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Abstract: Systematic assessment of ballast fouling and mechanized cleaning efficiency through
ground penetrating radar (GPR) is vital to ensure track stability and safe train transportation. Nev-
ertheless, conventional methods of ballast fouling inspection and evaluation impede construction
progress and escalate the cost of maintenance. This paper proposes a novel method using random
irregular polygons and collision detection algorithms to model the ballast layer and simulated using
the finite-difference time-domain (FDTD) algorithm. Hilbert transform energy, S-transform, and
energy integration curve are employed to identify ballast fouling and cleaning efficiency. The highly
fouled ballast exhibits concentrated Hilbert transform energy, increased energy attenuation rate in
S-transform with depth in the 1.0–3.0 GHz, along with a stronger energy integration curve. Clean
or post-cleaning ballast shows opposite results. Experiments on a passenger trunk line in southern
China validated the method’s accuracy after mechanized ballast cleaning. This approach guides
GPR-based detection and supports railway maintenance. Future studies will consider heterogeneous
properties and the three-dimensional structure of the ballast layer.

Keywords: ballast fouling status; ballast mechanized cleaning; FDTD; Hilbert energy transform;
S-transform; integral energy curves; GPR

1. Introduction

The ballast layer plays a vital role in providing elastic support and drainage for train
tracks. However, it is subjected to mechanical wear, deterioration, and fouling, posing
a significant risk to track stability and safety [1]. Frequent assessments of the ballast
condition are necessary for minimizing maintenance costs and preventing accidents, which
is critical for railroad operation and maintenance. While conventional methods adhere to
international standards and yield reliable information, they are limited to discrete data and
are labor-intensive [2]. Therefore, non-destructive testing techniques have the potential to
efficiently and continuously acquire data on the fouling of railway ballast.

Ground penetrating radar (GPR) is a non-destructive technology that is increasingly
used for condition assessment and safety monitoring of railway ballast fouling. This
method relies on electromagnetic wave theory and has important applications in different
fields, such as civil and environmental engineering [3], archaeology [4], and planetary
exploration [5,6]. Early researchers in railway engineering used low-frequency GPR for
testing [7], but were unable to interpret most of the results due to the low resolution.
Subsequent researchers increased the frequency of GPR used for better resolution [8]. In
addition, models for assessing the condition of railroad ballast and predicting the fouling of
the ballast based on GPR are available in references [9–11]. GPR models for railroad ballast
are costly and challenging due to the complex nature of the ballast and the variability
of physical conditions. These procedures require effort and time, and they may result
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in erroneous results. Numerical simulations are able to model the physical systems on a
computer, providing valuable insights for researchers and assisting in design optimization.

In recent years, A. Benedetto et al. have proposed a GPR-based approach for assessing
the cleanliness and fouling conditions of railway ballast layers using the random sequential
adsorption (RSA) algorithm and finite-difference time-domain (FDTD) methodology [12].
Another research by L. Bianchini Ciampoli et al. examined the effects of particle size on the
propagation and scattering of electromagnetic waves in railway ballast layers using the
gprMax 2D numerical analysis software [13]. Additionally, the FDTD algorithm has been
employed in the study of asphalt concrete, where the modeling of circle-shaped aggregates
has been used to assess the condition of the pavement containing water [14–16]. However,
since the numerical simulation method is limited to generating only spherical particles, the
simulation results may not accurately reflect real-world scenarios and should be considered
as a reference for further studies. Building on these studies, references [17,18] employed a
discrete element method to generate three-dimensional irregular polygonal particles for
simulating Martian rock formations, which were used to predict and guide exploration of
subsurface water on Mars using fully polarized GPR. Nevertheless, the limited quantity
of generated irregular three-dimensional particles render them unsuitable for modeling
railway ballast.

Inspired by such research, the main contributions of this paper are as follows,

• This paper proposes a novel algorithm for generating random irregular polygon (RIP)
particles to simulate railway ballast particles, addressing the issue of uniform and
unrealistic particle shapes. In addition, an efficient algorithm is presented to generate
the ballast layer by collision detection (CD) of a large number of particles, and then
the particle size distribution is controlled to simulate the gradation of the ballast. The
generated geological models can represent different levels of ballast fouling and the
cleaning efficiency of ballast.

• Using the FDTD algorithm in forward simulation, the numerical simulation results
accurately determine and identify the differences between the ballast layers with
different ballast fouling and the efficiency of mechanized ballast cleaning process
by integrating the energy curve, Hilbert transform energy [19–21], and S-transform
time-frequency analysis [22,23].

• Finally, experiments were conducted on a section of a high-speed railway line in
southern China with screened ballast. By comparing the results of the GPR forward
simulation and the experimental data, we found that the simulation results were con-
sistent with the measurements, indicating the accuracy and reliability of the proposed
model.

• The remainder of this paper is organized as follows. Section 2 presents the materials,
basic algorithms, and principles of data analysis used in this study. Section 3 provides
an analysis of the simulation results for different levels of fouling and before and after
ballast cleaning models. Section 4 describes the experimental content designed to
compare the simulation results presented in Section 3. Finally, Section 5 summarizes
the main contributions of this study.

2. Materials and Methods
2.1. Materials Preparation and Characterization

This study selected a 50 km downlink section of the intercity railway trunk line be-
tween two provinces in southern China for testing. Among them, 23 km was mechanized
ballast cleaning in March 2023, while the rest were not performed, as shown in Figure 1a.
The railway centerline was selected as the measurement line, with a track gauge of 8.3 cm
and a time window of 15 ns. The radar equipment used a GSSI-SIR30 four-channel main-
frame and a 4200S 2 GHz air-coupled antenna. Before the test, three-point sleeper box areas
were selected in the before and after ballast mechanized cleaning sections, respectively, to
excavate samples for grading analysis of the ballast, as shown in Figure 1b for excavation
site photos and Figure 1c for particle size distribution after sieving. The relative dielectric
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constant of the ballast layer was measured to be 6, while that of the sand cushion layer
and the subgrade layer was measured to be 12 and 15, respectively, through experimental
testing. Specific test methods can be found in Appendix A.

Figure 1. Experimental site (a) Google satellite map of the region between two provinces in southern
China, (b) excavation site photo of the railway ballast bed, (c) sieved track ballast.

2.2. 2D RIP Ballast Modeling Algorithm

In this paper, we present a simple and efficient algorithm for establishing, placing, and
overlapping a two-dimensional RIP ballast model. All location and shape information for
the ballast is stored, called, and evaluated in the matrix format. Compared to traditional
loop-based methods, this algorithm is much more efficient and faster in generating a large
number of particles.

The two-dimensional RIP ballast can be abstracted and equivalent to a RIP shape. This
equivalence is more in line with the real ballast model than the traditional approach of
directly replacing circles. The RIP ballast is built based on circles by dividing them equally
using the number of polygon sides and randomly increasing or decreasing the length on
their radii. Figure 2 shows the model of RIP ballast generated. The main determining
factors of RIP ballast particles are four, namely, the radius r of the basic circle, the number
of sides k of the irregular polygon, the irregular shape control variable ∆r, and the arc angle
∆θ corresponds to each side.

Based on this, a flow chart for generating RIP particles of ballast is shown in Figure 3a.
Firstly, the average particle size ravg and the number of sides k of the particle need to be
determined. Using k as the number of iterations in the loop, the circle with a radius of
ravg is divided into k parts. Thus, the included angle after division can be obtained as
θm = 2πm

k , where m = 1, 2, 3, . . .. Finally, the length ∆r randomly changed based on the
circle is given for each vertex of the randomly generated k-sided polygon. As a result, the
position coordinates of each vertex (1) can be obtained. All positions will be saved in the
form of matrices, which facilitates the CD of the subsequently deposited ballast.
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Figure 2. RIP Ballast Particle Model.

Figure 3. (a) Algorithm flowchart for generating RIP ballast particles, (b) Algorithm flowchart for
ballast particles placement and CD.

After the generation of the RIP ballast particles, the next step is to distribute ballasts
of different sizes into the designated area. This process mainly involves the CD between
ballast particles and the speed of particle distribution. To this end, this study derives the
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conditions for determining the collision of ballast particles and provides conditions for
non-collision using a matrix approach. Moreover, this study addresses limitations related to
the use of loops, such as low efficiency and high complexity in CD, which are not conducive
to the generation of a large number of particles. The algorithm flowchart for the placement
and CD of roadbed ballast particles is presented in Figure 3b. Referring to the schematic
diagram shown in Figure 1, the matrices of the X, Y, and R coordinates of the centers and
radii of n− 1 RIP for the ballast particles can be represented by Equation (2).

xi =
(
ravg + ∆r

)
· cos(θm)

yi =
(
ravg + ∆r

)
· sin(θm)

(1)

X = [x1, x2, x3, . . . , xn−1]

Y = [y1, y2, y3, . . . , yn−1]

R = [r1, r2, r3, . . . , rn−1]

(2)

n = 1, 2, 3, . . . represents the kth generated particle. Subsequently, the distance matrix D
between the nth and the (n− 1)th particles can be calculated using Equation (3).

D =

√
(xn − X)2 + (yn −Y)2

= [d1, d2, d3, . . . , dn−1]
(3)

The distance ∆D between the road stone particles can be expressed as Equation (4).

∆D = D− (R + rk)

= [d1 − r1 − rk, d2 − r2 − rk, . . . , dk−1 − rk−1 − rk]
(4)

Therefore, it is not difficult to derive the condition for determining that there is no collision
between the particles, which is expressed as min(∆D) ≥ 0. During the implementation
of the algorithm, if a collision occurs among the particles, the process will return to the
step of selecting the particle positions, until all the ballast particles are generated without
collision. In the CD of the ballast particles, it is only necessary to find a minimum value that
satisfies the condition to avoid collision. Compared with repeatedly judging the distance
difference through loops to determine the collision, this approach significantly improves
the generation speed and efficiency, particularly when the number of ballast particles is
large.

2.3. Hilbert Transform Energy

In the data analysis of this paper, the Hilbert transform is utilized to extract the enve-
lope of the reflection pulse signal, which is used to characterize the power of the reflection
signal. The Hilbert transform of the signal s(t) can be represented as the convolution of
s(t) and h(t) = 1

πt [19,20], and can be expressed in Equation (5).

ŝ(t) = h(t)∗s(t) =
∫ ∞

−∞

s(τ)
t− τ

dτ (5)

The application of Hilbert transform to the GPR echo signal s(t) yields Equation (6).

sa(t) = s(t) + iŝ(t) (6)

where ŝ(t) represents the Hilbert transform of the input signal s(t). Consequently, the
instantaneous amplitude (envelope amplitude) of the GPR echo signal s(t) can be obtained
as Equation (7).

|sa(t)| =
√

s(t)2 + ŝ(t)2 (7)
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2.4. Time-Frequency Analysis of S-Transform

The time-frequency analysis has significant advantages in recognizing the level of
the ballast fouling, as it is more capable of distinguishing the clean ballast layer from the
transition zone to the highly fouling ballast than commonly used threshold estimation
techniques, such as spectral analysis. The common time-frequency analysis methods for
processing GPR signals include short-time Fourier transform and S-transform. Short-
time Fourier transform is limited by the choice of window function, whereas S-transform
overcomes this limitation [24,25]. For a single trace, a large number of traces are required
to obtain a time-frequency radar image. To obtain a time-frequency representation, the S-
transform uses functions based on continuous wavelet transform as shown in Equation (8).

W(τ, d) =
∫ ∞

−∞
h(t) · w(t− τ, d)dt (8)

where h(t) represents a given function, d is a dilation factor that controls the time-frequency
resolution trade-off, and w(t, τ) denotes the scaling replica of the mother wavelet used for
decomposition. Therefore, the time-frequency representation of the given trace h(t) using
the S-transform is defined by multiplication with a phase factor in both time and frequency
domains.

S(t, f ) = ei2π f τ ·W(τ, d) (9)

3. Modeling and Simulation Result Analysis
3.1. Modeling and Simulation Analysis of Ballast Fouling

To delineate the particle size distribution of ballast particles for different degrees of
the ballast fouling, this paper sieved the ballast particles from clean, moderately fouled,
and highly fouled ballast excavated on-site, and obtained their corresponding particle size
distributions as shown in Table 1. It is evident from Table 1 that the essential difference
between the clean and highly fouled ballast is in the sieving rate of the 1–35 mm particles.
It is substantially higher for the highly fouled ballast, while clean ballast particles are
mostly distributed between 35–63 mm in diameter. This suggests that the finer ballast
particles tend to accumulate on highly fouled ballast or older ballast layer sections, which
is beneficial for modeling the fouling ballast at different levels in subsequent analyses.

Table 1. Gradation table of ballast particles.

Particle Size
Fouling Level

Clean Moderately Fouled Highly Fouled

1.0–2.5 mm 2.2% 3.8% 5.3%
2.5–5.5 mm 3.1% 4.9% 7.0%
5.0–10.0 mm 5.2% 7.3% 9.8%
10.0–16.0 mm 9.3% 13.7% 16.9%
16.0–25.0 mm 14.9% 20.0% 26.6%
25.0–35.0 mm 32.0% 34.7% 41.1%
35.0–45.0 mm 54.2% 55.8% 58.3%
45.0–56.0 mm 79.0% 81.3% 83.1%
56.0–63.0 mm 95.1% 96.0% 97.5%

Based on the aforementioned ballast particles size results, this study uses Python
3.10 under PyCharm and Anaconda to model clean, moderately fouled, and highly fouled
ballast and conducted electromagnetic simulations using the open-source software gprMax
based on the FDTD technique [26]. Randomly sized and RIP ballast particles are introduced
in the model to generate the ballast layer with different particle size distributions, in
accordance with the relationship and conclusions between particle size and levels of
fouling are defined in Table 2. Figure 4a–c shows three different cases of ballast fouling,
visualized using the software named Paraview with vti files, with a length and height of
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5.0 m and 2.5 m, respectively. The mesh parameters of gprMax were set to dx_dy_dz =
[0.001, 0.001, 0.01]. In the FDTD simulation, a dipole antenna built into the software was
chosen as the transmitting and receiving antennas, with a distance of 0.05 m from the
railway and a height of 0.3 m. The antenna was scanned in the lateral direction of x with
a step size of 0.05 m. To accelerate the simulation in gprMax, a 6 GB RTX3060 GPU was
utilized. In order to avoid the influence of the absorbing boundary of gprMax on the
electromagnetic waves of the antennas, 80 AScan results were obtained by scanning the
antennas along 80 traces between 0.5 m to 4.5 m in the x-axis direction with a step size of
0.05 m.

Table 2. Electromagnetic parameters of gprMax models at different levels [27].

Model Level Dielectric Constant Permeability (H/m) Conductivity (S/m)

Air layer 1 1 1
Ballast layer 6 1 0.01

Sand cushion layer 12 1 0.001
Subgrade layer 15 1 0.01

Figure 4. Different levels of gprMax modeling and visualization for different degrees of contamina-
tion: (a) clean ballast bed, (b) ballast bed with moderate contamination, (c) ballast bed with severe
contamination.

As shown in Figure 5, the BScan, Hilbert transform energy, and S-transform time-
frequency results obtained from the simulations correspond to the three different levels
of the ballast fouling, respectively. Figure 5a–c, respectively, depict the BScan simulation
results for the three different levels of the ballast fouling, with a linear gain of up to
20 applied to better observe the stratification effect of the medium, without removing the
direct wave. The more detailed data processing methods are shown in Appendix B. A
clear boundary between the ballast layer and the sand cushion layer can be observed at
a time window of approximately 8.8 ns. In addition, as the level of fouling increases, the
total BScan reflections become more cluttered and the reflected electromagnetic waves
become stronger. Furthermore, in order to further distinguish between different levels of
ballast fouling, this paper processed the data with a Hilbert transform energy, in which the
background direct wave was first removed before the transformation, without linear gain
applied, to avoid affecting the transformation results.
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Figure 5. Forward simulation results of clean, moderately fouled, and highly fouled ballast:
(a–c) show the BScan grayscale images; (d–f) depict the Hilbert transform energy results; and
(g–i) demonstrate the S-transform time-frequency results at a depth of 2.5 m.

Figure 5d–f shows the Hilbert transform energy results for different levels of fouling.
To facilitate comparison, the energy was normalized. It can be observed from the figures
that as the fouling increases, the energy distribution in deeper layers becomes denser,
indicating stronger energy in the small-sized ballast layer. To further observe the difference
between different fouling and the fouling transition zone, this study used fixed single-
track simulated data to obtain time-frequency energy results through S-transform, as
shown in Figure 5g–i. Firstly, the energy was normalized using the maximum value,
and then the simulated data were taken at 2.5 m to obtain the time-frequency results
through S-transform. By comparing the figures, it can be found that the S-transform energy
for different ballast fouling is mainly concentrated in the range of 1.0 GHz to 3.0 GHz.
Furthermore, by comparing the rate of energy decay, it can be observed that with increasing
fouling, the decay rate of electromagnetic energy corresponding to S-transform increases as
the longitudinal depth extends. For the clean ballast, the high-frequency energy remains
high until about 12 ns, while for the moderately fouled ballast, the high-frequency energy
decays completely at around 6 ns. In contrast, for highly fouled ballast, significant decay
starts at around 5 ns. Therefore, S-transform is more effective in distinguishing different
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degrees of fouling in the ballast, and the decay rate of electromagnetic energy corresponding
to S-transform increases with increasing fouling degree.

3.2. Model and Simulation Analysis of Mechanized Ballast Cleaning on Railway Ballast

This study established the model of mechanized ballast cleaning process efficiency, as
illustrated in Figure 6. The model has a total length of 15 m and a height of 2.5 m. The first
and last 5 m of the model were designed to represent highly fouled ballast, representing the
condition without mechanized ballast cleaning. The model’s center displays clean ballast
that is up to 5 m long and represents the circumstances in a ballast cleaning. Simulation is
performed using gprMax, with parameters such as antenna and spacing between tracks
kept constant. The antenna acquired 260 traces with a step size of 0.05 m from 1 m to
14 m. The final simulation results are presented in Figure 7. In order to better highlight the
contrasting effect of energy changes that occurred by mechanized ballast cleaning efficiency,
this study calculated and obtained the integrated energy of each trace line, plotted the
energy curve, and smoothed and normalized the energy values to a range of 0–1, as shown
in Figure 7a. It can be observed that the normalized energy of highly fouling areas is
around 0.8, while the normalized energy of the clean ballast with ballast cleaning is very
close to 0, indicating that the energy of the ballast after mechanized cleaning is much lower
than that of it before ballast cleaning. This conclusion is consistent with the results of the
previous section that the energy of the clean ballast is lower than that of the highly fouled
ballast. By observing Figure 7b,c, it is easy to find that the energy distribution of the clean
ballast layer after mechanized ballast cleaning becomes sparser as the depth increases,
while the energy distribution of the before ballast cleaning on both sides becomes denser as
the depth increases.

Figure 6. The gprMax model before and after ballast cleaning.

Furthermore, this study obtained the corresponding time-frequency results of the
S-transform for three different points at 2.95 m, 7.1 m, and 13.2 m, respectively, from three
different ballast layers sections before, after, and before mechanized ballast cleaning, and
normalized the results using the maximum value. By comparing the results, it can be
analyzed from the energy decay rate that the 1–6 GHz energy of the after ballast cleaning
case generally decays more slowly, while the energy decay rate of the before ballast cleaning
case is extremely fast, which is helpful to distinguish and judge whether the railway section
has been subjected to an efficient mechanized ballast cleaning process.
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Figure 7. Different simulation results before and after ballast cleaning, with (a) energy change curve,
(b) BScan grayscale image, (c) Hilbert transform energy map, and (d–f) S-transform energy results at
2.95 m, 7.1 m, and 13.2 m, respectively.

4. Experimental and Analysis

To compare and validate the consistency between the simulation and experimental
results, selected sections of the main railway line were measured in this study, as shown
in Figure 8a. To address the abnormal data caused by environmental noise at the rail
joints, we directly screened and removed them based on the abnormality of the integrated
energy, as shown in Figure 8b for the integrated energy curve of the entire railway section.
After normalization, it was found that the energy clearly decreased in the 25–42.5 km
section, with a minimum value of around 0, consistent with the results for the selected
section of the mechanized ballast cleaning location, while other sections were uncleaned
and maintained an energy level of around 0.8. This provides evidence that although the
scale of the simulation method proposed in this study is limited to 1–14 m, the energy
trends of the entire section before and after mechanized ballast cleaning remain consistent.
In addition, the integrated energy curve indicates that cleaner ballast has lower energy
levels, whereas more severe levels of ballast fouling correspond to higher energy levels.

To further analyze this experimental result, this paper extracted data from 0–60 tracks
and 300,000–300,060 tracks, respectively, for analysis, corresponding to the results before
and after ballast cleaning or clean ballast and highly fouled ballast. For this part of the
data, the direct waves of the experimental data were first zero-corrected and removed, and
the repeated sleeper information in the experiment was eliminated by truncation, so the
results in Figure 9a,b,d,e are relatively flat at around 4 ns. As shown in Figure 9a–c, they,
respectively, correspond to the BScan grayscale image, Hilbert transform energy image,
and S-transform time-frequency image before ballast cleaning.
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Figure 8. The (a) test scene and (b) integrated energy curve of a railway trunk line in southern China.

Figure 9. The experimental data before and after ballast cleaning are presented in (a,d) as BScan
grayscale images, (b,e) as Hilbert energy transformation graphs, and (c,f) as time-frequency spectro-
grams of the 30th intermediate data.

Based on the experimental results, the present study further analyzed the measured
data of 0–60 tracks and 300,000–300,060 tracks, corresponding to the results before and
after the mechanized ballast cleaning process can be understood as the results of clean
ballast and highly fouled ballast. Firstly, the direct waves in the experimental data are
removed, and the duplicated sleeper information in the experiment was eliminated by
truncation. The detailed data processing methods are shown in Appendix B. Thus, the
results of Figure 9a,b,d,e were relatively flat at around 4 ns. As shown in Figure 9, the
gray-scale image of the BScan, the Hilbert transform energy distribution map, and the
S-transform time-frequency distribution map corresponded to the results before ballast
cleaning. Figure 9a,d show a faint boundary at around 8 ns and 12 ns, respectively. Before
ballast cleaning, fine particles were primarily found in the lower layer. This resulted in
a dense energy distribution in the Hilbert transform shown in Figure 9b,e. However,
after ballast cleaning, the energy distribution became relatively sparse, with the majority
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concentrated in the surface layer of the ballast. In addition, during the processing of
experimental data, this study also selected the 30th track data between two datasets
for the time-frequency energy analysis of the S-transform. The energy was also mainly
concentrated at around 1.0–6.0 GHz. As the longitudinal depth increases, the energy
decay rate before ballast cleaning is faster than after ballast cleaning. At around 6 ns, the
high-frequency energy basically decayed in the before-ballast cleaning data, while in the
after-ballast cleaning data, the energy had not yet completely decayed at around 14 ns at
1–6 GHz. Therefore, the processing and analysis of experimental data can fully explain that
the ballast model and methods proposed in this study with different ballast fouling and
mechanized cleaning process can interpret well the actual ballast fouling, and guide the
analysis and judgment of the subsurface GPR-based ballast fouling detection in practical
engineering.

This study compared the proposed method with a few pertinent research techniques,
as given in Table 3, to further highlight the novelness of the approach. Comparative analysis
revealed that the proposed method’s two-dimensional RIP particle shape is more in line
with the actual railway ballast and subgrade scenario. Additionally, the CD algorithm
using matrix computation is highly efficient in dealing with RIP ballast scenarios with
large particle counts. Therefore, it has good adaptability in modeling the railway ballast
and can accurately reproduce its geological model with high precision. Although the
two-dimensional ballast layer model is straightforward and simple to replicate, there is
still a discrepancy between it and the real three-dimensional model. Since every ballast
particle in the simulation is similar to a homogeneous, isotropic medium, there is still some
experimental room for improvement. The ballast bed model approach also disregards the
impact of other elements, such as the amount of water in the ballast, on the level of fouling.

Table 3. Comparison of Reference Methods and Our Approach.

Reference Modeling Algorithm Particle Shape Number of Particles

[12,13] random sequential adsorption circle many
[14–16] random sequential adsorption circle many

[16] discrete element algorithm Irregular 3D polygon few
This paper RIP & CD algorithm Irregular 2D polygon many

5. Conclusions

This paper presents a physically based railway ballast model for different levels of
fouling and mechanized ballast cleaning process efficiency, implemented through a novel
Python algorithm using the gprMax simulation software.

• Based on the proposed method, this study employs the energy integration curve,
Hilbert energy transform, and S-transform approaches to evaluate and provide a
reasonable analysis of the simulated results on different ballast conditions. It can effec-
tively distinguish the railway ballast with different levels of fouling and mechanized
ballast cleaning process. The conclusions of the simulation analysis are consistent with
experimental data from a high-speed railway line in southern China, demonstrating
the reliability and accuracy of the proposed model.

• As the fouling increases, the finely fragmented particles in the ballast layer tend to be
more abundant and the energy on the integration curve also increases. In the Hilbert
transform energy, the energy distribution is more concentrated. In the S-transform
time-frequency results, the attenuation rate is faster with increasing depth. Conversely,
with the clean ballast, the opposite effect is observed.

• This method is proposed can accurately reproduce the railway ballast model with high
precision. Furthermore, the proposed research method accurately constructs models
of different levels of fouling and mechanized ballast cleaning efficiency of the railway
ballast, which has great potential application value in the detection and elimination of
hidden dangers on actual railway lines.
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• Nevertheless, the ballast layer model proposed in this paper is still a two-dimensional
structure compared to the actual three-dimensional model situation there are still
some differences. The relative permittivity of the ballast is only considered as a
homogeneous and isotropic medium for the simulation and more environmental
effects on the fouling of the ballast bed have not been considered. To address these
flaws, further studies will expand the model to a three-dimensional structure and take
into account the variation of relative permittivity and some natural climatic effects
such as rainfall.

Finally, the method proposed in this paper could provide more scientifically accurate
guidance and explanation for the actual measurement of GPR data on railway lines.
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Appendix A. Relative Dielectric Constant Test Method

The relative dielectric constant variation of dry clean ballast to saturation can be ob-
tained in reference [27] as 3–26.9. The approach shown in Figure A1a is used in engineering
to determine the relative dielectric constants of the ballast layer, the sand cushion layer,
and the subgrade layer. As shown in Figure A1b, which depicts an actual scene for locating
the steel plates, numerous steel plates must first be buried to the portions of the medium
to be measured, after which the precise buried steel plate depth D is measured. The time
parameter t of the depth of the buried steel plate can be determined using GPR, as shown
in Figure A1c, and the time required for electromagnetic wave propagation at the buried
steel plate can be determined from the radar profile. As a result, we could employ this
approach to determine how quickly electromagnetic waves spread through the substance
under measurement. We regard the roadbed, sand bedding, and roadbed being measured
in this work as homogenous mediums by default in order to make the computation of the
relative permittivity easier. Finally, we used the following Equation (A1) to transform the
velocity model into a dielectric permittivity model,

εr =
( c

v

)2
(A1)

where εr is relative dielectric permittivity, c is the speed of light in vacuum and v = 2D
t is the

subsurface velocity. As a result, the Equation (A1) for the speed at which electromagnetic
waves propagate in a material may be used to determine their relative permittivity, as
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shown in Table 2. This method allows us to obtain the relative dielectric constants of the
ballast layer, the sand cushion layer, and the subgrade layer, which we then include in the
simulation.

Figure A1. (a) A Schematic of the relative dielectric constant test, where the red lines all represent
steel plates. (b) Measurement of ballast bed depth, and (c) Three-channel GPR (as shown in Figure 8a)
detection results for the actual railroad scene with 8 steel plates buried shown as red dash rectangle.

Appendix B. Data Processing

In the study, we processed the simulation data of the ballast bed with different degrees
of fouling and mechanical ballast cleaning as well as the measured engineering data of
mechanical ballast cleaning. The steps of data processing consist of several steps.

(1) Background elimination. The average value of each segment of the traces was
subtracted to complete this stage, which simply included removing the background
mean (Figure A2b,e).

(2) Automatic control of gain. Radar echoes steadily lose energy as propagation depth
increases. In order to increase the energy of radar echoes from deep reflectors, we
routinely utilized automated gain control (Figure A3b).

(3) Railway sleeper interference removal. After the background is removed, the sleeper
interference intercepts the position of the data row where the sleeper is located to
make it 0 (Figure A2c,f).

(4) Data normalization process. Divide all of the variables to be compared by the highest
value of these values to normalize the comparison (Figure 9).
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Figure A2. The experimental data before and after ballast cleaning radar profiles after apply-
ing a series of data regulation processing. (a,d) The original data. (b,e) Background elimination.
(c,f) Railway sleeper interference removal.

Figure A3. Simulation results of clean ballast layers radar profile. (a) The original data. (b) Automatic
control of gain.
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