowing the model to effectively handle images of varying scales. This
approach involves creating a new image by selecting elements at regular intervals in the
row and column directions, resulting in a reduced length and width. Subsequently, all
merged images pass through a fully connected layer to alter the channel size from four
times the original to twice the original dimensions. For a visual representation of this
specific implementation, refer to Figure 2.
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The Swin Transformer divides the input image into non-overlapping windows of a
fixed size and performs MSA calculations on various windows to achieve the window
MSA (W-MSA) operation to reduce the computational effort. The W-MSA makes the
complexity of the model in computation linear only for the height and width of the image.
The computational complexity of the W-MSA operation and MSA operation on an image
with a size of H ×W and number of channels E is as follows:

Ω(MSA) = 4HWE2 + 2(HW)2E (1)

Ω(W−MSA) = 4HWE2 + 2M2HWE (2)

Although W-MSA can reduce the computational complexity of the transformer archi-
tecture, the lack of information communication between non-overlapping windows loses
the ability to extract global information using MSA. Thus, the shifted window MSA (SW-
MSA) operation is introduced to realize the information between windows. As depicted in
Figure 3, SW-MSA shifts the original division by half the window size in two adjacent Swin
Transformer blocks to obtain the new division.
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However, this operation presents an additional challenge in terms of computational
complexity, as depicted in Figure 3. This change results in an increase in the utilization of
the MSA module from four to nine times. To address this issue, the cyclic shift operation
is employed. It concatenates the windows that would otherwise have been divided prior
to conducting the SW-MSA process. By doing so, the computational complexity remains
unchanged while effectively facilitating information interaction across different windows.

3.2. SegFormer

In previous research on semantic segmentation models, most of the work investigates
how to design better decoders (e.g., adding more feature map fusion patterns), which leads
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to increasingly larger decoders for the models. With the growing utilization of the Trans-
former architecture in computer vision, its application of serialized feature vectors allows
for a reduction in decoder architecture complexity. SegFormer presents a straightforward,
efficient, and resilient semantic segmentation model. It employs an encoder based on the
transformer architecture and a decoder comprising only a few MLPs. This model achieves
state-of-the-art (SOTA) performance on well-established semantic segmentation datasets
such as ADE20K and Cityscapes, all while considering segmentation speed. Similarly,
SegFormer delivers remarkable results, showcasing improved robustness, on datasets
contaminated with various forms of noise, such as Cityscapes-C.

In SegFormer, the encoder generates a sequence of feature vectors as its output. To
handle feature sequences of different scales, the feature sequence is expanded into a feature
map, which is only one-fourth the size of the original image, using the MLP architecture.
The transformed feature maps from each level are then merged, followed by channel
reduction through an MLP, resulting in segmented categories for obtaining the prediction
results. The decoder architecture in SegFormer solely comprises the MLP, avoiding the
introduction of complex operations such as dilated convolution or bidirectional feature
pyramid network (Bi-FPN). This design choice ensures the efficiency and effectiveness of
the decoder operation.

3.3. Hyper Patch Embedding and Transpose Padding Upsample Module

In the Swin Transformer, the RGB image of size H ×W × 3 is transformed into tokens
of size H

4 ×
W
4 × 48 through patch embedding. These tokens are then inputted into the

Swin Transformer block. Specifically, the image is first divided into square patches using
two-dimensional convolution, with each patch having a patch size of 4 × 4. These patches
are then concatenated as individual tokens and fed into the model.

Unlike the Swin Transformer, which processes dissimilar discrete sequences as in-
put features, hyperspectral images contain data obtained from densely sampled spectral
channels across the electromagnetic spectrum. It is common for neighboring channels
in hyperspectral images to exhibit similarities due to the tiny sampling intervals. The
crucial aspect for accurate classification of hyperspectral images lies in capturing the most
expressive features from the nearly continuous spectral information.

Therefore, the hyper patch embedding (HPE) module is added before the input Swin
Transformer block in this paper. The implementation process of the entire HPE is illustrated
in Figure 4. Given a hyperspectral image, as shown in the “Patch” operation of Figure 4,
we initially apply a two-dimensional convolution to extract local spatial features with
a patch size of Patch Size × Patch Size. This process simultaneously extracts spectral
features while reducing the channel dimension to the size of Embed Dim. To ensure the
model’s generalizability across different datasets, we perform a “Pad” operation on the
hyperspectral image, resulting in H′ and W ′ and satisfying the following equation:

23WindowSize | H′, 23WindowSize |W ′ (3)

Here, WindowSize refers to the sliding window size designed in the Swin Transformer
block, and 23 is determined by the three downsampling operations performed by the model.
Finally, the padded hyperspectral image is passed through a simple multilayer perceptron
(MLP) to capture the global spatial context at the initial stage of the model. Subsequently,
the image is unfolded and normalized before being fed as input to the encoder.

Given all of the features in a hyperspectral image, the local spatial features are extracted
according to a predefined Patch Size, and each patch is considered a token. The number
of channels of spectral features is reduced from the original number of channels to the
Embedded Dim to extract spectral features. Furthermore, to ensure model adaptability to
arbitrary datasets, the height and width of the extracted hyperspectral image must be
padded to satisfy certain conditions.
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Finally, the filled hyperspectral image is completed once with MLP operation, and
the images in each extracted spectral feature are expanded and normalized as the encoder
input. The details are provided in Figure 4.

After the lightweight encoder in SegFormer, bilinear interpolation restores the fused
feature map of the decoder to its original size. This method can significantly improve the
efficiency of model segmentation for the semantic segmentation task of RGB images, but
it is not applicable to the hyperspectral image classification task. In hyperspectral image
classification, because the images are taken using remote sensing techniques, one pixel
often represents a large piece of the actual area, and the prediction results must be accurate
to the pixel level.

In this paper, we designed the transpose padding upsample (TPU) module based on
the output of the decoder in SegFormer. The fused feature map can be restored to the
original size of the image using the TPU module. Figure 5 illustrates the details of the TPU
module. In this module, we first extract features between pixels surrounding the original
pixels in different channels through the “Transpose” operation. Specifically, the feature
maps are enlarged by Patch Size times, and the channel dimension is halved, which can be
achieved using two-dimensional convolution. Subsequently, the enlarged image is cropped
back to its original size using the “Cut” operation. Finally, a simple MLP is employed to
map the channel dimension to the number of classes, C, enabling end-to-end prediction.
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3.4. Adaptive Min Log Sampling Strategy and Loss Function

The problem of insufficient and imbalanced training samples in hyperspectral image
classification has been a critical problem to be solved in this field. The number of labeled
samples in each category varies widely. When the traditional sampling strategy is used,
where a fixed number of samples are randomly selected from all samples in each category
as training samples, it leads to a significant limitation in the average and overall model
accuracy due to the imbalance between the number of training samples. To make the model
learn more discriminative features and enhance the robustness of model classification, the
sampling strategy of adaptive min log sampling (AMLS) is used, formally described in
Algorithm 2.
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Algorithm 2 adaptive min log sampling

1: Input: A = {ai}H×W
i=1 : a set of labels for training

2: N: the number of class where not included negative classes
3: s: the Sampling magnification
4: α: mini-batch per class
5: Output: MT: a list of sets of stratified labels
6: T ← [ ] : an empty list
7: for k = 0 to N do
8: Indexk ← {i | ai = k, ai ∈ A}
9: numk ← the number of Indexk
10: end for
11: nummin ← the minimum of numk
12: for k = 0 to N do
13: RS← log2

(
numk

nummin

)
+ 1

14: Samplek ← RS ∗ nummin ∗ s
15: TrainIndexk ← Randomly sample Samplek samples from Indexk
16: end for
17: repeat
18: for k = 0 to N do
19: Tk ← Randomly sample TrainIndexk samples from

⌈
Samplek

α

⌉
20: MT.push(Tk)
21: end for

In the AMLS strategy, the training samples are taken from the whole image rather
than the divided image blocks. Discrete training sample sequences are extracted from
the entire hyperspectral image according to the above algorithm, and other samples that
are not selected as training samples are used as testing samples. The training samples
are randomly selected from the training sample sequence during training to reduce the
training time and improve the model robustness. Most current models only consider the
positive samples in the image during training. However, they do not consider the unlabeled
negative samples in the image, leading to the possibility of misclassifying some negative
samples as positive samples during classification and making the final generated prediction
images less accurate. In the strategy proposed in this paper, negative samples are uniformly
labeled as Class 0. Before sampling, one must iterate over the sample count of each class
and store the indices of each class’s samples in the corresponding Indexk list. Then, based
on the class with the minimum sample count and the sampling factor s, the number of
training samples for each sample is determined as Samplek. Using the training sample
count for each sample, training samples are randomly selected from the Indexk list of each
class to obtain the training sample sequence TrainIndex for the hyperspectral image. In
each subsequent epoch of training, samples Tk are randomly selected from TrainIndex for
training, based on Samplek and the hyperparameter α. Here, the aforementioned sampling
factor s is determined by the class with the minimum sample count and the dataset. By
using the formula, it can be observed that when calculating the training sample count for
the class with the minimum sample count, RS is equal to 1, resulting in Sample_k being
nummin ∗ s. By referring to relevant literature on the dataset, the commonly used sample
count for the class with the minimum sample count during training is obtained, and the
sampling factor s is determined accordingly. The hyperparameter α mentioned above is
determined per training epoch. In this study, the hyperparameter α is set to 0.2.

Similarly, in hyperspectral image classification, the selected training sample size is
logarithmically calculated to dilute the gap between the original sample sizes. However,
due to the massive gap between the number of original samples in some datasets, the
problem of slow convergence caused by the gap between the number of samples in different
categories must still be considered during training. A loss function more suitable for
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hyperspectral image classification is designed in this paper to address the above problems.
The specific formula is as follows:

L =
1
N ∑N

i=0 βLk
Dice + (1− β)Lk

Focal (4)

In hyperspectral image classification, the architecture between pixel points is strongly
regionally correlated, and the same categories tend to be clustered together, with clear de-
marcations between categories. Thus, the pixel loss and gradient update are related to the
predicted and actual values of that point and other points around that point. Milletari et al. [31]
proposed dice loss to calculate this strong correlation loss, and dice loss is very effective in
balancing positive and negative samples to identify the foreground and background regions
of an image effectively. The specific formula is as follows:

Lk
Dice = 1− 2pktk

(pk + tk)
(5)

where pk ∈ [0, 1] is the probability that all training samples predict category k, tk ∈ {0, 1}
is the actual value of all training samples (i.e., those not for category k have a value of 0
and those for category k have a value of 1).

An improved binary cross entropy (BCE) loss called focal loss [32] was used for the
sample gap between classes of hyperspectral images. By adding sample size weights before
the BCE loss, the model reduces the weight of easily classifiable samples and focuses more
on the difficult-to-classify samples during training.

Specifically, we define Ek as the weight for balancing difficult samples, calculated
as follows:

Ei
k =

{
pi

k, ti
k = 1

1− pi
k, otherwise

(6)

where i represents the point in the training sample when the actual value of the point is
category k and Ei

k takes the value of the predicted probability of the point; otherwise, it is
1 minus the predicted probability of the point. In general, the formula can be written as
follows when calculating Ek for that category:

Ek = pktk + (1− pk)(1− tk) (7)

Therefore, the specific formula of focal loss is given as follows:

Lk
Focal = −(1− Ek)

γlog(Ek) (8)

where γ > 0 is an adjustable parameter to adjust the ratio of the difficult and easy weights,
and in this paper, γ is set to 2. In the formula for the total loss function, β ∈ (0, 1) is used to
adjust the weights between the two loss functions, and β is set to 0.7.

With the above loss function, the AMLS strategy ensures a balanced distribution
of categories in the training samples while obtaining stable and diverse gradients by
sampling small batches. The designed loss function can consider both positive and negative
samples while distinguishing between difficult and easy samples, ensuring the stability
and randomness of the gradient and accelerating the training speed.

4. Results

The HyperSFormer method is compared with current hyperspectral image classifica-
tion methods, including FPGA, SSDGL, and SegFormer, to quantitatively and qualitatively
analyze its performance and is extensively validated on three datasets. Different datasets
were used to verify the effectiveness of HyperSFormer in the presence of imbalanced sam-
ple data, complex negative samples, and mixed sample categories. All experiments were
performed on a PyTorch library on a machine with a 3080 Ti graphics card.
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4.1. Experimental Settings
4.1.1. Model Parameters

The HyperSFormer method is based on encoding and decoding. There are differences
in data sizes in different datasets, and to ensure the data meet the model requirements as
closely as possible, the HPE module designed in this paper ensures the adaptive input of
images and extracts spectral features, keeping the spectral features in the Embed Dim size.
In this paper, the selected Patch Size is 2, and Embed Dim is 64. The described experiments
were conducted under the condition that the random number seeds were fixed to ensure
the reliability of the experiments.

4.1.2. Optimized Parameters

The optimizer plays a crucial role in training deep learning models, and an optimizer
that is suitable for the model ensures fast model convergence. The HyperSFormer model
performed 1200 epochs for each dataset and used the AdamW optimization algorithm with
an initial learning rate of 1 × 10−3 and a weight decay of 1 × 10−5. The learning rate decay
method used cosine annealing [33] on the learning rate iterations, which decay in each
decay cycle with the formula:

ηt = ηmin +
1
2
(ηmax − ηmin)

(
1 + cos

(
Tcur

Ti
π

))
(9)

where ηmax and ηmin denote the maximum and minimum values of the set learning rate,
respectively, Tcur indicates the number of trained rounds in the current cycle, Ti represents
the total number of training rounds in the current cycle, and Ti is calculated as follows:

Ti = TTi−1
mult (10)

In this paper, T is set at 50, which is the unit of the first decay cycle, and Tmult is set to
23, which represents the incremental multiplier of each cycle.

4.1.3. Metrics

To evaluate the performance gap between HyperSFormer and other methods, four
commonly used hyperspectral image classification metrics are used to measure the accuracy
of each class, the overall accuracy (OA), the average accuracy (AA), and the kappa coeffi-
cient (Kappa). Besides the common indicators, the standard metric mean intersection over
union (mIoU) in image segmentation is also introduced as the overall image evaluation
index, and the formula is:

mIoU =
1
C ∑C

i=0
pii

∑C
j=0 pij + ∑C

j=0 pji − pii
(11)

where C represents the total number of categories in the dataset and pij indicates the
total number of samples whose actual value is class i predicted to be class j at the time
of prediction.

In addition, this paper introduces model parameters (Params) and floating point opera-
tions per second (FLOPs) as comparative metrics to assess the performance of various models.

4.2. Experiment 1: Indian Pines Dataset

The Indian Pines dataset was collected using the airborne visible infrared imaging
spectrometer (AVIRIS) sensor in northwestern Indiana, USA. This dataset is the earliest
hyperspectral image classification dataset and contains 145 × 145 pixels with 220 spectral
bands with a wavelength range covering 400 to 2500 nm, containing 16 agricultural crop
types. Figure 6 illustrates the three-band false-color composite and ground-truth map of
this dataset. In this paper, to test the ability of the model to filter the bands, the model
inputs were selected for all 220 bands without noise removal.
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Table 1 lists the number of training samples for each category obtained by the Indian
Pines dataset through the AMLS strategy, where the sampling factor s in AMLS is taken as
one-third.

Table 1. Number of samples and classification results for the Indian Pines dataset.

No. Class
Sample Method Accuracy

Total Train FPGA SSDGL SegFormer HyperSFormer

0 Background 10776 67 0.0 77.8 69.4 97.1
1 Alfalfa 46 14 100.0 100.0 100.0 100.0
2 Corn—no till 1428 47 95.0 99.0 86.8 99.4
3 Corn—min till 830 42 94.8 99.5 93.4 99.5
4 Corn 237 30 100.0 100.0 99.2 100.0
5 Grass—pasture 483 37 99.2 100.0 91.5 99.8
6 Grass—trees 730 41 99.2 100.0 97.4 98.8
7 Grass—pasture-mowed 28 9 100.0 100.0 100.0 100.0
8 Hay—windrowed 478 37 100.0 100.0 90.2 100.0
9 Oats 20 6 100.0 100.0 100.0 100.0
10 Soybean—no till 972 44 99.2 99.3 83.5 99.6
11 Soybean—min till 2455 52 95.5 98.7 93.7 99.8
12 Soybean—clean 593 39 99.3 99.5 92.6 99.3
13 Wheat 205 29 100.0 100.0 100.0 100.0
14 Woods 1265 46 99.4 99.3 92.1 99.7
15 Buildings–Grass–Trees–Drives 386 35 100.0 100.0 98.4 99.7
16 Stone–Steel Towers 93 21 100.0 100.0 98.9 100.0

Metrics

Overall accuracy (%) 47.5 39.9 80.4 98.4
Average accuracy (%) 93.0 94.0 93.4 99.6

Kappa 0.447 0.371 0.746 0.977
mIoU (%) 42.5 41.2 61.3 98.0

Params (M) 2.67 2.31 4.06 2.93
FLOPs (G) 15.48 29.05 1.06 3.16

The bold represents the best value of the metric among all validated models.

The accuracy and evaluation metrics for all methods for all categories are presented in
Table 1, and the best accuracy for each row is highlighted in bold to validate the HyperS-
Former in more detail. As listed in Table 1, the methods based on semantic segmentation
have high accuracy for all single-class targets, and the OA is above 90%, primarily at-
tributed to HyperSFormer for global spectral contextual information feature extraction.
Compared with FPGA and SSDGL, HyperSFormer achieves about a 3% improvement in
AA. After adding negative samples for training, the classification accuracy of the model
did not decrease significantly, and there was a significant improvement in the classification
accuracy for negative classes. The values of OA and mIoU were improved, leading to a
higher OA of the model. In addition, the AMLS strategy plays a vital role in the problem
of sample imbalance, with dice loss allowing the model to balance more positive and
negative samples during training and focal loss reducing the weight of easily classified
samples, allowing the model to focus more on the difficult-to-classify samples during train-
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ing. Table 1 reveals that, under the joint action of the AMLS strategy and loss function, the
classification accuracy of corn—no till, partial—min till, and other hard classification cate-
gories is higher than that for the FPGA and SSDGL. Thus, the proposed method achieves
promising results on insufficient and imbalanced datasets. Simultaneously, during the
evaluation of model efficacy, it can be found by comparing Params and FLOPs that the
method proposed herein substantially enhances computational velocity in comparison to
FPGA and SSDGL, concomitantly ameliorating model precision with merely a marginal
escalation in parameter quantity.

Figure 7 depicts the classification results using FPGA, SSDGL, SegFormer, and Hyper-
SFormer. In the hyperspectral image classification method based on semantic segmentation,
it is evident that each category has firm category boundaries whether negative samples
are added or not. This outcome is because the method based on semantic segmentation
can fully use the global spatial context information to extract more discriminative spatial
features during training. Comparing Figure 7A–D, the model classification effect has better
visual performance because adding negative samples to the training enables the model
to extract the features of negative samples to distinguish the difference between positive
and negative samples. In addition, there is more consideration for the recognition of differ-
ent samples. Compared with SegFormer, the classification results for HyperSFormer are
more accurate at the edges of adjacent categories because the TPU module removes the
limitation of bilinear interpolation in the SegFormer model to restore the original image
size. Moreover, it considers the center and edges of the same sample region after feature
map fusion.
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4.3. Experiment 2: WHU-Hi-HanChuan Dataset

This paper conducts experiments on the WHU-Hi-HanChuan dataset to further evalu-
ate the effectiveness of HyperSFormer in the case of negative sample complexity in particu-
lar. The WHU-Hi dataset is a benchmark dataset built and published by Zhong et al. [34]
for training and evaluating agricultural crop classification tasks. The WHU-Hi-HanChuan
dataset consists of seven agricultural crop types collected on 17 June 2016, via the Leica
Aibot X6 uncrewed aerial vehicle V1, which was flown and photographed under clear and
cloudless weather conditions at an altitude of 250 m with a spatial resolution of 10.9 cm.
The pixel size of the dataset is 1217 × 303, and the band range is from 400 to 1000 nm, with
274 bands. The images were taken in the afternoon; therefore, many shadowed parts in
the collected hyperspectral images added difficulty to the agricultural crop classification.
The number of training samples per category in the WHU-Hi-HanChuan dataset is ob-
tained using an AMLS strategy with a sampling factor s of one-tenth. Figure 8 presents the
three-band false-color composite and ground-truth map of this dataset.
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To quantitatively evaluate the performance of the above methods on this dataset,
Figure 9 illustrates the OA, AA, kappa coefficients, and mIoU. Because the spatial resolution
of this dataset is very high, spatial context information is vital for hyperspectral images
to distinguish difficult-to-classify classes. The HyperSFormer model introduces the HPE
module to establish interdependencies based on continuous spectral sequence information
and global spatial context information, achieving the best accuracy in most categories. The
accuracy of using HyperSFormer for categories other than the shaded negative samples is
generally higher than 95% and more stable than either FPGA and SSDGL. This result is
primarily attributed to the AMLS strategy, which sets different training samples for various
sample sizes and appropriately increases the number of training samples for hard training
samples, effectively improving model performance. Moreover, HyperSFormer has higher
accuracy for the OA, AA, kappa coefficient, and mIoU, where OA is higher than the FPGA
without using shaded negative samples by more than 5% and higher than SSDGL without
using shaded negative samples by about 1% in all metrics.
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Figure 10 illustrates the classification results obtained using FPGA, SSDGL, SegFormer,
and HyperSFormer. The classification results of the FPGA exhibit color mixing in the
boundary region, implying uncertainty in the model’s classification without the inclusion
of negative samples. The presence of shadow coverage in the dataset poses a significant
challenge in identifying the black-shaded parts. These shadow locations are scattered
among different classes, making it difficult to distinguish them based on spatial context
information alone. Therefore, effective spectral features must be extracted. The classifica-
tion results show that the shaded parts (negative samples) differ significantly in the level
of detail across the various methods. However, HyperSFormer is capable of accurately
identifying all shaded parts and distinguishing the negative samples. Additionally, Hy-
perSFormer outperforms other methods in classifying difficult samples. This performance
is attributed to the fusion loss function used during training, which reduces the weight
assigned to easily classifiable samples and prioritizes challenging-to-classify samples.

4.4. Experiment 3: WHU-Hi-HongHu Dataset

Although the proposed method, HyperSFormer, based on the transformer and seman-
tic segmentation, achieves promising results on the Indian Pines and WHU-Hi-HanChuan
datasets, the total number of classes in these two datasets is only 16. We selected the WHU-
Hi-HongHu dataset for Experiment 3, which comprises 17 varieties of three major crop
types: cotton, oilseed rape, and kale. The acquired images were obtained on 20 Novem-
ber 2017, with DJI Matrice 600 Pro, using the device in cloudy weather at an altitude of
100 m above the ground and with a spatial resolution of 4.3 cm. The size of the captured
hyperspectral image is 940 × 475. The number of bands is 270, and the band range is
between 400 and 1000 nm. The dataset has 22 categories that provide a good response to
the classification ability of the model in the presence of mixed sample categories. Figure 11
illustrates the three-band false-color composite and ground-truth map of this dataset. The
number of training samples per category in the WHU-Hi-HongHu dataset is obtained
using an AMLS strategy with a sampling factor s of one-tenth.
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Figure 12 depicts the classification results using FPGA, SSDGL, SegFormer, and Hyper-
SFormer, revealing that HyperSFormer has superior classification performance compared
with other popular methods based on semantic segmentation. Figure 13 further presents
the classification effects due to the TPU module. In addition, HyperSFormer can provide a
good detailed representation, where the sample categories are more mixed and the bound-
aries of each category are the same. Further, HyperSFormer benefits from the increased
global spatial context and spectral information. The SW-MSA module uses the global
spatial context embedding vector to reweight the feature maps and model the interdepen-
dencies between feature maps, facilitating the classification of the hyperspectral images
with redundant spectral information. Compared with SegFormer, HyperSFormer solves the
problem that the results of methods based on the transformer and semantic segmentation
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are insufficiently accurate. Additionally, the transformer architecture can make an essential
breakthrough in the multiclassification of hyperspectral images.
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5. Discussion

We conducted extensive analytical experiments on each parameter setting to under-
stand the effectiveness of the HyperSFormer model parameter settings better. All analytical
experiments were performed on the Indian Pines dataset with low spatial resolution and
unbalanced sample data.

5.1. Discussion of Different Models

Table 2 displays a comparative analysis of our model against several semantic segmen-
tation models. Evidently, the computational complexity associated with transformer-based
architectures is predominantly lower in comparison to their CNN-based counterparts. Hy-
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perSFormer manages to maintain reduced computational complexity while simultaneously
minimizing the number of parameters involved.

Table 2. Model evaluation results with different models in the Indian Pines dataset.

HyperSformer SegFormer DeepLabv3 Plus U-Net PSPNet

OA 98.4 80.4 93.2 96.1 92.0
AA 99.6 93.4 97.9 99.1 97.3

Kappa 0.977 0.746 0.907 0.946 0.891
mIoU 98.0 61.3 91.4 95.1 86.4

Params (M) 2.93 4.06 7.67 5.84 6.74
FLOPs (G) 3.16 1.06 7.32 5.15 3.95

The bold represents the best value of the metric among all validated models.

5.2. Discussion of the HPE Parameters

Table 3 delineates the classification performance of the model using various combi-
nations of hyperparameters. The benchmark method encompasses the model parameter
configurations utilized in the preceding section. In contrast to the model devoid of the
HPE module, the model incorporating the HPE module exhibits superior classification
capacity for both positive and negative instances, culminating in a higher AA compared to
its counterpart without the HPE module.

Table 3. Model evaluation results with PatchSize and EmbeddedDim in the Indian Pines dataset.

Baseline Evaluation 1 Evaluation 2 NO_HPE

Model param Patch Size 2 1 3 4 5 2 2 2 /
Embedded Dim 64 64 64 64 64 32 80 96 /

Metric

OA 98.4 97.7 97.4 98.0 95.1 96.3 96.5 97.1 98.0
AA 99.6 99.1 98.9 99.4 98.5 98.0 98.6 99.0 90.2

Kappa 0.977 0.968 0.963 0.971 0.932 0.949 0.952 0.960 0.971
mIoU 98.0 96.7 96.7 96.8 92.1 93.7 95.6 96.3 89.7

The bold represents the best value of the metric among all validated models.

The hyperparameter Patch Size is the unit for chunking images in the HPE module.
Table 3 reveals that the model works best when the Patch Size is set to 2 because the model
initially extracts the neighboring spatial features in the hyperspectral images in the HPE. If
the Patch Size is too large, the model focuses too much on the surrounding features instead
of those that should be extracted, degrading classification accuracy. If the Patch Size is set
to 1, the model only learns its own channel information and not the neighboring spatial
features, which also decreases classification accuracy.

The hyperparameter Embedded Dim is introduced in the HPE module to determine
the number of compressed channels in the spectral space and is also the basic unit of vector
dimensionality in the Swin Transformer block. Table 3 indicates that when Embedded Dim
is lower or higher, the model does not perform as well as when it is set to 64 because when
set low, the limited number of channels is too small to learn all spatial and spectral features.
When Embedded Dim is set high, the model becomes too redundant, making the model
too scattered in feature learning, focusing on features that should not be focused on, and
causing the training time to increase significantly.

5.3. Discussion of the Loss

Table 4 presents the effect of training HyperSFormer using various loss functions to
demonstrate the reasonableness of the loss function settings. The hyperparameter β is used
to set the ratio between the dice loss and focal loss. Table 4 reveals that training the model
with cross-entropy loss and focal loss results in higher AA metrics than OA metrics in the
final results of the model, indicating that the two loss functions are good at classifying each
class. The model focuses on both difficult- and easy-to-classify samples but not enough for
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the overall classification effect, and it cannot effectively balance the gap between positive
and negative samples. Moreover, the model is better trained using the focal loss than
cross-entropy loss, which is consistent with the setting, where it is a cross-entropy loss
improvement algorithm. In addition, Table 4 reveals that the OA with only dice loss is
much higher than AA because the dice loss focuses on the background information in the
sample in addition to the foreground information and determines the most discriminative
features from the positive and negative samples.

Table 4. Model evaluation results for training with loss functions in the Indian Pines dataset.

Cross-Entropy Loss β Dice Loss + (1 − β) Focal Loss

β / 1 0.7 0.5 0.3 0
OA 72.4 97.8 98.4 96.7 95.1 74.7
AA 88.9 84.9 99.6 98.8 98.3 90.8

Kappa 0.659 0.968 0.977 0.954 0.932 0.685
mIoU 0.528 84.4 98.0 95.5 89.6 59.3

In the fused loss function of dice loss and focal loss proposed in this paper, the overall
classification performance using the fused loss function is better than that of the single
loss function. Adding focal loss compensates for the lack of discriminative power of using
the dice loss for difficult-to-classify samples. The value of β does not have a substantial
influence on the classification performance but still plays a key role, and the model is best
trained when β is 0.7.

5.4. Discussion of the Sampling Strategy

Table 5 presents the comparison of sample counts and validation results using the
HyperSFormer architecture combined with different sampling strategies. Among them,
global stochastic stratified (GS2) is the sampling strategy used in FPGA, where it simply
selects 100 samples for each class for training. If there are fewer than 100 samples, all
samples of that class are used for training. The hierarchically balanced (H-B) sampling
strategy is used in SSDGL, where it randomly selects 5% of the sample count for each
class as training samples. For classes with fewer than five samples after computation, five
samples are randomly selected for training. From the data in Table 5, it can be observed
that the AMLS sampling strategy selects significantly fewer training samples compared to
GS2 and H-B. In terms of the distribution of training samples, GS2 does not consider the
imbalance between different classes, while H-B only selects training samples based on the
sample count of each class. This can result in inconsistent convergence speeds and larger
loss weights for certain classes due to the imbalance in training samples. AMLS takes both
factors into consideration by not only selecting training samples based on sample counts
but also balancing the sample disparities between different classes using the class with the
minimum sample count as the reference. Experimental results demonstrate that the AMLS
sampling strategy achieves higher mIoU with fewer training samples.

5.5. Discussion of the HyperSFormer

The HyperSFormer proposed in this study demonstrates the effective utilization
of hyperspectral images for end-to-end crop classification. This model, based on the
transformer, fully incorporates both global and local spatial context as well as spectral
information. The AMLS sampling strategy and fusion loss function are designed to ensure
the consideration of positive and negative samples, as well as difficult and easy samples.

Although the learning-rate decay method of cosine annealing is employed in this
approach, the model training still suffers from instability, and the convergence rate is
marginally slower than that of the CNN-based method. Additionally, the model parame-
ters are not yet generalized across datasets in terms of their application. To address these
limitations, a future investigation will focus on developing a generalized hyperspectral
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image classification method, enabling the reuse of model parameters across datasets. Fur-
thermore, training strategies will be explored to enhance the speed of model convergence.

Table 5. The validation results of the HyperSFormer model using different sampling strategies were
evaluated on the Indian Pines dataset.

Class Total HperSFormer
+ GS2

HperSFormer
+ H-B

HperSFormer
+ AMLS

Sample
Num

0 10,776 0 539 67
1 46 46 5 14
2 1428 100 72 47
3 830 100 42 42
4 237 100 12 30
5 483 100 25 37
6 730 100 37 41
7 28 28 5 9
8 478 100 24 37
9 20 20 5 6

10 972 100 49 44
11 2455 100 123 52
12 593 100 30 39
13 205 100 11 29
14 1265 100 64 46
15 386 100 20 35
16 93 93 5 21

Metric

total 21,025 1387 1068 596
OA 48.6 97.1 98.4
AA 94.0 95.1 99.6

Kappa 0.469 0.959 0.977
mIoU 0.860 0.892 0.980

FWIoU 0.464 0.944 0.968

6. Conclusions

The present study introduces HyperSFormer, a crop classification method utilizing the
Transformer and semantic segmentation in hyperspectral image analysis. In HyperSFormer,
we replace the encoder of SegFormer with an enhanced Swin Transformer while preserving
the SegFormer decoder. The entire model is characterized by a streamlined and unified
transformer structure. Additionally, an HPE module and TPU module are incorporated
into the model to enhance its capacity to capture global spatial context and spectral in-
formation. To address the issues of inadequate and imbalanced samples in hyperspectral
image classification, we devise the AMLS strategy and a loss function that combines dice
loss and focal loss, facilitating model training. Experimental findings demonstrate that
HyperSFormer outperforms existing methods in terms of hyperspectral image classifica-
tion, particularly when dealing with complex negative samples and mixed sample classes.
Ablation experiments confirm the soundness of the model parameter design, showing
that the selected parameters lead to optimal performance. Notably, the fusion loss in the
designed loss function contributes significantly to the improvement. The proposed method,
compared to CNN-based approaches, aligns better with the characteristics of hyperspectral
images, enabling accurate hyperspectral image classification and widening the application
prospects of hyperspectral image analysis in agricultural production.
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