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Abstract: Many ensemble-based data assimilation (DA) methods use observation space localization
to mitigate the sampling errors due to the insufficient ensemble members. Observation space local-
ization is simpler and more timesaving than model space localization in implementation, but more
difficult to directly assimilate satellite radiance observations, a kind of non-local observations. The
vertical locations of radiance observations are undetermined and the transmission of observational
information is thereby obstructed. To determine the vertical coordinates of radiance observations,
a weighted average hypsometry is proposed. Using this hypsometry, AMSU-A radiance observations
are directly assimilated with an ensemble four-dimensional variational (En4DVar) DA system. It con-
sists of a four-dimensional ensemble-variational (4DEnVar) system providing ensemble covariance
and a 4DVar system. Observing system simulation experiments show that the hypsometry alleviates
the degradations in the late period of medium-range forecast in the Northern Extratropics that occur
in the traditional peak-based hypsometry. It obviously improves the analysis qualities and forecast
skills of the En4DVar system and its two components, especially in the Southern Extratropics, when
incorporating AMSU-A radiance observations. The improvement in the En4DVar-initialized forecast
is comparable to that in the 4DVar-initialized forecast in the Southern Extratropics and Tropics. It
indicates that a proper hypsometry enables efficient extraction of useful information from AMSU-A
radiance observations by 4DEnVar with observation space localization. Therefore, the 4DEnVar
provides high-quality ensemble covariances for En4DVar.

Keywords: AMSU-A radiance observation; ensemble four-dimensional variational data assimilation;
observation space localization; weighted average hypsometry

1. Introduction

The ensemble four-dimensional variational (En4DVar) hybrid data assimilation (DA)
approach incorporates the advantage of flow-dependent characteristic of ensemble Kalman
filter (EnKF) into the 4DVar DA approach. It has become popular in major operational
centers of the world and shown great potential for further improving numerical weather
prediction (NWP) skills [1–5]. The En4DVar approach typically uses flow-dependent
information extracted from the ensemble forecasts to help estimate the background error
covariance (BEC) for 4DVar. When applying this approach to global NWPs, the ensemble
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size is much smaller than the dimensionality of the state variables of the prediction model
due to the limitations of computational resource. The limited ensemble size may easily
result in spurious correlations between two grids that are far apart in the BEC matrix (B-
matrix). Localization techniques [6–10] can effectively mitigate such spurious correlations
and thus improve the analysis quality and forecast skill.

The main idea of localization is to restrict the analysis at a specific grid point to be
influenced only by observations within its surrounding local region. Houtekamer and
Mitchell [6] performed observation selection by setting a cutoff radius, thus excluding
the influence of observations outside the cutoff radius on the analysis at the specific grid
point. Houtekamer et al. [11] further proposed a localization scheme using a compactly
supported GC function [12] that decreases monotonically with distance, which is realized
as a Schür product between the ensemble B-matrix and the localization correlation matrix.
Localization can be achieved by assimilating observations one by one to update the analyses
within the local region, or implicitly by simultaneously assimilating all observations within
the local region around the analysis at a specific grid point [13]. However, for ensemble-
based non-sequential DA approaches, using the localized covariance directly in model
space can easily lead to large computational costs if one wants to solve directly in the
global space. Implementing localization in observation space may be a more economical
choice. Approaches that use orthogonal functions (e.g., empirical orthogonal function and
sine function) to decompose the localization correlation matrix can also further reduce the
localization cost in observation space [8,10,14–17].

The elements of the localization correlation matrix in observation space are dependent
on the observation coordinates, which are easy to be calculated for conventional observa-
tions with well-defined positions. Following the development of satellite technology, the
rapidly increasing radiance observations have significantly improved the medium-range
forecasts and have greatly reduced the gap of forecast skills between the northern and
southern hemispheres [18]. It is noted that radiance observations are non-local due to
the sampling of multiple atmospheric layers, and different satellite channels are sensitive
to different atmospheric layers. Therefore, defining the vertical coordinates of radiance
observations is an unavoidable challenge in the use of observation space localization.
Houtekamer et al. [11] used the pressure at the peak of the weighting function to define
the vertical coordinates of radiance observations from the Advanced Microwave Sounding
Unit-A (AMSU-A) instruments in the EnKF system. Fertig et al. [19] selected radiance
observations within the local region to be assimilated into the LETKF system if a weight
above the cutoff value is signed to any model state in the local region. This cutoff-based
selection method is significantly different from the abovementioned peak-based selection
method of Houtekamer et al. [11] when the cutoff value is small and the weighting function
is broad. In addition, it allows a wider range of influence for non-local observations than for
local observations. Miyoshi et al. [20] used the normalized weighting functions of satellite
channels to provide weights for error covariance localization in the LETKF system.

Based on these studies, the EnKF class approaches have significantly benefited from
assimilating radiance observations. In particular, the effective assimilation of AMSU-A
radiance observations in the DA system plays important role in improving forecast skills.
The 4DVar and En4DVar approaches usually use model space localization method for
radiance observations and their DA schemes are globally solved. In contrast, the EnKF class
approaches generally adopt the observation space localization method that uses vertical
coordinates defined by the pressure at peak weight to achieve the effective assimilation of
radiance observations and is solved in local regions. Moreover, Campbell et al. [21] pointed
out that when the number of satellite channels is large enough and the observation error
is very small, the observation space localization is difficult to recover the true state. Thus,
investigating the differences between the effects of model space and observation space
localization techniques on the assimilation and forecast performances when incorporating
radiance observations is beneficial for efficiently using radiance observations in ensemble-
based data assimilations.
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The purpose of this study is to use the weighted average pressure to define the vertical
coordinates of AMSU-A radiance observations in the En4DVar system so as to investigate
the contributions of these observations to the improvements of analysis quality and forecast
skill. In Section 2, a brief description of the DA methods used in this study, including
En4DVar and its 4DVar and 4DEnVar components, the observation space localization
scheme and the vertical positioning method for radiance observations, are presented.
Section 2 also displays the DA configurations, experimental details and observations,
followed by the analysis and forecast results in Section 3. Finally, the conclusions and
discussions are provided in the last section.

2. Materials and Methods
2.1. A Brief Description of DA Methods

The 4DVar system used here is based on the incremental 4DVar scheme [22], which
obtains the optimal analysis of atmospheric state on a low-resolution grid by combining
forecast and observation information. It adopts a highly parameterized climatological
B-matrix: Bc = UUT [4,23], and relies on the adjoint model (ADM) in the minimization
process of solving the optimal analysis.

The ensemble covariance for the En4DVar system is provided by the 4DEnVar
system [24]. The 4DEnVar system is established using the dimension-reduced projection
four-dimensional variational (DRP-4DVar) method [25]. This method uses the ensemble
samples to project the minimization problem of 4DVar in the original model space onto the
reduced-dimensional subspace, and to avoid using the ADM in the minimization process.

The En4DVar system used in this study consists of two components including the
abovementioned 4DVar and 4DEnVar systems [26]. It uses a hybrid BEC (B = γcBc + γeBe)
achieved through the extended control variable approach [27]. Here, Be is the ensemble
covariance produced by the 4DEnVar component and Bc is the climatological covariance
in the 4DVar component. The variables γc and γe represent the scalar weights of the
climatological and ensemble covariances, respectively. Unlike other variants of 4DEnVar,
the hybrid BEC used here consists of a three-dimensional (3D) climatological covariance
from 4DVar and a 4D ensemble covariance from 4DEnVar. In addition, calculating the
gradient of cost function in the ensemble component does not contain the ADM but uses
the same statistical relationship as in the 4DEnVar system. More details about the En4DVar
system can be found in Zhu et al. [26].

2.2. Localization
2.2.1. Observation Space Localization

In the En4DVar system, the localization for the climatological covariance is contained
in its square root U, while the localization for the ensemble covariance is the same as in the
4DEnVar system. The traditional localization scheme based on the Schür product between
the high-dimensionality ensemble B-matrix Be = pxpT

x and the high-dimensionality corre-
lation matrix C may lead to large computational costs. Approximately decomposing the
correlation matrix [8,10] and ignoring the time-variation of localization, the localization
can be economically achieved in observation space by the Schür products between a finite
number of observational perturbation samples and localization leading eigenvectors:{

Epx =
[(

px,1 ◦ ρx,1, · · · , px,1 ◦ ρx,L
)
, · · · ,

(
px,N ◦ ρx,1, · · · , px,N ◦ ρx,L

)]
Epy =

[(
py,1 ◦ ρy,1, · · · , py,1 ◦ ρy,L

)
, · · · ,

(
py,N ◦ ρy,1, · · · , py,N ◦ ρy,L

)]. (1)

Here, px(i = 1, 2, · · · , N) and ρx,j(j = 1, 2, · · · , L) denote the initial perturbation samples and
the leading eigenvectors in model space, and py(i = 1, 2, · · · , N) and ρy,j(j = 1, 2, · · · , L)
denote the corresponding observational perturbation samples and leading eigenvectors.
To further reduce the cost, the leading eigenvectors are selected based on the cumulative
contribution of variance, and each leading eigenvector has three components in zonal,
meridional and vertical directions, respectively. The empirical orthogonal function [8] and
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the sine function [10] are used for the zonal and vertical components, and the meridional
component, respectively. Thus, the ensemble component of the En4DVar system is solved
in the subspace consisting of the extended perturbation samples that are generated by the
abovementioned Schür products. For more details refer to Zhu et al. [24].

For local observations, the approximation in the extended perturbation samples in-
troduces little error. In contrast, it is more complicated for non-local observations, such
as radiance observations, which does not have explicit vertical coordinates. In order to
implement the vertical localization, we need to properly define the vertical coordinates of
radiance observations.

2.2.2. Vertical Positioning of AMSU-A Radiance Observation

As mentioned earlier, each radiance observation depends on the atmospheric states
at multiple vertical layers. Therefore, its vertical coordinate cannot be given explicitly
as conventional observations. The weighting function of the radiance observation at
a specific horizontal position reflects the contribution of the observation to the atmospheric
state at different vertical layer [20]. The weighting function is typically calculated by
the vertical difference of the transmittance of the satellite channel, which is dependent
not only on the satellite channel but also on the atmospheric profile. In this study, we
proposed the weighted average hypsometry to define the vertical coordinates of AMSU-A
radiance observations:

Pjpr,lch =
∑K

k=1 wjpr,lch,k × pjpr,k

∑K
k=1 wjpr,lch,k

(2)

Here, the subscripts jpr, lch and k denote the atmospheric profile, the satellite channel and
the atmospheric vertical layer; K is the number of atmospheric vertical layers; P denotes
the vertical coordinate of radiance; w and p represent the weight of the satellite channel
and the pressure of the atmospheric profile.

In practice, when the radiance observations are assimilated, the Radiative Transfer for
TOVS (RTTOV) model calculates the transmittance for each satellite channel. Therefore,
the transmittance can be obtained directly from the RTTOV model for the calculation of
weighting functions.

2.3. DA Configurations, Experimental Details and Observations
2.3.1. DA Configurations

The model used here is the operational global forecast system of China Meteorolog-
ical Administration (CMA-GFS), whose original name was the Global/Regional Assim-
ilation and Prediction System (GRAPES-GFS) [28]. The DA systems used in this study
include the 4DVar system [23], and the recently developed 4DEnVar system and En4DVar
system [24,26].

A dual-resolution framework with 1.0◦ for the inner loop and 0.5◦ for the outer loop,
and 87 vertical layers are adopted by all DA systems. In the first assimilation window,
the 4DEnVar system utilizes random perturbation samples with balanced constraints
generated using the “randomcv” method [29]. This method can generate reasonable ini-
tial condition (IC) samples with balanced constraints by using the variational variable
transform. Then, the 4DEnVar system updates the flow-dependent perturbation samples
every 6 h in subsequent assimilation windows by assimilating perturbed observations.
An extended-ensemble-sample-based localization method mentioned in Section 2.2.1 is
applied in the 4DEnVar system. To alleviate the filter divergence problem, inflation, obser-
vation perturbation and SST perturbation approaches are applied [24].

The En4DVar system constructs the hybrid BEC by incorporating the ensemble covari-
ance estimated by 60 ensemble members from the 4DEnVar system into the climatological
BEC of the 4DVar system. The scalar weights of the climatological and ensemble co-
variances for the hybrid BEC in the En4DVar system are 0.25 and 0.8. Moreover, the
ensemble covariance of the En4DVar system utilizes the same localization scheme as in the
4DEnVar system.
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2.3.2. Experimental Details

Observing system simulation experiment (OSSE) allows an objective assessment
of the assimilation and forecast performances of a DA system when the “truth” state
is known [25,30–32]. In this study, cycled assimilation experiments and corresponding
initialized forecast experiments were performed based on the OSSE.

The design of OSSE is similar to Zhu et al. [24,26]. The background field in the
first assimilation window and the “truth” state (or “truth”) were generated by the low-
resolution and high-resolution versions of the CMA-GFS model, which were initialized
from the ERA-Interim 6 h forecast field and the ERA-5 reanalysis field, respectively. For
a fair comparison, all assimilation experiments used the same background field in the first
assimilation window.

Based on previous experiments assimilating conventional observations [24,26], further
experiments adding AMSU-A radiance observations were carried out. The 1-week sensi-
tivity experiments on the basis of the pressure at peak weight and the weighted average
pressure were initially conducted to determine the vertical positioning method for the
observation space localization. The most favorable vertical positioning method for the
forecast performance was adopted. Then, three classes of experiments were designed,
which covers a period of about 1 month starting from 0900 UTC 11 September 2016 and
taking the first 2 days for spin-up. The first class includes the ensemble DA experiments
using the 4DEnVar system and their initialized forecast experiments, and the second one
contains the hybrid DA and forecast experiments with the En4DVar system that require the
flow-dependent data produced by the first one. Additionally, the third class of experiments,
i.e., the standard 4DVar DA and forecast experiments, were conducted for comparisons.

Each class includes two sets of DA experiments, respectively, incorporating only con-
ventional observations [24,26] and both conventional and AMSU-A radiance observations
(simply all types of observations, hereinafter), and two sets of corresponding initialized
forecast experiments. Totally twelve sets of experiments were conducted to investigate
the effects of adding AMSU-A radiance observations on the assimilation and forecast
performances of the En4DVar system and its 4DVar and 4DEnVar component systems.
The analyses of assimilating only conventional observations and assimilating all types of
observations and their initialized forecasts were compared to assess the contributions of
AMSU-A radiance observations. The experiments upon the standard 4DVar and 4DEnVar
systems were conducted to provide the references for evaluating the performance of the
En4DVar system when adding AMSU-A radiance observations.

2.3.3. Observations

The “observations” were extracted from the “truth” state by using the transformations
of observation operators and superimposing observation errors. The conventional observa-
tions used in this study were obtained from sounding and cloud-derived wind, and more
details are presented in Zhu et al. [24]. Additionally, radiance from AMSU-A instruments
of NOAA 15, 18, 19, NPP, and Metop A, B were also utilized. Sounding observations are
sampled every 6 h, while both cloud-derived wind observations and AMSU-A radiance
observations are sampled every 30 min. The radiance observations are assimilated using
Version 12 of the RTTOV model [33] as the observation operator. To avoid the negative
impacts of ground albedo and interpolation errors at upper layers, only channels 5–14 of the
AMSU-A radiance observations were assimilated. Conventional observations cover most of
the Northern Hemisphere, with a lower sampling density in the Southern Hemisphere. In
contrast, radiance observations have a wider sampling range, which especially compensates
for the low coverage of conventional observations in the Southern Hemisphere (Figure 1).
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correlation coefficient (ACC) metrics were used to assess the random error and correlation 
of the analyses and forecasts against the “truth”, respectively. The globe was divided into 
Northern Extratropics (20°N∼90°N), Southern Extratropics (20°S∼90°S) and Tropics 
(20°S∼20°N) for calculating the statistical results of these metrics. Moreover, a score card, 
which is marked with the significance of performance difference, was used to 
conveniently exhibit the performance difference between two forecasts initialized from 
different analyses in terms of ARMSE and ACC. Note that the analyses and forecasts from 
the 4DEnVar system are its ensemble mean analyses and deterministic 10-day forecasts 

Figure 1. Spatial distribution of (a) conventional and (b) AMSU-A radiance observations valid
during 0900–1500 UTC on 13 September 2016. The brown dots represent sounding observations,
the blue dots represent cloud-derived wind observations, and the purple dots represent AMSU-A
radiance observations.

2.4. Evaluation Method

In this study, the anomaly root mean square error (ARMSE) [31,32,34] and anomaly
correlation coefficient (ACC) metrics were used to assess the random error and correlation
of the analyses and forecasts against the “truth”, respectively. The globe was divided
into Northern Extratropics (20◦N∼90◦N), Southern Extratropics (20◦S∼90◦S) and Tropics
(20◦S∼20◦N) for calculating the statistical results of these metrics. Moreover, a score card,
which is marked with the significance of performance difference, was used to conveniently
exhibit the performance difference between two forecasts initialized from different analyses
in terms of ARMSE and ACC. Note that the analyses and forecasts from the 4DEnVar
system are its ensemble mean analyses and deterministic 10-day forecasts initialized from
these ensemble mean analyses. For more details about the evaluation methods refer to
Zhu et al. [24,26].
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3. Results
3.1. Vertical Positioning Method

In this subsection, the vertical positioning method was determined by a set of sensi-
tivity experiments. The purpose of these experiments is to investigate the effects of two
vertical coordinate definitions of AMSU-A radiance observations including the pressure at
peak weight and the weighted average pressure on the forecast skill of the 4DEnVar system.

Figure 2a shows the scorecard of the 4DEnVar-initialized forecasts assimilating all
types of observations with the pressure at peak weight as the vertical coordinates of AMSU-
A radiance observations against those assimilating only conventional observations in
terms of ACC and ARMSE. Encouragingly, the addition of AMSU-A radiance observations
leads to significant improvements of the forecasts, especially in the Southern Extratropics
and Tropics, except the degradation in the late period of the medium range over the
Northern Extratropics (Figure 2a). Meanwhile, similar impacts of the AMSU-A radiance
observations on the forecasts can be observed when the weighted average pressure is
used as their vertical coordinates, but the degradation shown in Figure 2a is alleviated
(Figure 2b). Therefore, the weighted average pressure was finally chosen to define the
vertical coordinates of AMSU-A radiance observations in this study.
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triangles indicate equivalent. 

Figure 2. The scorecards of the 4DEnVar-initialized geopotential height (GZ), temperature (T),
zonal wind (U) and meridional wind (V) forecasts assimilating all types of observations with
(a) the pressure at peak weight and (b) the weighted average pressure as the vertical coordinates of
AMSU-A radiance observations against those assimilating only conventional observations. The filling
size of the triangle shows the difference significance of anomaly correlation coefficient (ACC) or
anomaly root mean square error (ARMSE) between the evaluated and reference forecasts. The largest
filling size represents very significant difference, and the other two decreasing filling sizes represent
significant and insignificant differences. The green upward-pointing (purple downward-pointing)
triangles are plotted if the evaluated forecast is better (worse) than the reference forecast. No triangles
indicate equivalent.
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3.2. Effects of AMSU-A Radiance Observations on Analysis Quality

After the vertical positioning method was determined, the effects of AMSU-A radiance
observations on the analysis qualities of the DA systems were evaluated. Based on the
En4DVar system and its two components, the analysis errors of assimilating all types of
observations were compared with those of assimilating only conventional observations so
as to investigate whether the AMSU-A radiance observations benefit the analysis quality
in different DA systems. The results of the 4DVar and 4DEnVar component systems were
used as the references to assess the effectiveness of the En4DVar system on assimilating
AMSU-A radiance observations.

Figure 3 shows the contributions of AMSU-A radiance observations to the decreases
in analysis error in the En4DVar system and its two components. It is found that all
three DA systems reduced the ARMSE on all vertical layers except very few layers over
Northern Extratropics and Tropic when the AMSU-A radiance observations joined the
analyses. In particular, the decreases in ARMSE in all basic variables except specific
humidity are most significant in the Southern Extratropics, especially in the stratosphere
where conventional observations are sparsely distributed (Figure 3, column 2). However,
the most significant improvement in the specific humidity analysis is located in the Tropics
(Figure 3, row 4) where the water vapor content is high. As for the comparisons among three
DA systems, they have different performances on different variables in different regions.
The improvement in the 4DEnVar ensemble mean analysis is more (less) significant than in
the 4DVar analysis on geopotential height (specific humidity), and comparable on zonal
wind and temperature. It is more obvious on temperature (zonal wind and temperature)
at the middle (upper) layers in the Tropics (Northern and Southern Extratropics), but less
obvious on temperature at the lower layers, and on zonal wind at the upper (middle and
lower) layers in the Tropics (Northern and Southern Extratropics). The improvement in
the En4DVar analysis is generally between those in the analyses from its two component
systems. There is larger improvement in zonal wind (temperature) at the middle layers
in the Southern Extratropics and on the layers below 100 hPa in the Tropics (at the upper
layers in the Tropics). Smaller improvement in temperature is in the middle and upper
troposphere in the Northern Extratropics (Figure 3, rows 2 and 3).

The effects of adding AMSU-A observations on the error structures of the En4DVar
and 4DVar analyses and the 4DEnVar ensemble mean analyses were shown in Figure 4.
First, the analysis errors of all three DA systems are significantly reduced in most regions,
indicating that the AMSU-A radiance observations have an overall positive effect on the
analysis quality. Second, it is found that AMSU-A radiance observations most significantly
reduces the analysis errors of the geopotential height, zonal wind and temperature in the
Southern Extratropics, especially near 60◦S, where conventional observations are sparsely
distributed. In addition, the analysis errors of the specific humidity are significantly
reduced not only in the Southern Extratropics, but also in the Tropics (Figure 4, row 4).
Finally, the improvement of analysis by the En4DVar is generally between those by the
4DVar and 4DEnVar. These results are consistent with the findings in Figure 3.
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Figure 3. The anomaly root mean square error (ARMSE) differences between the analyses of assim-
ilating all types of observations and those of assimilating only conventional observations by the
4DVar (black), 4DEnVar (red) and En4DVar (blue) systems in the Northern Extratropics (left column),
Southern Extratropics (middle column) and Tropics (right column). The results of geopotential height
(GZ; units: gpm), zonal wind (U; units: m/s), temperature (T; units: K) and specific humidity (Q;
units: g/Kg) are ploted in rows 1–4, respectively. The green line denotes zero.
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3.3. Effects of AMSU-A Radiance Observations on Forecast Skill

Given that the analysis errors of the DA systems are significantly reduced by adding
AMSU-A radiance observations, we next focus on whether the improved analysis could
benefit the forecast skill as well.

From the comparisons between the geopotential height forecasts initialized from
the analyses with and without including AMSU-A radiance observations in all three
DA systems, it can be found that AMSU-A radiance observations can generally reduce
the geopotential height forecast errors (Figure 5). The largest improvements are mainly
located at the middle and upper layers in the Southern Extratropics, followed by the
Northern Extratropics and Tropics, which is consistent with the analysis error distributions
(Figure 3). In addition, the improvement of the 4DVar-initialized forecast is more obvious
than those of the 4DEnVar- and En4DVar-initialized forecasts in the Northern Extratropics,
but comparable in the Southern Extratropics and Tropics.
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Figure 5. The time-variation of the anomaly root mean square error (ARMSE) differences between
assimilating all types of observations and assimilating only conventional observations for the geopo-
tential height forecasts (units: gpm) initialized by the 4DVar (left column), 4DEnVar (middle column),
and En4DVar (right column) systems. The results in the Northern Extratropics, Southern Extratropics
and Tropics are ploted in rows 1–3, respectively.
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Figure 6 shows the effects of AMSU-A radiance observations in the En4DVar, 4DVar,
and 4DEnVar systems on the zonal wind forecast errors. AMSU-A radiance observations in
all these DA systems generally reduces the zonal wind forecast errors. The locations where
the 4DVar- and 4DEnVar-initialized zonal wind forecasts are improved or degraded are
generally consistent with the geopotential height. However, inconsistently, the En4DVar-
initialized zonal wind forecast shows an improvement at the late period in the Northern
Extratropics.
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Adding AMSU-A radiance observations to all three DA systems also reduces most
of the temperature forecast errors, with the largest improvement in the Southern Extrat-
ropics (Figure 7). Quite different from the geopotential height and zonal wind, the largest
improvements in the temperature forecasts are located in the stratosphere, and middle
and lower troposphere in the Southern Extratropics (Figure 7, row 2), consistent with
the reduced analysis errors (Figure 3h). In addition, while the 4DVar-initialized forecast
shows a persistent improvement in the Northern Extratropics, the 4DEnVar- and En4DVar-
initialized forecasts performs neutrally. In contrast, the 4DEnVar and En4DVar systems
show larger improvements than 4DVar in the Southern Extratropics and the Tropics. In
particular, the En4DVar system shows the largest improvement.
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Figure 8 shows the effects of AMSU-A radiance observations in all DA systems on
the specific humidity forecasts. Similar to other variables, adding AMSU-A radiance
observations steadily improves the specific humidity forecasts of all DA systems except
for very few lead days in the Northern Extratropics. The improvement of the 4DVar-
initialized forecast is also more significant than those of the 4DEnVar- and En4DVar-
initialized forecasts in the Northern Extratropics (Figure 8, row 1). However, different
from other variables, the largest improvement in the specific humidity forecasts is mainly
distributed in the lower troposphere of the Southern Extratropics (Figure 8, row 2). In
addition, there are significant improvements on the first few lead days in the Tropics
(Figure 8, row 3), consistent with the regions where analysis errors are significantly reduced
(Figure 3l).
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Overall, the differences of the 4DVar-initialized forecast performances between as-
similating all types of observations and assimilating only conventional observations are
statistically significant for almost all lead days in the Southern Extratropics and Tropics and
the first few lead days in the Northern Extratropics (Figure 9a). It is encouraging to note
that adding AMSU-A radiance observations to the 4DEnVar and En4DVar systems with the
weighted average pressure as the vertical coordinates in the observation space localization
also has significant positive effects on forecasts. While there are similar improvements in the
Southern Extratropics and Tropics for the 4DEnVar- and En4DVar-initialized forecasts, the
improvements are less statistically significant than those of the 4DVar-initialized forecast at
the last few lead days. In addition, the impacts of AMSU-A observations in the 4DEnVar
and En4DVar systems on the medium-range forecasts in the Northern Extratropics are
neutral to slightly worse (Figure 9). It is reasonable considering that the 4DVar system uses
model space localization, which can simulate close to the true atmospheric state [21,35]. In
contrast, the observation space localization may hinder the transfer of some information
from the radiance observations.
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4. Discussion

This study investigated the effects of incorporating AMSU-A radiance observations on
the En4DVar system. Unlike most En4DVar systems that utilize the ensemble covariance
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produced by the locally solved EnKF class or the ensemble of globally solved 4DVars,
this system introduces the ensemble covariance provided by the globally solved 4DEn-
Var system using an economical observation space localization [26]. To take into account
the information of AMSU-A radiance observations at other vertical layers, a weighted
average hypsometry was proposed to define the vertical coordinates of radiance obser-
vations. The sensitivity experiments indicates that the new hypsometry approach has
a wider range of positive effects on the 4DEnVar deterministic forecasts than the traditional
peak-based approach.

The impacts of adding AMSU-A radiance observations on the assimilation and forecast
performances of the En4DVar system were systematically assessed through 1-month OSSE-
based assimilation experiments and its corresponding initialized forecast experiments.
The results of the 4DVar and 4DEnVar components are also given as the references for
more systematic evaluation of the En4DVar system in assimilating radiance observations.
The analyses of all three DA systems benefit from AMSU-A observations, especially in
the Southern Extratropics, where conventional observations are sparsely distributed. It is
encouraging that the 4DEnVar system using observation space localization improved the
analyses on the upper layers of the Northern and Southern Extratropics more significantly
than the 4DVar system using model space localization. The improvement in the En4DVar
analyses is generally between those of the standalone 4DVar and 4DEnVar components. In
terms of ACC and ARMSE, three DA systems further improved the forecasts when adding
AMSU-A radiance observations to the ICs. There is a steady improvement in the Southern
Extratropics and Tropics, but the impact on the later lead days in the Northern Extratropics
is neutral or even slightly negative. In the Northern Extratropics, the improvement of
forecast by 4DVar is more significant than by 4DEnVar and En4DVar.

Future improvements in the assimilation of radiance observations based on the
En4DVar system will focus on increasing the types of observations and adjusting the
filtering radius of localization. In order to further improve the analysis quality, the En4DVar
system needs to continue adding more radiance observations with complex multi-peak
distribution weighting functions such as those from AMSU-B instruments. In addition,
the broad satellite channel weighting function has a significant influence on the filtering
radius of localization, and too larger or too small filtering radius will limit the assimilation
performance. More flexible and adaptive localization techniques need to be developed for
satellite DA with localization in observation space.

Moreover, although encouraging results were obtained using observation space local-
ization method in assimilating AMSU-A observations with a single-peak distribution of
weighting function, model space localization has proven to be more beneficial for assimilat-
ing radiance observations [21,35]. Therefore, future attempts will also be made to develop
efficient model space localization method for the ensemble component of the En4DVar
system, in order to obtain better results when assimilating radiance observations with
complex multi-peak distribution weighting functions.
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