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Abstract: Monitoring water resources globally is crucial for forecasting future geo-hydro disasters
across the Earth. In the present study, an attempt was made to assess the functional dimensional-
ity of multi-satellite precipitation products, retrieved from CHIRPS, NASA POWER, ERA-5, and
PERSIANN-CDR with respect to the gridded India Meteorological Department (IMD) precipitation
dataset over a period of 30+ years (1990–2021) on monthly and yearly time scales at regional, sub
regional, and pixel levels. The study findings showed that the performance of the PERSIANN-CDR
dataset was significantly better in Central India, Northeast India, and Northwest India, whereas the
NASA-POWER precipitation product performed better in Central India and South Peninsular of
India. The other two precipitation products (CHIRPS and ERA-5) showed the intermediate perfor-
mance over various sub regions of India. The CHIRPS and NASA POWER precipitation products
underperformed from the mean value (3.05 mm/day) of the IMD gridded precipitation product,
while the other two products ERA-5 and PERSIANN-CDR are over performed across all India. In
addition, PERSIANN-CDR performed better in Central India, Northeast India, Northwest India, and
the South Peninsula, when the yearly mean rainfall was between 0 and 7 mm/day, while ERA-5
performed better in Central India and the South Peninsula region for a yearly mean rainfall above
0–7 mm/day. Moreover, a peculiar observation was made from the investigation that the respective
datasets were able to characterize the precipitation amount during the monsoon in Western Ghats.
However, those products needed a regular calibration with the gauge-based datasets in order to
improve the future applications and predictions of upcoming hydro-disasters for longer time periods
with the very dense rain gauge data. The present study findings are expected to offer a valuable
contribution toward assisting in the selection of an appropriate and significant datasets for various
studies at regional and zonal scales.

Keywords: rainfall; IMD; CHIRPS; NASA POWER; ERA-5; PERSIANN-CDR

1. Introduction

The water cycle is an essential physical process for life on Earth. In atmospheric events
studies, precipitation in the form of rainfall tends to be one of the most important parame-
ters to be studied in broad ways [1]. Water enters the terrestrial surface largely through
precipitation and influences the dynamics of the environment. A consistent long-term
record of a fine spatiotemporal resolution of global precipitation is very important for
various applications such as irrigation scheduling, crop yield forecasting, water resource
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management, hydrometeorology, flood and drought monitoring, and hydrological model-
ing applications. The Indian monsoon plays an important role in the Earth’s climate and
the water cycle as a key part of the South-Asian monsoon where the deep convection force
plays a crucial role [2,3]. The southwest monsoon influences different components of Indian
livelihoods such as agriculture, industry, the energy sector, and the domestic household.
India receives a substantial amount of precipitation during the period of June–August
due to the southwest monsoon and during November–January owing to the Northeast
monsoon annually, relating to the temporal variability in the topography accordingly [3–5].
Climate change has affected the Indian monsoon system significantly, which has influenced
the annual recharge of water sources in the country [2,6]. In recent years, the areas located
in the parts of Himalayan region have faced drastic flood events and cloud bursts due to
high-intensity precipitation.

Ground-based rain gauge measurements of precipitation provide an accurate mea-
surement at the point locations with inadequate spatial resolution and their heterogeneous
distribution [1]. However, information of precipitation variability at large scales requires a
reliable model or a reanalyzed dataset of the hydro-geological cycle at the finest spatiotem-
poral resolution covering various topographic terrains and oceans [7]. Nevertheless, their
efficiency and accuracy can be improved by their regular evaluation concerning ground-
based measurements, which will enhance the modeling capability including validation
and calibration processes. Researchers performed an investigation to assess 120 years of
rainfall dynamics in the Haryana state of India using the statistical variables of mean rain-
fall, rainfall deviation, moving-average, rainfall categorization, rainfall trend, correlation
analysis, and the probability distribution function. The outcome of the study revealed
that rainfall in almost all parts of the state is declining [8]. In the cases of India and its
adjoining regions, infrared-sensor-based precipitation monitoring algorithms were de-
veloped by the Indian Space Research Organization (ISRO) in 2002, after the successful
launch of Kalpana-1, which provides precipitation estimations with remarkable resolution
and accuracy [9]. A validation of INSAT-3 D rain estimates and the Global Land Data
Assimilation System (GLDAS) with IMD rainfall products was carried out. The observed
correlation of 0.83 showed a significant amount of acceptability [10]. The data obtained
from the Kalpana-1 Satellite are greatly utilized for the monitoring of precipitation patterns
and intensity along with the occurrence of drought events during the monsoon season
in India [10–13]. The infrared-sensor-based precipitation algorithms are also combined
with the INSAT-3D satellite observations to achieve an even finer spatial resolution in
comparison to the Kalpana-1 estimates. However, in infrared-satellite-based precipitation
products, rainfall is underestimated across orographic precipitations due to the orographic
air lift in mountain terrain across the country.

The infrared- and microwave-sensor-based precipitation measurements enable the esti-
mation of precipitation at significant spatial and temporal variabilities, globally. The precipi-
tation estimation improved substantially after the launch of the Tropical Rainfall Measuring
Mission (TRMM) satellite, which provided precipitation datasets at relatively high tem-
poral and spatial resolution since November 1997 [14–16]. The real-time TRMM-recorded
meteorological parameters are widely used around the world for planning and prediction
of the different atmospheric phenomena on different terrains [17,18]. Researchers have
developed an algorithm named Integrated Multi-Satellite Retrievals for GPM (IMERG),
which integrates the data obtained from all the GPM satellite constellations for the es-
timation of precipitation, demonstrating better performance compared to TRMM over
India [17,19–21]. However, the limited temporal availability of the IMERG and TRMM-
based multi-satellite precipitation products has been inadequate in many climatological
applications since 2014 and 1998, respectively. Therefore, several precipitation products
have been developed to bridge the data accessibility with high temporal (hourly or daily)
and spatial resolution prior to the year of 1990. The ERA5 fifth-generation reanalysis
data are produced by the Copernicus Climate Change Service (C3S) of ECMWF, which
are available on an hourly scale from 1950 onward with a spatial resolution of 0.28◦ [22];
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moreover, the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
dataset on a daily scale is available from 1981 to the present [23]. The other precipita-
tion datasets, viz., the Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks-Climate Data Record (PERSIAN-CDR) and NASA POWER
products, are also available from 1983 and 1981, respectively. A validation was conducted
on daily and monthly satellite-based rainfall data from the Climate Hazards Group In-
fraRed Precipitation with Station data (CHIRPS), Global Precipitation Measurement (GPM),
and PERSIANN using the publicly available rainfall field data from 1990 to 2020 [24].
The study findings showed that the CHIRPS data outperformed the other datasets with a
ratio closer to one. The comparison of the monthly rainfall datasets from GPM, Climatic
Research Unit (CRU), CHIRPS, GLDAS, PERSIANN-CDR, SM2RAIN, and TerraClimate
with IMD gridded rainfall data was also assessed in the same study [25]. The authors
demonstrated that the GPM dataset typically ranks as a good-performing fit, followed by
CHIRPS and then PERSIANN-CDR; however, despite its finer resolution, the TerraClimate
dataset performs poorer at the pixel level [25].

Even though IMERG and TRMM-era precipitation products perform better in India,
these products were not taken into consideration in the present investigation, due to the
limitation related to the temporal availability of datasets. Despite the fact that there are not
many research studies available to assess how accurate the precipitation is in India for the
time span of 30 or more years, the CHIRPS, NASA POWER, ERA 5, and PERSIANN CDR
rainfall datasets are used for the present analysis because of their long-term availability of
more than 30 years. Currently, the performance of CHIRPS and PERSIAN-CDR datasets
has been evaluated against IMD-rain-gauge-based observations by researchers over India
for the time period of 10–15 years only. However, the performance of the NASA POWER
precipitation product has not been or very seldom been evaluated [14,20]. In addition, the
reanalysis precipitation datasets, namely, PERSIAN-CDR, CHIRPS, and ERA5, also utilize
the cloud-based computing facility on Google Earth Engine (GEE) which is a cloud-based
computational platform that provides access to numerous geospatial datasets [26–28].

In purview of the above, the primary objective of the present investigation is to assess
the performance of CHIRPS, ERA5, PERSIAN-CDR, and NASA POWER precipitation
products against IMD gridded datasets in monthly and yearly time spans at regional,
sub regional, and pixel scales for the long term (30+ years) over India. This is important,
as the study findings may provide more confidence in selecting rainfall products for
various applications. The comparative performance and the recommendation for the
better-performing dataset on different time scales at regional, sub regional, and pixel scales
for the long term are also reported among these datasets. This study will facilitates the
selection of the best-performing rainfall dataset for various applications and offers more
details regarding a region’s rainfall pattern. This means that it also offers helpful advice to
agricultural stakeholders when they are making operational choices.

2. Datasets and Methodology
2.1. Study Area

The precipitation-observing technologies have various challenges regarding reason-
ably representing the climate of a region because India is widely enriched with natural
resources with its complex topography. Cultural diversity based on terrestrial resources
has spread throughout the subcontinent of India including neighboring countries, which
are politically apart from India.

Furthermore, India is divided into four sub regions to compare the precipitation
products in different parts of India according to the IMD region-wise rainfall maps (https:
//mausam.imd.gov.in/responsive/rainfallinformation_msd.php accessed on 20 January
2023). The northwest sub region contains higher Himalayan, lower Himalayan, and
plane terrestrial regions of India [29]. The major rivers of Himalayan origin are flowing
in these sub regions, which makes these lands most fertile for numerous crops that have
socioeconomic importance in India [30,31]. The central Indian region comprises the Satpura-

https://mausam.imd.gov.in/responsive/rainfallinformation_msd.php
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Aravali Gondwana basin from east to west, which is located over the Pachmarhi plateau
and part of the Central Indian Techtronic Zone (CITZ) in India [32]. The Northeast sub
region represents the easternmost part of India, which is united by seven hilly forest states
of India. The northeast terrestrial regions encompass a subtropical climate that is influenced
by the southwest monsoon along with the Meghalaya Plateau, which is known to be a
heavy precipitation-receiving area in India [4,33]. The hydro-winds originating from the
Bay of Bengal circulates the maximum amount of annual precipitation in these parts. The
Southern Peninsula is also called the Indian shield due to its stable geological characteristic
on account of the ancient rocks, liable surface, and river-dominant land. It was formed after
the separation of the Gondwanaland rift along the eastern and western margin, stabilizing
during a long time period across major Himalayan terrain from Antarctica-Australia around
the early Cretaceous period (130 My). The historic geogenic uplift and reactivation of faults
are primarily associated with the Himalayan Orogeny and the whittling of the topography
of these lands [34]. Figure 1 depicts the study area along with the locations of IMD scattered
rain gauge stations (2868 stations during August 2022), i.e., India as a whole and its various
regions (Northwest, Northeast, Central, and South Peninsula) where the present study was
carried out.
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These rain gauges provided diurnal observations during the month of August. The
total number of 2868 rain gauges are available on August 2022.

2.2. Precipitation Datasets

Table 1 shows descriptions of the all-precipitation data products used in the current
investigation. The gridded-precipitation daily data product developed by IMD with a
well-spread rain gauge network (total of 6955 rain gauge stations with varying availability
during the period of 1901–2010 in India at present established by either state governments,
agricultural universities, and the central government body, namely, IMD [35]) across the
country provides datasets in the grid format from the year 1901 for significant climatological
applications; however, a lack of rain gauge stations can be observed in the northern
and northeast regions. On the contrary, the Global Precipitation Climatology Centre
(GPCC) records precipitation data from approximately 400 gauge stations scattered around
India [36]. The combination of several stations across India makes IMD more powerful and
effective than GPCC. Figure 1 provides the PAN India density of 2868 rain gauge stations
installed by IMD only during August 2022.

Table 1. Description of the precipitation data products (sources with their spatial and temporal resolution).

Datasets Name and Sources Spatial
Resolution

Temporal
Resolution Data Availability

IMD Gridded Data (https://www.imdpune.gov.in/lrfindex.php,
accessed on 3 January 2023) 0.25◦ Daily 1901–Present

CHIRPS (https://data.chc.ucsb.edu/products/CHIRPS-2.0/,
accessed on 6 January 2023) 0.05◦ Daily 1981–Present

NASA POWER
(https://power.larc.nasa.gov/beta/data-access-viewer/,

accessed on 9 January 2023)
0.5◦ Daily 1981–Present

ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/home,
accessed on 14 January 2023) 0.1◦ Daily 1950–Present

PERSIANN-CDR (https://chrsdata.eng.uci.edu/,
accessed on 18 January 2023) 0.25◦ Daily 1983–Present

The various satellite-based or reanalysis precipitation products, namely, CHIRPS,
ERA5, PERSIANN-CDR, and NASA POWER, along with IMD gridded precipitation
datasets for the period of 1990–2021, were downloaded from respective data providing
agency portals. The gridded data combine ground-based gauge observation as well as
infrared satellite cold cloud duration measurements. The latest versions of the datasets
were used in this study.

The United States Geological Survey (USGS) in collaboration with Climate Hazard
Group (CHG) developed a CHIRPS precipitation data product at a global (50◦S–50◦N)
scale for the monitoring of seasonal precipitation dynamics and droughts. This dataset
is available for various time scales such as daily, pentad, dekad, monthly, 2-monthly,
3-monthly, and annual time scales and ranging from 1981 to near-present.

ERA5 is a recent and fifth-generation global climate ECMWF atmosphere reanalysis
dataset. It is the descendant of ERA-Interim datasets, which was released in 2006. ERA5
datasets are produced using the four-dimensional variation data assimilation utilizing the
numerical model known as the ECMWF Integrated Forecasting System (IFS) for collecting
data from distinct observational systems (ground-based, atmospheric boundaries, and
satellite radiance) into a comprehensive analysis of atmospheric parameters. The datasets
are provided in gridded format with a spatial resolution of 9 km [22].

The PERSIANN-CDR precipitation dataset is based on infrared temperature imaging.
The algorithm is generated through geostationary satellite observations. The precipitation
estimation is achieved from infrared information using an Artificial Neural Network

https://www.imdpune.gov.in/lrfindex.php
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://power.larc.nasa.gov/beta/data-access-viewer/
https://cds.climate.copernicus.eu/cdsapp#!/home
https://chrsdata.eng.uci.edu/
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(ANN) algorithm. The recorded information is calibrated using the adaptive training
algorithm on the microwave data and updates the network parameters of the microwave
precipitation estimation [1]. The PERSIANN-CDR diurnal precipitation estimates with a
0.04◦ spatial resolution at a 3-hourly temporal interval for the period ranging from 1983 to
the present are available since 1981. The Gridded dataset is available in the public domain
by the product name GridSat-BI with infrared as its main input. The monthly Global
Precipitation Climatology Project (GPCP) version 2.2 product is used for the calibration of
the PERSIANN-CDR datasets [37].

The NASA POWER project provides an open data source of meteorological parameters
as a gridded gauge-product of the Global Precipitation Climate Project (GPCP v2.1), which
is attributed to a spatial microwave imager with a resolution of 0.5◦, providing a fractional
occurrence of precipitation over the target terrain [38]. This algorithm uses geostationary
IR, a low-orbit IR, and atmospheric-infrared-sounder-sensor-based observations. The
NASA POWER dataset is empowered with a 0.1◦ spatial resolution and diurnal temporal
time-series in UTC time, and covers a 15◦ swath of longitude at local solar time (LST).

2.3. Methodology

The performance evaluation of respective precipitation products was carried out on
monthly and yearly time scales with a spatial resolution of 0.25◦ (rain-gauge-based IMD
product) for the period of 1990–2021, since IMD provides the gauged precipitation dataset
at a spatial scale of 0.25◦.

The performance evaluation of various precipitation products in comparison with the
IMD rain gauge gridded precipitation product was carried out using various performance
indices for spatial and temporal distributional patterns at regional, sub regional, and pixel
levels on monthly and yearly time scales. All the precipitation products were resampled
similar to the reference datasets (IMD gridded dataset) due to the spatial and temporal
heterogeneity. In order to perform a comparative assessment between IMD and satellite-
derived precipitation datasets, the aggregation of datasets is necessary since IMD collects
daily precipitation at 0300UTC, which is distinct from the daily satellite precipitation
accumulation convention [36]. Therefore, monthly and yearly mean precipitation was
computed for various satellite-based precipitation products. Furthermore, to obtain the
spatial equality in order to perform a comparative investigation, all the datasets were
resampled to a pixel size of 25 km using the nearest-neighbor resampling technique. Since
the present investigation is pixel-based, assessment of the performance of the datasets was
performed at each pixel-scale area.

The continuous statistical parameters were calculated for the estimation of bias, mean,
coefficient of variance (CV), root-mean-square error (RMSE), and Pearson’s correlation
coefficient (r) for each grid/pixel across India for the target period using the yearly datasets.
Furthermore, random and systematic errors for the datasets were also estimated using de-
composition techniques. The estimation of parameters was performed using the following
relations [36]:

r = ∑n
i=1(Gi − G)(Si − S)√

∑n
i=1(Gi − G)2 ∑n

i=1(Si − S)2
(1)

Bias = S−O (2)

CV =

√
∑n

i=1(Si−S)2

n
S

× 100% (3)

RMSE =

√
∑n

i=1(Si − Gi)
2

n
(4)
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System Error = ∑n
i=1(Si

∗ − Gi)
2

n
(5)

Si
∗ = a× Gi + b (6)

where Si represents the satellite-attained precipitation and Gi denotes the gauge-based pre-
cipitation, with S and G being their respective mean; n is the total number of observations;
and a and b represent the gradient and intercepts, respectively. The ideal value of error and
r is 0 and 1, respectively.

In addition, another very important performance index, namely, the modified Kling–Gupta
efficiency score (KGE), was computed to assess the performance of satellite-derived pre-
cipitation datasets against gauged precipitation data. This performance index provides
the performance result in combination with the three performance indices, viz., Pearson’s
correlation coefficient, bias, and variability [6,38].

Model performance criteria are often used during the calibration and evaluation of
models to express in a single number the similarity between observed and simulated values.
Traditionally, the Nash–Sutcliffe Efficiency (NSE) is an often-used metric as it normalizes
model performance into an interpretable scale. The Kling–Gupta Efficiency (KGE) ad-
dresses several shortcomings in NSE and is increasingly used for model calibration and
evaluation [39]. Like NSE, a KGE value of 1 indicates perfect agreement between simulated
and observed values. The KGE score was computed using the equation given below.

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (7)

where β and γ represent the bias variability ratio. The optimum values of KGE, β, and γ
are 1.

3. Results and Discussion
3.1. Temporal Trend of Precipitation Products over India and Its Sub Regions

The temporal time series of the monthly average precipitation product is also ob-
tained over India and four sub regions of India, viz., Central India, Northeast, Northwest,
and South Peninsula regions, derived from IMD, CHIRPS, NASA POWER, ERA-5, and
PERSIANN-CDR for 30+ years (1990 to 2021) (Figure 2a–e). It is observed that all the prod-
ucts show a similar trend with distinct errors, except in the northeast of India. However,
IMD-gauge-based precipitation data showed elevated peaks rather than multi-satellite-
based products. Northeast India receives comparatively higher rainfall than other parts
of India. The gauge-based product triumphs in capturing precipitation datasets in such
areas where satellites are deficient in observing actual data points because of highly dense
clouds in these parts [40]. High terrestrial altitudes of Himalayan foothills also influence
the capture of precipitation using satellite sensors. A similar temporal trend is detected in
the central and northwest regions. However, the northwest region receives comparatively
lower precipitation than central India. A persisting temporal variability in precipitation is
observed in the South Peninsula. In regards to this point, a recent study demonstrated an
upcoming precipitation extreme in the Southern Peninsula that is indicated by the previous
temporal trend of precipitation [30].

Climate change invokes alterations in the regional hydrological cycle and the surface
temperature plays a crucial role in such phenomena. Extreme temperature accelerates the
hydro-evaporation led by the high atmospheric transport of water vapor, quantitatively. A
long-duration high dip is observed in India during the years 1994–2010. The temporal trend
of precipitation in India during the study period shows an average rainfall that spiked in
2003 following the average local extreme in the country, which is also shown in a similar
study [36].
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In order to assess the temporal trend and magnitude of variation in the values of
the precipitation products compared to IMD’s rain gauge station values, a scatter plot is
created between the average monthly and yearly precipitation values of IMDs and the
values obtained from respective precipitation products (Figure 3a,b). Figure 3a,b show the
scatterplot between the monthly and yearly averaged IMD gridded precipitation dataset
and other multi-satellite products (CHIRPS, NASA POWER, ERA-5, PERSIANN-CDR)
over India and its sub regions (Northwest India, Northeast India, Central India, and
South Peninsula), respectively, with performance indices like the Pearson correlation and
RMSE value. The performance of multi-satellite products is found to be better for monthly
time scales over India and its sub regions than for yearly time scales. The values of the
correlation coefficient and RMSE are found to be 0.99–0.95 and 0.42–1.25 mm/day for all
the multi-satellite precipitation products over all India and its sub regions, respectively. The
highest value of RMSE is found for PERSIANN-CDR over the Northeast region, which is an
indication of the comparatively lower performance of PERSIANN-CDR in this region than
other products and regions on monthly time scales. The lowest value of RMSE is found
to be 0.42 mm/day over the Northwest part of India for the NASA POWER precipitation
product, showing its better performance than other products and regions on monthly
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time scales. The other precipitation products and regions on monthly time scales show
intermediate performance. The values of the correlation coefficient and RMSE are found to
be 0.93–0.36 and 0.16–1.48 mm/day for all the multi-satellite precipitation products over all
India and its sub regions for yearly time snaps, respectively. The lowest RMSE is found
to be 0.16 mm/day for ERA-5 for Central India, showing a better performance than other
products on yearly time scales. However, the highest value of the RMSE is found to be
1.48 mm/day for the regions Northeast and ERA-5, showing the lowest performance on
yearly time scales. High variations in performance indices are found for various multi-
satellite precipitation products over all India and its sub regions on yearly time scales
than monthly time scales. However, a higher performance is found for all the various
multi-satellite precipitation products over India and its sub regions on monthly time scales
than yearly time scales. The lowest performance of all multi-satellite precipitation products
is found for the Northeast region on monthly and yearly time scales.
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Figure 3. Scatterplot of average rainfall data on (a) monthly scale and (b) yearly scale over India and
its sub regions (Northwest India, Northeast, Central India, and South Peninsula) between IMD and
(CHIRPS, NASA POWER, ERA-5, PERSIANN-CDR) during the years from 1990 to 2021. The color
bar represents the density of data points.

From Figure 4, it can be observed that the high-precipitation areas are observed in the
west and north coast, northeast and central India by the multi-satellite products, which
is a well-known fact already. However, each product gives notably slightly different
magnitudes over the same region. A precipitation gradient is formed along the west coast
in IMD, ERA5, and CHIRPS products throughout the availability at higher native spatial
resolution. Nevertheless, IMD captures the precipitation gradient in the northeast part of
India, providing clearer imagery than the other four products. Due to the high density of
gauge stations, IMD completes the information of rainfall at a finer level. However, the
gauge-based precipitation dataset has a large uncertainty over the northern part of India,
which is due to the lower density of rain gauge availability in these parts [35]. The rain
gauge density is important for collecting rainfall information effectively and efficiently [41].
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3.2. Satellite-Derived Precipitation Products Performance over India at Pixel-Scale

The assessment of precipitation products is carried out using the correlation coeffi-
cients, RMSE, systematic error, bias, variability ratio, and KGE score over India and its sub
regions at the pixel level for yearly time scales. The mean values of performance param-
eters over India at the pixel level for precipitation products are given in Table 2. All the
satellite-based precipitation products, namely, PERSIANN-CDR, ERA-5, NASA POWER,
and CHIRPS, show a significant correlation with the IMD-gauge-based precipitation over
India at the pixel level for yearly time scales. The mean correlation coefficient (r) at the
pixel level over India for yearly time scales is 0.54, 0.52, 0.47, and 0.44 for PERSIANN-CDR,
ERA-5, NASA POWER, and CHIRPS, respectively. The highest value of correlation is
found for PERSIANN-CDR, while the lowest correlation coefficient value is observed for
CHIRPS. The ERA-5 and PERSIANN-CDR both attain a negative bias with values of bias of
−0.33 mm/day and −0.05 mm/day, whereas CHIRPS and NASA POWER gain a positive
bias with values of bias of 0.09 mm/day and 0.27 mm/day, respectively. A lower value of
bias is found for PERSIANN-CDR, while a higher value of bias is observed for ERA-5. The
RMSE mean values of 1.15 mm/day, 1.19 mm/day, 1.04 mm/day, and 1.07 mm/day are
found for the PERSIANN-CDR, ERA-5, NASA POWER, and CHIRPS precipitation datasets
at the pixel level over India for yearly time scales, respectively. The RMSE error is found
to range from 1.19 to 1.04 mm/day, which is approximately the same for all the datasets.
However, the systematic errors are found to be 4.93, 5.38, 3.76, and 4.63 percent for the
PERSIANN-CDR, ERA-5, NASA POWER, and CHIRPS precipitation datasets, respectively.
The lowest average RMSE and systematic error are found for the NASA POWER dataset,
while the highest average RMSE and systematic error are found for the ERA-5 precipitation
dataset and the intermediate values of average RMSE and systematic error are found for
the PERSIANN-CDR and CHIRPS datasets over the Indian region at the pixel level for
yearly time scales. Similarly, PERSIANN-CDR, ERA-5, NASA POWER, and CHIRPS are
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also assessed using mean values of modified KGE scores, which are obtained as 0.31, 0.28,
0.22, and 0.22, respectively. A higher value of mean modified KGE scores over the Indian
region at the pixel level is found for the PERSIANN-CDR, while a lower value of mean
modified KGE scores is observed for the NASA POWER and CHIRPS over India at the
pixel level on yearly time scales. The mean values of modified KGE score over the Indian
region at the pixel level suggests the usefulness of ERA-5 and PERSIANN-CDR for the
modeling of precipitation data more efficiently over India.

Table 2. Computed mean values of the performance indices for the precipitation product of CHIRPS,
NASA POWER, ERA-5, and PERSIANN-CDR against the IMD gauge-based precipitation data over
India at the pixel level on yearly time scales.

INDIA

CHIRPS NASA-POWER ERA-5 PERSIANN-CDR

Correlation coefficient 0.44 0.47 0.52 0.54

RMSE (mm day−1) 1.07 1.04 1.19 1.15

Systematic Error (%) 4.63 3.76 5.38 4.93

Bias 0.09 0.27 −0.33 −0.05

Variability Ratio 0.97 0.95 0.95 0.94

KGE 0.17 0.22 0.28 0.31

The four important performance indices (correlation coefficient, bias, variability ratio,
and KGE) suggest that the PERSIANN-CDR data show better performance than the other
precipitation datasets (ERA-5, NASA POWER, and CHIRPS). However, the other two
performance indices (RMSE and systematic error) suggest intermediate performance for
the PERSIANN-CDR datasets over India. The overall observation suggests the better
performance of the PERSIANN-CDR datasets than the other precipitation datasets (ERA-5,
NASA POWER, and CHIRPS).

Figure 5 illustrates the spatial distribution plot of the performance indices (correlation
coefficients, bias, KGE score, RMSE, systematic error, and variability ratio) for the quantita-
tive comparison of all four multi-satellite precipitation products (CHIRPS, NASA POWER,
ERA-5, and PERSIANN-CDR) over the country as compared to the IMD gauge-based
observations at the pixel level on yearly time scales for the target period of 1990–2021.
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Figure 5. Spatial distribution of correlation coefficient (r), bias, modified KGE, RMSE, systematic
error (percent), and variability ratio (γ) in yearly precipitation (mm/day) derived from CHIRPS,
NASA POWER, ERA-5, and PERSIANN-CDR precipitation data for the period of 1990–2021 along
with the IMD precipitation datasets over the country at the pixel level.

ERA-5 and PERSIANN-CDR show higher correlation coefficients concerning the IMD-
gauge-based precipitation product. All four products show almost zero correlation in the
Jammu–Kashmir–Ladakh region of North India, mainly because of the lack of ground-
based gauges in these regions, indicating a larger uncertainty. The quantitative span of
the estimation of correlation coincides with the mean precipitation over India is strongly
depicted by ERA-5 and PERSIANN-CDR. In addition to that, ERA-5 shows a smooth
distribution of the variability ratio over India and a gradient in the northeast region. The
KGE score suggests that the PERSIANN-CDR (0.31) product is the most efficient among
other precipitation products. Lower values of KGE score are found over the northern,
northeast, and Western Ghats of India for all the precipitations products. The lower
gauge density region is also associated with the lower KGE scores of the multi-satellite
precipitation products. Microwave imaging does not give good resolution in cold-freeze
areas, due to the high backscatter from the snow. However, ground-based measurement
acquires a seasonal variability in the precipitation in these parts efficiently.

The bias values show significant negligence of the precipitation over the western coast
and northern region of India. ERA-5 indicates a significant underestimation of precipitation
in the northeast region with respect to the IMD product due to the complex precipitation
system in these parts. A considerable bias is also observed near the western coast along
the windward side. However, a lower bias on the leeward side is demonstrated by all
four products, which indicates an overestimation of the precipitation observation. To
represent the variability in monthly precipitation across India, a spatial distribution of
the coefficient of variation (CV, percent) by all five datasets is shown in Figure 6. The
highest variability is shown in the Northwest part of India by all five datasets. However, a
difference in the magnitudes of variability ratio is visible among all five datasets. Except
for the IMD-gauge-based precipitation product, the other four show very low variability
in the Ladakh-Siachin region, while the temperature and moisture govern the variation
in these parts. The northwest region of India shows high variability in terms of monthly
precipitation, largely governed by the annual monsoon pattern. A qualitative comparison
can be observed at spatial levels in India (Figures 5 and 6). All four products can capture
significant amounts of precipitation in the country though, and CHIRPS shows the highest
variability among others. Over the northern region, NASA POWER tends to achieve the
highest variability concerning the IMD-gauge-based observation.
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Figure 6. The spatial distribution of coefficient of variation (CV, percent) in yearly precipitation across
India at pixel level from IMD, NASA POWER, CHIRPS, ERA-5, and PERSIANN-CDR during the
time period 1990–2021. All-India mean values of CV (percent) are also provided in the figure.

3.3. Performance of Precipitation Products over Sub Regions at Pixel Level

The mean values of performance parameters, viz., correlation coefficient, RMSE,
systematic error (percent), bias, and variability ratio, is obtained for the precipitation
products of CHIRPS, NASA POWER, ERA-5, and PERSIAN-CDR concerning IMD-gauge-
based precipitation data over four sub regions of India, namely, Central India, Northeast
India, Northwest India, and South Peninsula computed at the pixel level on yearly time
scales. The mean estimated values at the pixel level over Central India, Northeast India,
Northwest India, and South Peninsula of these performance parameters are shown in
Tables 3–6, respectively. Over the central India region, the mean values of the correlation
coefficient are obtained at the pixel level as 0.62, 0.593, 0.59, and 0.50 for PERSIANN-CDR,
ERA-5, NASA POWER, and CHIRPS, respectively. PERSIANN-CDR demonstrates the
highest correlation with the IMD-gauge-based precipitation product (0.62) and CHIRPS
shows the lowest (0.50) correlation. The values of RMSE (mm/day) are 0.94, 0.86, 0.79, and
0.83 for PERSIANN-CDR, ERA-5, NASA POWER, and CHIRPS, respectively. The lowest
RMSE is found to be 0.79 for NASA POWER, while the highest value is found to be 0.94
for PERSIANN-CDR. The mean systematic error is obtained for CHIRPS, NASA POWER,
ERA-5, and PERSIANN-CDR as 4.244, 3.754, 4.824, and 4.404 percent, respectively, and the
mean bias is found to be 0.0994 mm/day for CHIRPS, 0.033 mm/day for NASA POWER,
−0.08 mm/day for ERA-5, and −0.11 mm/day for PERSIANN-CDR. The lowest values of
systematic error and bias are observed in the case of NASA POWER, and the highest value
of bias is found for PERSIANN-CDR. The variability ratio is mathematically estimated
as 0.98 for CHIRPS, 0.94 for NASA POWER, 1.00 for ERA-5, and 0.95 for PERSIANN-
CDR. Furthermore, the mean values of modified KGE score are numerically estimated
for CHIRPS, NASA POWER, ERA-5, and PERSIANN-CDR as 0.27, 0.40, 0.39, and 0.42,
respectively. Negative bias is observed for ERA-5 and PERSIANN-CDR, while CHIRPS
and PERSIANN-CDR receive positive bias. Negative bias suggests the underperformance
of the product over the target area, while positive bias represents the over performance
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of the product. The lowest bias is found for NASA POWER, while the highest value of
bias is found for PERSIANN-CDR. For example, the performance of NASA POWER and
PERSIANN-CDR is found to be better than the other two precipitation products by the
evaluation based on the performance indices. However, CHIRPS and ERA-5 have larger
variability ratios, i.e., 0.98 and 1.00, respectively, which exhibits the higher variability of
the product over the central India region than other precipitation products. The RMSE,
systematic error, and bias suggest the better performance of NASA POWER, while the
other two performance indices of correlation coefficients and KGE score suggest the better
performance of PERSIANN-CDR over central India. Moreover, KGE ratio suggests that the
PERSIANN-CDR dataset performs best in central India. The variability ratio is found to be
approximately the same for NASA POWER and PERSIANN-CDR precipitation products.
Overall, NASA POWER and PERSIANN-CDR are better multi-satellite products to be used
for the assessment of precipitation in central India.

Table 3. Computed mean values of the performance indices over central India region at pixel level
for multi-satellite precipitation product against IMD gridded datasets on yearly time scale.

CENTRAL INDIA

CHIRPS NASA-POWER ERA-5 PERSIANN-CDR

Correlation coefficient 0.50 0.59 0.59 0.62

RMSE (mm day−1) 0.83 0.79 0.86 0.94

Systematic Error (%) 4.244 3.754 4.824 4.404

Bias 0.0994 0.033 −0.08 −0.11

Variability Ratio 0.98 0.94 1.00 0.95

KGE 0.27 0.40 0.39 0.42

Table 4. Computed mean values of the performance indices over Northeast India region at pixel level
for multi-satellite precipitation product against IMD gridded datasets in yearly time scale.

NORTHEAST INDIA

CHIRPS NASA-POWER ERA-5 PERSIANN-CDR

Correlation coefficient 0.35 0.30 0.41 0.44

RMSE (mm day−1) 1.85 1.86 2.61 2.06

Systematic Error (%) 11.04 8.76 12.75 11.92

Bias 0.07 0.83 −1.43 0.08

Variability Ratio 0.96 0.968 0.93 0.982

KGE 0.054 −0.01 0.049 0.15

Table 5. Computed mean values of the performance indices over northwest India region at pixel
level for multi-satellite precipitation product against IMD gridded datasets on yearly time scale.

NORTHWEST INDIA

CHIRPS NASA-POWER ERA-5 PERSIANN-CDR

Correlation coefficient 0.40 0.38 0.50 0.50

RMSE (mm day−1) 0.95 0.94 0.917 0.87

Systematic Error (%) 1.94 1.89 2.23 2.02

Bias 0.18 0.42 −0.15 0.05

Variability Ratio 0.94 0.94 0.90 0.93

KGE 0.09 0.07 0.22 0.24
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Table 6. Computed mean values of the performance indices over South Peninsula region at pixel
level for multi-satellite precipitation product against IMD gridded datasets on yearly time scale.

SOUTH PENINSULA

CHIRPS NASA-POWER ERA-5 PERSIANN-CDR

Correlation coefficient 0.46 0.53 0.54 0.53

RMSE (mm day−1) 0.99 0.95 1.01 1.22

Systematic Error (%) 4.32 2.74 5.40 5.05

Bias −0.08 −0.001 −0.15 −0.25

Variability Ratio 0.98 0.94 0.96 0.92

KGE 0.21 0.31 0.31 0.25

The mean values of performance parameters over the northeast India region com-
puted at the pixel level on yearly time scales for the precipitation products of CHIRPS,
NASA POWER, ERA-5, and PERSIANN-CDR are given in Table 4. Higher values of mean
correlation coefficients and KGE score are found for PERSIANN-CDR. Lower values of
RMSE, systematic error, bias, and variability ratio are found for CHIRPS, NASA-POWER,
CHIRPS, and ERA-5, respectively. The observation based on the values of performance in-
dices, namely, RMSE, systematic error, bias, and variability ratio, suggests that the CHIRPS
precipitation dataset has better performance than the other three precipitation dataset
over northeast India. The two performance indices (RMSE and bias) out of four (RMSE,
systematic error, bias, and variability ratio) support the CHIRPS precipitation dataset.
PERSIANN-CDR shows better performance according to the correlation coefficients and
KGE score. However, the CHIRPS precipitation dataset shows the better performance
according to the other two performance indices (RMSE and bias). For example, both
precipitation datasets (CHIRPS, and PERSIANN-CDR) show the better performance over
northeast India.

The mean values of the correlation coefficient between various precipitation products
(PERSIANN-CDR, ERA-5, NASA POWER, and CHIRPS) and IMD gridded precipitation
are found to be 0.50, 0.50, 0.38, and 0.40 over Northwest India computed at the pixel level on
yearly time scales for the long term of 30+ years (1990–2021), given in Table 5. The highest
value of correlation coefficients is found for the PERSIANN-CDR and ERA-5 datasets.
The lowest values of RMSE, systematic error, bias, and variability ratio are 0.87 mm/day,
1.89 percent, 0.05, and 0.90 for the PERSIANN-CDR, NASA POWER, PERSIANN-CDR, and
ERA-5 datasets, respectively. The performance of the PERSIANN-CDR precipitation dataset
is significantly better from the evaluation of the values of four performance indices (RMSE,
systematic error, bias, and variability ratio) because two performance indices (RMSE and
bias) show lower values for the PERSIANN-CDR dataset than the other precipitation
datasets. A higher value of KGE score (0.24) is also found for the PERSIANN-CDR pre-
cipitation dataset. The correlation coefficient and KGE score show the better performance
of PERSIANN-CDR compared to the other precipitation datasets. From the observations
made, it can be concluded that the PERSIANN-CDR precipitation dataset performs better
compared to other precipitation dataset over Northwest India.

The mean values of performance parameters of the precipitation products (CHIRPS,
NASA POWER, ERA-5, and PERSIANN-CDR) with respect to the IMD rain gauge gridded
dataset over the South Peninsula region computed at the pixel level on yearly time scales
for the 30+ years (1990–2021) are reported in Table 6. The correlation of the multi-satellite
precipitation product of CHIRPS, NASA POWER, ERA-5, and PERSIANN-CDR with IMD-
gauge-based precipitation products is found to be 0.46, 0.53, 0.54, and 0.53, respectively.
The RMSE values are obtained for CHIRPS, NASA POWER, ERA-5, and PERSIANN-
CDR as 0.99 mm/day, 0.95 mm/day, 1.01 mm/day, and 1.22 mm/day, respectively. The
systematic errors are found for CHIRPS (4.32 percent), NASA POWER (2.74 percent), ERA-5



Remote Sens. 2023, 15, 3443 17 of 23

(5.40 percent), and PERSIANN-CDR (5.05 percent). The values of bias are obtained as−0.08,
−0.001, −0.15, and −0.25 for the precipitation products of CHIRPS, NASA POWER, ERA-5,
and PERSIANN-CDR against the IMD dataset, respectively. Furthermore, the values of
variability ratio are found for CHIRPS (0.98), NASA POWER (0.94), ERA-5 (0.96), and
PERSIANN-CDR (0.92). The KGE score is determined for CHIRPS (0.21), NASA POWER
(0.31), ERA-5 (0.31), and PERSIANN-CDR (0.25). The performance of the NASA-POWER
precipitation product is found to be better than those of the other precipitation products
(CHIRPS, ERA-5, and PERSIANN-CDR) over the South Peninsula of India.

The yearly mean value of rainfall is found below 7 mm/day for all the regions for
every year (see Figure 3b). A slightly higher value of yearly mean rainfall (~7.6 mm/day) is
found over the northeast region (maximum number of rainfall events occurs in this region)
for very few years. The optimum threshold value of rainfall (7 mm/day) is considered
to analyze the performance of multi-satellite precipitation data products because this
threshold has a tendency to cover all the datasets for the years having limited (below
7 mm/day) and higher (above 7 mm/day) extreme rainfall events. Table 7 represents
the mean values of the performance indices over various regions (India, Central India,
Northwest, Northeast, and South Peninsula) computed at the pixel level on a yearly time
scale for two different states (which is the rainfall recorded below 7 mm/day and above
7 mm/day). In the case of the yearly mean rainfall recorded between 0 and 7 mm/day, the
higher values of mean correlation coefficients over India and its sub regions are found to
be 0.53, 0.64, 0.51, 0.48, and 0.56 for ERA-5 (better for India region) and PERSIANN-CDR
(better for Central India, Northwest, Northeast, and South Peninsula regions) computed at
the pixel level on yearly time scales. The minimum values of mean RMSE over the India,
Central India, and South Peninsula regions computed at the pixel level on yearly time
scales for the NASA POWER dataset are found to be 0.93 mm/day, 0.72 mm/day, and
0.84 mm/day, respectively, while lower values of mean RMSE over the Northwest and
Northeast for the PERSIANN-CDR and CHIRPS datasets are found to be 0.87 mm/day
and 1.47 mm/day, respectively. The mean values of the variability ratio are found to be
approximately the same (between 0.93 and 1.01) over India and its sub regions for all the
precipitation datasets. The mean higher values of KGE score over India, Central India,
Northwest, and Northeast regions computed at the pixel level on yearly time scales are
found to be 0.32, 0.44, 0.25, and 0.21 for the PERSIANN-CDR datasets, while the mean of
the higher value is found to be 0.33 over the South Peninsula region for NASA POWER
and ERA-5 datasets. The comparison of the performance indices computed at the pixel
level suggests that the PERSIANN-CDR datasets perform better over sub regions for the
yearly mean rainfall between 0 and 7 mm/day. However, no conclusive evidence is found
to suggest the better-performing datasets over the India region for yearly mean rainfall
between 0 and 7 mm/day.

The maximum mean values of the correlation coefficient over India, Central India,
Northeast, and South Peninsula computed at the pixel level are found to be 0.44, 0.67,
0.40, and 0.43 with NASA POWER, ERA-5, NASA POWER, and ERA-5 for yearly mean
rainfall above 7 mm/day, respectively. The minimum mean value of RMSE is found to
be 3.05 mm/day and 2.58 mm/day over the Central India and South Peninsula regions
computed at the pixel level on yearly time scales for the ERA-5 dataset, while the minimum
value of RMSE is found to be 3.69 and 0.94 over the India and Northeast regions for
CHIRPS and PERSIANN-CDR datasets, respectively. The variability ratio is found at the
same values for various datasets over all the regions. The higher mean values of KGE score
over India, Central India, Northeast, and South Peninsula regions computed at the pixel
level on yearly time scales are found to be 0.25, 0.46, 0.27, and 0.41 for PERSIANN-CDR,
ERA-5, CHIRPS and PERSIANN-CDR, respectively. The ERA-5 dataset performs better
over the Central India and South Peninsula regions at the pixel level on yearly time scales
for yearly mean rainfall above 7 mm/day. However, no conclusive evidence is found to
suggest the better-performing datasets over India and the Northeast region for yearly mean
rainfall above 7 mm/day.
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Table 7. Computed mean values of the performance indices over various regions at pixel level for
multi-satellite precipitation product against IMD gridded datasets on yearly time scales for two levels
of rainfall. Dashes in cells represent no data value.

Region
Name ↓

Indices
→

R
(Mean)

RMSE
(Mean)

Variability Ratio
(Mean)

KGE
(Mean)

Data
Products
↓

Rainfall
(0–7)
mm/day

Rainfall
(7–above)
mm/day

Rainfall
(0–7)
mm/day

Rainfall
(7–above)
mm/day

Rainfall
(0–7)
mm/day

Rainfall
(7–above)
mm/day

Rainfall
(0–7)
mm/day

Rainfall
(7–above)
mm/day

India

CHIRPS 0.44 0.28 0.96 3.69 0.97 0.98 0.18 −0.07

NASA
POWER 0.47 0.44 0.93 3.88 0.95 0.97 0.22 0.13

ERA 5 0.53 0.42 1.08 3.97 0.96 0.90 0.28 0.08

PERSIANN
CDR 0.21 0.29 0.99 4.92 0.95 0.91 0.32 −0.25

Central
India

CHIRPS 0.50 0.46 0.77 3.64 0.99 0.96 0.28 0.16

NASA
POWER 0.60 0.63 0.72 3.93 0.95 0.95 0.41 0.35

ERA 5 0.59 0.67 0.81 3.05 1.01 0.97 0.40 0.46

PERSIANN
CDR 0.64 0.26 0.82 5.42 0.96 0.88 0.44 −0.19

North-
West

CHIRPS 0.40 - 0.95 - 0.95 - 0.10 -

NASA
POWER 0.38 - 0.92 - 0.95 - 0.08 -

ERA 5 0.50 - 0.92 - 0.90 - 0.23 -

PERSIANN
CDR 0.51 - 0.87 - 0.93 - 0.25 -

North-
East

CHIRPS 0.39 0.14 1.47 4.28 0.97 0.98 0.10 −0.27

NASA
POWER 0.29 0.40 1.49 4.40 0.97 0.99 −0.02 0.06

ERA 5 0.44 0.32 2.24 5.04 0.99 0.86 0.07 −0.10

PERSIANN
CDR 0.48 0.22 1.63 0.94 0.98 0.98 0.21 −0.19

South
Peninsula

CHIRPS 0.47 0.41 0.90 2.54 0.99 0.99 0.22 0.14

NASA
POWER 0.54 0.39 0.84 2.82 0.94 0.96 0.33 0.10

ERA 5 0.55 0.43 0.92 2.58 0.97 0.91 0.33 0.17

PERSIANN
CDR 0.56 0.06 1.02 4.65 0.93 0.81 0.30 −0.41

Figure 7 presents comparative representations of empirical cumulative distribution
functions among the monthly mean of all five precipitation products across India, Central
India, the West coast, and Northeast for the period of 1990–2021. It is observed that the
ground-based observation coincides with the satellite-based products in central India better
than in the Northeast. The sparse gauge density in the northeast might be the possible
reason for this difference. Nevertheless, all products perform quite well while representing
the whole country. PERSIANN-CDR and ERA-5 give the best agreement with the IMD-
gauge-based precipitation dataset. Moreover, NASA POWER seems to overestimate the
moderate precipitation despite the other products and require further improvement to
make it analogous to other multi-satellite precipitation datasets. In addition, the NASA
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power precipitation product CDF seems to coincide with the IMD over the South Peninsula
of India.
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Figure 7. Trend analysis of the empirical cumulative distribution (EMD) functions of monthly
precipitation derived from the IMD, NASA POWER, CHIRPS, ERA-5, and PERSIAN-CDR products
across (a) all India, (b) Central India, (c) Northeast, (d) West Coast, and (e) South Peninsula for the
period of 1990–2021.

Another method based on the Taylor’s diagram is used to identify the comparative
uncertainty for the comparative study of various precipitation products over India and its
sub regions [42]. Taylor’s diagrams are produced for the monthly average precipitation
from IMD, CHIRPS, NASA POWER, and ERA-5 over Central India, the Northeast, the
Northwest, and the South Peninsula of India for 1990 to 2021. Figure 8 shows the Taylor’s
plot for the monthly precipitation derived from CHIRPS, NASA POWER, ERA-5, and
PERSIANN-CDR corresponding to the rain-gauge-based IMD product over India for
the time period of 1990–2021. A similar precipitation modeling group shows similar
performance as they lie close to each other on Taylor’s diagram. The higher all-India
mean precipitation in the monsoon season is well captured by each product. However,
considerable efficiency and performance are found in ERA-5 and PERSIANN-CDR. These
products have the potential ability to model precipitation trends in India in the future
as well. Taylor’s diagram clearly shows that CHIRPS, ERA-5, and PERSIANN-CDR are
the good multi-satellite products among all test products except NASA POWER. It has
also been noted that all the products need improvement over the northeastern region.
Furthermore, CHIRPS and PERSIANN-CDR perform almost indistinguishably in northeast
India. NASA POWER, on the other hand, performs inadequately compared with the other
models. Taylor’s graphic displayed for sub regions of India is displayed in Figure 9a–d. The
NASA POWER precipitation product also shows the best match with the IMD precipitation
datasets in the South Peninsula sub regions of Taylor’s diagram.
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Overall, PERSIANN-CDR performs better in Central India, Northeast India, and
Northwest India, whereas the NASA-POWER precipitation product performs better in
Central India and South Peninsular India. The other two precipitation products (CHIRPS,
and ERA-5) show intermediate performance over various sub regions of India.

4. Conclusions

In the present investigation an extensive evaluation of the latest version of multi-
satellite-based precipitation products, i.e., CHIRPS version 2.0, NASA POWER, ERA-5, and
PERSIANN-CDR, was carried out using the rain gauge interpolated precipitation product
of IMD across India at regional, sub regional, and pixel levels for monthly and yearly time
scales. The study was conducted across India and its subdivisions such as Central India,
Northwest, Northeast, and South Peninsula for the time duration of 30+ years from 1990
to 2021.

The results obtained from the various analyses, i.e., regression, KGE score, RMSE, and
bias score, signify the high usability and better performance of satellite-derived precipi-
tation datasets against gauged IMD precipitation datasets. All the precipitation products
perform better on monthly than yearly time scales at the regional scale. The results indicate
that PERSIANN-CDR and ERA-5 products perform significantly well for the extensive
study of precipitation in the context of the Indian subcontinent at the pixel level. The
IMD-retrieved data show a mean precipitation in India of 3.05 mm/day, whereas CHIRPS
and NASA POWER underestimate and ERA-5 and PERSIANN-CDR overestimate the
mean values concerning the IMD dataset. In addition, PERSIANN-CDR performs better
in Central India, Northeast India, and Northwest India, whereas the NASA-POWER pre-
cipitation product performs better in Central India and South Peninsula India. Two other
precipitation products (CHIRPS and ERA-5) show intermediate performance over various
sub regions of India. PERSIANN-CDR performs better in Central India, Northeast India,
Northwest India, and South Peninsula when the yearly mean rainfall ranges between 0 and
7 mm/day, while ERA-5 performs better in Central India and the South Peninsula region
for yearly mean rainfall above 0–7 mm/day.

The satellite-derived precipitation products are also able to detect the variability in
precipitation amount in the Western Ghats during the monsoon months. The hydrological
management and climatological applications can be fulfilled using only satellite-based data
due to its high spatial applicability on terrain and the ocean. However, these products
need to be calibrated regularly to the gauge-based data to improve the future applications
and predictions of upcoming hydro-disasters. The uncertainty between the products
is compared using the Taylor’s diagram and the relative errors are found to be quite
indistinguishable for all the precipitation products over all the regions of India. A noticeable
difference in the uncertainty is depicted across Northeast India, where the performance of
ERA-5 and PERSIANN-CDR is found to be most acceptable for future reference. Although it
has been noticed that Northeastern India lacks several gauge-based observational stations,
gauge-based observations triumph over satellite-based precipitation products because
of the influence of the complex topography and frequent dense cloud formation in this
region. Nevertheless, PERSIANN-CDR emerges as the best precipitation product for the
assessment of precipitation on the Indian subcontinent. Hence, a good knowledge of
long-term spatiotemporal precipitation datasets can improve the understanding of the
variability in rainfall over the region, which allows for monitoring the water cycle and
upcoming hydro-disasters associated with climate change.
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