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Abstract: Ultra-wideband (UWB) multiple-input multiple-output (MIMO) through-wall radar is
widely used in through-wall human target detection for its good penetration characteristics and
resolution. However, in actual detection scenarios, weak target masking and adjacent target unresolv-
ing will occur in through-wall imaging due to factors such as resolution limitations and differences
in human reflectance, which will reduce the probability of target detection. An improved U-Net
model is proposed in this paper to improve the detection probability of through-wall targets. In
the proposed detection method, a ResNet module and a squeeze-and-excitation (SE) module are
integrated in the traditional U-Net model. The ResNet module can reduce the difficulty of feature
learning and improve the accuracy of detection. The SE module allows the network to perform
feature recalibration and learn to use global information to emphasize useful features selectively
and suppress less useful features. The effectiveness of the proposed method is verified via simu-
lations and experiments. Compared with the order statistics constant false alarm rate (OS-CFAR),
the fully convolutional networks (FCN) and the traditional U-Net, the proposed method can detect
through-wall weak targets and adjacent unresolving targets effectively. The detection precision of the
through-wall target is improved, and the missed detection rate is minimized.

Keywords: through-wall radar; multiple targets; target detection; U-Net; ultra-wideband (UWB);
multiple-input multiple-output (MIMO)

1. Introduction

Ultra-wideband (UWB) radar is widely used in emergency rescue [1–3], geological
exploration [4,5], archaeological detection [6], ice detection [7,8], etc. The working frequency
of UWB radar is generally 400 MHz~10 GHz [9]. The definition of UWB is that the absolute
bandwidth is higher than 1 GHz or the relative bandwidth is larger than 25% [10]. Therefore,
UWB radar has good penetration characteristics and high-range resolution [11–14]. The
UWB multiple-input multiple-output (MIMO) through-wall radar composed of a UWB
radar and a MIMO array can penetrate obstacles for real-time imaging [15–18], which is an
important technology in the detection of through-wall targets.

The target detection results of through-wall imaging can be used to determine the loca-
tion and number of people in a closed room [19,20]. However, in actual detection scenarios,
the imaging of strongly reflective targets will mask weakly reflective targets due to the
difference in reflectivity of different human targets [21,22]. In addition, unresolvingadjacent
targets will appear in the imaging results when the distance between targets is relatively
close due to the limited array aperture of the through-wall radar. The above factors will
reduce the detection probability of through-wall targets.
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Constant false alarm rate (CFAR) detectors are often used to detect through-wall
targets [23,24], mainly including cell average CFAR (CA-CFAR) detectors and ordered
statistical CFAR (OS-CFAR) detectors [25]. In CA-CFAR, the background noise and clutter
power are estimated via the sliding window and mean method [26]. In the OS-CFAR,
the signal samples in the reference window are sorted by size, and then the single rank
of ordered statistics is used instead of the arithmetic mean to estimate the background
noise and clutter power [26]. Therefore, the performance of the OS-CFAR detector is better
than that of the CA-CFAR detector in the through-wall target detection. In addition, some
classical segmentation methods can also be used for target detection. Classical segmenta-
tion methods include threshold-based segmentation methods, region-based segmentation
methods, and edge detection-based segmentation methods [27]. The threshold-based seg-
mentation method has been introduced into the field of through-wall target detection for
its good segmentation effect and high efficiency, such as the OTSU threshold segmentation
algorithm [28]. The maximum inter-class variance is used in OTSU to determine the thresh-
old automatically. The threshold is the best when the inter-class variance is the largest, and
the image is segmented with this threshold. However, the above-mentioned through-wall
target detection methods only consider the intensity characteristics of the target, and it is
difficult to detect through-wall weak targets and adjacent unresolving targets.

In recent years, methods of optical image processing have also been used for through-
wall target detection. They can learn high-level and robust features from the training
data automatically compared to traditional target detection methods. Zheng et al. used
the convolutional neural network (CNN) to detect the position and pose of through-wall
human targets [29]. The denoising self-encoder is used in [30] to detect the posture of
the moving human behind the wall. Liu et al. used robust principal component analysis
(RPCA) to detect through-wall targets [31], which can eliminate well the influence of wall
clutter. Support vector machine (SVM) and K-Means techniques are also used in through-
wall target detection, but they are only suitable for high-SNR environments [32]. U-Net is
used for through-wall super-resolution imaging to complete target detection in [33], but it
has not been used for through-wall weak target detection. Fully convolutional networks
(FCN) are used in [34] for through-wall multi-target detection, which can detect through-
wall weak targets, but the recovery of adjacent targets is not perfect. In summary, it is
difficult for existing methods to extract through-wall weak targets and adjacent unresolving
targets simultaneously.

An improved U-Net model is proposed in this paper to detect through-wall multiple
human targets accurately and eliminate weak target masking and adjacent target unresolv-
ing. In the proposed detection method, a ResNet module and a squeeze-and-excitation
(SE) module are integrated in the traditional U-Net model. The ResNet module can reduce
the difficulty of feature learning and improve the accuracy of detection. The SE module
allows the network to perform feature recalibration and learn to use global information
to emphasize useful features selectively and suppress less useful features. The ability to
detect through-wall weak targets and adjacent targets can be improved by introducing
these two modules into the U-Net model.

This paper is organized as follows. Section 2 gives the principle of through-wall
imaging and analyzes the phenomena of through-wall weak target masking and adjacent
target unresolving. Section 3 describes the model of the proposed through-wall target
detection method based on the improved U-Net. The establishment of the dataset, the
evaluation metrics of the model and the simulation results are given in Section 4. In
Section 5, the proposed method is verified via experiments. Finally, Section 6 concludes
the paper.

2. Problem Analysis
2.1. Through-Wall Imaging

The scene of through-wall imaging is shown in Figure 1. The through-wall radar is
close to the wall, and the target is located on the other side of the wall. Assuming that the
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wall is a homogeneous medium, the relative permittivities of the wall and air are εr1 and
εr2, respectively. TX and RX are the transmitting and receiving antennas, respectively. WT
and WR are the refraction points of electromagnetic waves between the two media in the
process of transmitting and receiving, respectively. RTa (RTb) is the propagation path of
the electromagnetic wave in the wall (air) during the transmitting process. RRa (RRb) is
the propagation path of the electromagnetic wave in the wall (air) during the receiving
process. σr(x, z) is the reflectivity of the target at (x, z), and x and z are the azimuth and
range coordinates, respectively. Ignoring the propagation loss, the target echo U can be
expressed as follows:

U(TX , RX , t) = U0(t−
√

ε1RTa +
√

ε2RTb +
√

ε1RRa +
√

ε2RRb

c
), (1)

where U0 is the transmitting signal, and c is the propagation speed of the electromagnetic wave.
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A modified backward Kirchhoff algorithm is used for through-wall imaging in this
paper, which has been derived in detail from our previous work [35]. The imaging result of
the target can be expressed as follows:

σr(x, z) = 4∑
M

∑
N

1
T2 × [ (RTa+RTb)(RRa+RRb)AT AR

c2
∂2

∂t2 ]

U(TX , RX , t +
√

ε1RTa+
√

ε2RTb+
√

ε1RRa+
√

ε2RRb
c )+

1
c (ARBT(RRa + RRb) + AT BR(RTa + RTb)),

∂
∂t U(TX , RX , t +

√
ε1RTa+

√
ε2RTb+

√
ε1RRa+

√
ε2RRb

c )+

BT BRU(TX , RX , t +
√

ε1RTa+
√

ε2RTb+
√

ε1RRa+
√

ε2RRb
c )

(2)

AT =
√

ε1
∂RTa

∂n +
√

ε2
∂RTb

∂n , BT = ∂RTa
∂n + ∂RTb

∂n
AR =

√
ε1

∂RRa
∂n +

√
ε2

∂RRb
∂n , BR = ∂RRa

∂n + ∂RRb
∂n

, (3)

where M and N are the number of transmitting and receiving antennas, respectively. T is
the transmission coefficient of the wall, and n is the unit external normal of the wall where
the radar is located [35].
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2.2. Unresolving and Masking Phenomena in Through-Wall Multi-Target Imaging

The range resolution, ∆R, and azimuth resolution, ∆C, in through-wall imaging are
as follows [36]:

∆R =
c

2B
, (4)

∆C =
λR

(LT + LR) cos2 θ
, (5)

where B is the bandwidth of the radar signal, λ is the wavelength corresponding to the cen-
ter frequency of the radar signal, and LT and LR are the aperture lengths of the transmitting
and receiving arrays, respectively. R is the range between the target and the center of the
radar, and θ is the angle at which the target deviates from the radar’s normal angle. It can
be seen that the range resolution is related to the bandwidth. Azimuth resolution is limited
by the range of the target, the wavelength of the signal and the aperture of the radar.

According to Formula (5), the azimuth resolution increases with the distance of the
target when the radar aperture is fixed, which will cause unresolving between two adjacent
targets at a long distance in the imaging results. In addition, the amplitude of human echoes
will be affected by factors such as the body shape of human, reflectivity, micro-motion and
distance when there are multiple human targets. The distance factor can be compensated
for via the method of time gain in the distance direction [37]. However, other influencing
factors cannot be predicted and eliminated in advance, which will cause masking among
multiple targets.

Figure 2 is the simulation schematic diagram of through-wall multi-target imaging.
The MIMO through-wall radar used in the simulation model includes two transmitting
antennas and six receiving antennas, which are arranged in a sparse and non-redundant
line array. The center frequency and bandwidth of the radar are both 1 GHz. There are five
point targets in the simulation experiment, with coordinates of (0.3 m, 1 m), (−2 m, 2.5 m),
(0.2 m, 4.8 m), (0.8 m, 4.98 m) and (−3.2 m, 8 m). In order to represent the difference in
reflection intensity of different targets, the reflectance of each target is different, and the
value ranges from 0.2 to 1. The signal-to-noise ratio (SNR) of the simulated echo signal is
generated between 3 dB and 10 dB randomly.
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The time gain method is used to enhance the response of the target at a long distance,
and then the improved Kirchhoff algorithm introduced in Section 2.1 is used for imaging.
Figure 3 shows the through-wall 2D imaging results. It can be seen that the image of
target 2 is weak and is almost masked by several other strong targets. The distance from
target 3 to the radar is 4.8 m, and the azimuth resolution of this distance can be calculated
as 0.65 m according to the azimuth resolution formula. The azimuth interval between
target 3 and target 4 is 0.6 m, which is smaller than the theoretical resolution. It will cause
an unresolving phenomenon in the imaging of target 3 and target 4, which will bring
difficulties to target detection.
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3. Target Detection Method Based on Improved U-Net

In order to detect through-wall multiple human targets accurately and eliminate the
problem of weak target masking and adjacent target unresolving, this paper proposes
a multi-target detection method based on the improved U-Net. The designed model
integrates the ResNet module and the SE module in the traditional U-Net model to improve
its ability to detect through-wall weak targets and adjacent unresolving targets.

3.1. U-Net Model

U-Net is a network proposed for image segmentation based on FCN [38]. On the basis
of FCN, the decoding structure of U-Net is modified, and a U-shaped structure network
with a symmetrical contraction path and expansion path is formed through multi-channel
convolution [39]. Compared to the FCN, skip connections are added to the expansion
path in U-Net to incorporate more image features, and a good segmentation effect can
also be obtained in the case of a small number of samples. It can solve well the problem
of few data samples in the field of through-wall multi-target detection. The U-Net model
can reconstruct the contours of adjacent and weak targets at the pixel level and detect the
remaining targets accurately.

The U-Net model consists of contraction modules, expansion modules and skip con-
nections [39]. The classic U-Net model generally includes four-layer contraction modules,
four-layer expansion modules, and a one-layer output layer. The single-layer contrac-
tion module consists of two convolutional layers, one rectified linear unit (ReLU) and
a maximum pooling layer. The convolution kernel of the convolutional layer is 3 × 3,
the convolution kernel of the pooling layer is 2 × 2 and the stride is 2. The number of
feature maps is doubled after each contraction module, and the maximum number is 1024.
The single-layer expansion module consists of a 2 × 2 upconvolution layer (which can
halve the number of channels), a skip connection (with the same size feature map as the
contraction path), two convolutions (the convolution kernel is 3 × 3) and the ReLU. Finally,
the multi-channel feature map is mapped to the segmentation result via 1 × 1 convolution
at the output of the network.

Compared with the feature map of the shallow network, the target details in the
feature map of the deep network are largely lost. In the U-Net model, this problem is
well-solved by splicing the shallow and deep feature maps through the skip connection
step. Therefore, the U-Net model can achieve high-resolution image segmentation.

3.2. ResNet Module

The designed model needs to have the ability to identify adjacent unresolving targets
and weak targets in through-wall imaging. In target detection tasks, deeper networks
can provide more accurate detection results. However, in network training based on
gradient descent, the problems of gradient explosion and vanishing gradients occur in deep
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networks. Gradient clipping can solve the problem of gradient explosion. The problem
of gradient disappearance can be initially alleviated via a weight initialization strategy
and the batch normalization method, but it cannot guarantee that the training error of
the model will decrease with the increase in network depth. The proposal of the ResNet
module can solve well the problem of deep network training.

The structure diagram of ResNet is shown in Figure 4a, which contains 2 convolutional
layers and 1 skip connection [40]. The relationship between the input and output of the
ResNet module can be expressed as follows:

F(X) =
~
X− X, (6)

where X is the input of the network,
~
X is the output of the network and F(X) is the residual

map. The output
~
X of the network can be re-expressed as F(X) + X through X and F(X).

The feature map in ResNet is not learned directly, but the residual of the feature map is
learned, which is called the learning residual map. It has been proven that optimizing
the residual map is easier than learning the original feature map directly [40]. A skip
connection is added to ResNet. It is assumed that if only the output of the shallow layer
is used for identity mapping (i.e., F(X) = 0) and input to the deep layer, then network
degradation will not occur when the network is deepened. The problem of vanishing
gradients is solved. Therefore, in through-wall weak target and adjacent target detection,
the ResNet module can reduce the difficulty of feature learning and improve the accuracy
of detection.
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A regular ResNet module generally consists of two 3 × 3 convolutional layers, which
is accompanied by a large amount of calculation. In this paper, the bottleneck ResNet
network is selected to reduce the calculations. The network consists of 1 × 1, 3 × 3 and
1 × 1 convolutional layers, and the structure is shown in Figure 4b. When the input and
output are both 256-dimensional, the parameters of the regular ResNet network and the
bottleneck ResNet network are 1,179,648 and 69,632, respectively.

3.3. SE Module

In this paper, the SE module is used to capture the relationship of feature channels and
recalibrate the response of channel features adaptively by modeling the interdependence
between feature channels, which can enhance useful features while suppressing useless
features effectively.

SE contains squeeze and excitation [41]. Taking the SE module embedded in Inception
as an example, the module structure is shown in Figure 5, where X is the input of the
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network, the size of the image is H ×W, and the number of channels is C. The SE module
is mainly implemented through the following three steps:

(1) Squeeze: Squeeze compresses the features of each channel, which is achieved by
averaging the feature maps of each channel. The formula is as follows:

zc =
1

H ×W

H

∑
i=1

W

∑
j=1

Xc(i, j), (7)

where zc is the compressed feature distribution, Xc is the feature map of the c-th channel,
and i and j are the two-dimensional indices of the pixel, respectively. The number of
channels remains unchanged after being processed via Squeeze. In this paper, Squeeze is
implemented through global pooling, so as to compress the feature map and obtain the
global receptive field.

(2) Excitation: Excitation is mainly realized through the fully connected layer and
the activation layer. First, the number of channels becomes 1/r of the input after the fully
connected layer; in this paper, r = 64. The number of channels is expanded to C after
the second fully connected layer. This step makes the channels more uncorrelated while
reducing the computations. Finally, the 0~1 weight is generated through the activation
layer sigmoid. Excitation generates corresponding weights for each channel, and can be
adjusted through learning.

(3) Reweight: Reweight means multiplying the weights generated in the previous steps
to the corresponding channel features. The weight corresponding to a channel represents
the importance of the channel.
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~
X is the output of the network, and “Scale” is the multiplication operation between

the input feature map and the weight. The SE module allows the network to perform
feature recalibration and learn to use global information to emphasize useful features
selectively and suppress less useful features. Therefore, the ability to extract features is
improved. The SE module can extract the key features of the target, which can be well-used
for the accurate detection of weak targets and adjacent unresolving targets in through-wall
multi-target imaging.
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3.4. Improved U-Net Model

The purpose of the improved U-Net model is to deal with the problems of weak target
masking and adjacent target unresolving in through-wall multi-target imaging, so as to
detect the position and number of targets accurately and reduce the probability of missed
detection. The ability of the network to extract useful features and suppress useless features
is very important. The SE module is embedded into the ResNet module and combined into
a SE-ResNet module, which can extract target features effectively, as shown in Figure 6.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 6. SE-ResNet module. 

Then, the SE-ResNet module is further embedded into the traditional U-Net model 
to form an improved model that can identify through-wall multiple targets at the pixel 
level. The specific embedding process is to use the SE-ResNet module designed in Figure 
6 to replace the convolution module in each layer of the traditional U-Net network. The 
improved U-Net model contains 36 layers, and the detailed specifications are shown in 
Table 1, which gives the specifications of the convolution kernel, the step size, and the size 
of the output feature map specifically. 

Table 1. Detailed specifications of the improved U-Net. 

SE-ResNet Block Type Filter Stride Output Size 

SE-ResNet block 1 
conv 1 × 1 1 256 × 256 × 64 
conv 3 × 3 1 256 × 256 × 64 
conv 1 × 1 1 256 × 256 × 64 

 max pool 2 × 2 2 128 × 128 × 64 

SE-ResNet block 2 
conv 1 × 1 1 128 × 128 × 128 
conv 3 × 3 1 128 × 128 × 128 
conv 1 × 1 1 128 × 128 × 128 

 max pool 2 × 2 2 64 × 64 × 128 

SE-ResNet block 3 
conv 1 × 1 1 64 × 64 × 256 
conv 3 × 3 1 64 × 64 × 256 
conv 1 × 1 1 64 × 64 × 256 

 max pool 2 × 2 2 32 × 32 × 256 

SE-ResNet block 4 
conv 1 × 1 1 32 × 32 × 512 
conv 3 × 3 1 32 × 32 × 512 
conv 1 × 1 1 32 × 32 × 512 

 max pool 2 × 2 2 16 × 16 × 512 

SE-ResNet block 5 
conv 1 × 1 1 16 × 16 × 1024 
conv 3 × 3 1 16 × 16 × 1024 
conv 1 × 1 1 16 × 16 × 1024 

 up-conv 2 × 2 1 32 × 32 × 512 
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Then, the SE-ResNet module is further embedded into the traditional U-Net model
to form an improved model that can identify through-wall multiple targets at the pixel
level. The specific embedding process is to use the SE-ResNet module designed in Figure 6
to replace the convolution module in each layer of the traditional U-Net network. The
improved U-Net model contains 36 layers, and the detailed specifications are shown in
Table 1, which gives the specifications of the convolution kernel, the step size, and the size
of the output feature map specifically.

Table 1. Detailed specifications of the improved U-Net.

SE-ResNet Block Type Filter Stride Output Size

SE-ResNet block 1

conv 1 × 1 1 256 × 256 × 64

conv 3 × 3 1 256 × 256 × 64

conv 1 × 1 1 256 × 256 × 64

max pool 2 × 2 2 128 × 128 × 64

SE-ResNet block 2

conv 1 × 1 1 128 × 128 × 128

conv 3 × 3 1 128 × 128 × 128

conv 1 × 1 1 128 × 128 × 128

max pool 2 × 2 2 64 × 64 × 128
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Table 1. Cont.

SE-ResNet Block Type Filter Stride Output Size

SE-ResNet block 3

conv 1 × 1 1 64 × 64 × 256

conv 3 × 3 1 64 × 64 × 256

conv 1 × 1 1 64 × 64 × 256

max pool 2 × 2 2 32 × 32 × 256

SE-ResNet block 4

conv 1 × 1 1 32 × 32 × 512

conv 3 × 3 1 32 × 32 × 512

conv 1 × 1 1 32 × 32 × 512

max pool 2 × 2 2 16 × 16 × 512

SE-ResNet block 5

conv 1 × 1 1 16 × 16 × 1024

conv 3 × 3 1 16 × 16 × 1024

conv 1 × 1 1 16 × 16 × 1024

up-conv 2 × 2 1 32 × 32 × 512

SE-ResNet block 6

conv 1 × 1 1 32 × 32 × 512

conv 3 × 3 1 32 × 32 × 512

conv 1 × 1 1 32 × 32 × 512

up-conv 2 × 2 1 64 × 64 × 256

SE-ResNet block 7

conv 1 × 1 1 64 × 64 × 256

conv 3 × 3 1 64 × 64 × 256

conv 1 × 1 1 64 × 64 × 256

up-conv 2 × 2 1 128 × 128 × 128

SE-ResNet block 8

conv 1 × 1 1 128 × 128 × 128

conv 3 × 3 1 128 × 128 × 128

conv 1 × 1 1 128 × 128 × 128

up-conv 2 × 2 1 256 × 256 × 64

SE-ResNet block 9

conv 1 × 1 1 256 × 256 × 64

conv 3 × 3 1 256 × 256 × 64

conv 1 × 1 1 256 × 256 × 64

conv 1 × 1 1 256 × 256 × 1

The model structure of the improved U-Net is shown in Figure 7. The improved U-Net
used for through-wall target detection has the following two advantages:

(1) The skip connection in U-Net stitches the shallow target details into the deep feature
map, which solves the problem of the lack of details of weak targets or adjacent targets
in the deep network;

(2) The combined SE-ResNet module can make up for the vanishing gradients in the
deep network during gradient descent network training through the ResNet module.
In addition, it can also increase the weight of useful features and suppress the weight
of useless features through the SE module, so as to describe weak targets and adjacent
targets in through-wall multi-target imaging accurately.
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4. Simulation
4.1. Dataset Generation and Model Training

The imaging result of the through-wall human target is circular or elliptical due to the
limitations of resolution, as shown in Figure 3. According to many experiments, the results
of through-wall imaging obtained through simulations is similar to the experimental results
from the actual scene, so the dataset required in this paper can be established through
simulation. Matlab 2018b is used to simulate and obtain the required dataset in this paper.
The simulation model constructed is a 2D propagation problem.

The simulation model is shown in Figure 2, and the parameters of the radar have
been given in Section 2.2. The thickness of the wall is 24 cm, and the relative permittivity
ε1 = 7.0. The imaging area in azimuth is −5~5 m, and the imaging area in range is 0~10 m.
Gaussian white noise is randomly added to the through-wall echo in the simulation, and
the SNR ranges from 2 dB to 10 dB. The number of targets in each simulation is between
one and five, and all targets are distributed in the imaging area randomly. In addition, the
reflectance of each target is set to 0.2~1. The imaging area is divided into 256 × 256 grid
points, and the through-wall images are normalized as the input of the network, as shown
in Figure 8a.
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It can be seen that the human target is presented as a circle or an ellipse according to
the imaging characteristics of the through-wall human target. Therefore, a circular area
can be used to represent the labeling result of the imaging target in the simulation; the
inner value of the labeling circle is set to 1, and the rest is the background, which is set to 0.
In this paper, the radius of the labeling circle of the target is set to six pixels, as shown in
Figure 8b. The dataset generated by Matlab software contains 2000 images, 1600 of which
are used for training, 200 are used for validation and 200 are used for testing. The loss
function is cross entropy in model training, which can be defined by the following formula:

L = − 1
N
(∑P

p=1 (Op log
>
Op + (1−Op) log(1−>

Op)), (8)

where N is the batch size, p = 1, 2, . . . P and P is the total number of pixels in a batch of
data. Op and

>
Op are the labeling result and prediction result of the p th pixel, respectively.

The designed network is implemented through PyTorch, and the initialization weight
of the model is implemented through normal distribution. The Adam optimizer is intro-
duced, and the learning rate is set to 0.001. The batch size is set to 1. The training process
consists of 20 epochs, and the final model is obtained after convergence.

4.2. Metric Evaluation of the Model

The Dice coefficient and intersection over union (IoU) parameter are two commonly
used evaluation indicators in target segmentation tasks. Dice represents the similarity
between the predicted target area and the target labeling area in through-wall imag-
ing. The larger the value, the better the segmentation effect. It can be defined by the
following equation:

Dice =
2C

A + B
. (9)

The definitions of “A” and “B” are given in Figure 9. “A” indicates the target labeling
area, “B” indicates the predicted target area of through-wall imaging and “C” is the overlap-
ping part of the target labeling area and the predicted target area in through-wall imaging.
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IoU represents the ratio between the intersection and union of the predicted target area
and the target labeling area in through-wall imaging. It is used to indicate the degree of
coincidence between the predicted target area and the target labeling area in through-wall
imaging. It can be defined as follows:

IoU =
C

AUB
. (10)

The accuracy of target detection and the ability to detect weak targets are the key
to through-wall multi-target detection. Therefore, two other important indicators for
evaluating the performance of target detection are proposed in this paper: detection
precision Pr and the miss detection rate (MDR). Detection precision represents the correct
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probability of detected targets compared to the total true targets, which can be defined
as follows:

Pr =
NCorrect

NAll
, (11)

where NAll represents the total number of real targets, and NCorrect is the number of correct
targets in the detection results.

The missed detection rate can be defined as follows:

MDR =
NMiss
NAll

, (12)

where NMiss is the number of undetected targets; most of them are through-wall weak
targets or adjacent unresolving targets in this paper.

4.3. Simulation Result

The effectiveness of the proposed improved U-Net model in the detection of through-
wall multiple human targets is verified via simulation and experiments. All data processing
was performed on a computer with an Intel Core i3-8100 CPU running at 3.60 GHz, which
was equipped with 32 GB RAM and GTX 1070 Ti GPU. The version of Python was 3.7 and
the version of CUDA was 11.1.

The simulation results of through-wall target detection can be analyzed according to
visual effects and specific parameters. Visually, the results are mainly analyzed from the
ability to distinguish adjacent targets, the ability to detect weak targets and the degree of
restoration of target detection. In terms of parameters, the results of Dice, IoU, Pr and MDR
are mainly analyzed.

The proposed improved U-Net method is compared to the OS-CFAR, FCN and tradi-
tional U-Net; the target detection results are shown in Figure 10. Figure 10a is the detection
result of the OS-CFAR. The OS-CFAR can detect the weak target 2, but adjacent targets 3
and 4 are aliased together and cannot be distinguished. Only the intensity features of the
target are considered in traditional detection methods, so it is difficult to separate adjacent
targets. Figure 10b,c shows the detection results of FCN and traditional U-Net, respectively.
The detection results of these two methods are similar, as both can detect the weak target 2
and the adjacent targets 3 and 4. However, the area range of the measured weak target 2
and adjacent target 4 is small compared to the real labeling value of the target, i.e., serious
distortion. Target 2 will be missed, and targets 3 and 4 will also be aliased in FCN and
U-Net when the reflection intensity of weak target 2 is further reduced and the distance
between target 3 and target 4 is closer. Figure 10d is the detection result of the proposed
improved U-Net. The weak target 2 and adjacent targets 3 and 4 can be detected effectively,
returning results similar to the results of the real labeling value of the target.
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Figure 10. Detection results of simulated targets. (a) OS-CFAR, (b) FCN, (c) U-Net and (d) the
proposed improved U-Net.

In terms of positioning error, the errors between the positions of the five target detected
via the proposed U-Net method and the actual labeling positions are 0.04 m, 0.07 m, 0.18 m,
0.17 m and 0.09 m, respectively, which meet the practical application requirements.

The results of the training loss function of the FCN, traditional U-Net and the pro-
posed improved U-Net are shown in Figure 11. The loss function of the improved U-Net
model converges fastest and has the smallest value after training. It has been explained
in Formula (8) that the loss function is cross entropy in this paper. The smaller the loss
function is, the closer the detection result is to the real target value, which is consistent with
the conclusion in Figure 10.
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The FLOPs and Params in the traditional U-Net network training are 40.08 G and
17.27 M, respectively. The FLOPs and Params in the improved U-Net network training are
27.88 G and 11.81 M, respectively. The training time of the U-Net network before and after
improvement is 1.6 h and 2.8 h, respectively.

In order to further compare the detection performance of the OS-CFAR, FCN and
traditional U-Net, 631 targets were detected in 200 through-wall radar images. The detec-
tion results of different methods are given in Table 2. The Dice and IoU of the proposed
improved U-Net can reach 89.0% and 86.4%, respectively, which are higher than those that
the FCN and traditional U-Net can reach. This means that the detection results of the pro-
posed improved U-Net have a higher coincidence with the real result map of through-wall
imaging. In terms of the detection precision, the target detection precision of FCN and
U-Net is at least 19% higher than that of the traditional OS-CFAR. The detection precision of
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the proposed improved U-Net is highest, reaching 91.6%. The parameter of MDR is mainly
used to describe through-wall weak targets and adjacent targets. Compared with FCN and
the traditional U-Net method, the proposed improved U-Net method can recognize more
details, so the MDR is the lowest, which is 3.0%.

Table 2. Simulation results of different methods.

Dice IoU Pr MDR

OS-CFAR - - 70.1% 18.1%
FCN 88.0% 85.2% 89.7% 4.1%

U-Net 88.2% 85.4% 89.9% 4.1%
Improved U-Net 89.0% 86.4% 91.6% 3.0%

4.4. Ablation Study

To evaluate the impact of the SE-Net and ResNet modules in the improved U-Net, we
conducted an ablation study by comparing these with two degenerate variants: (1) U-SENet,
which incorporates the SE-Net module in the convolution layers of the traditional U-Net,
and (2) U-ResNet, which replaces the convolution layers of the traditional U-Net with
ResNet blocks.

The results of the ablation study are presented in Table 3. As expected, both variants
outperform the traditional U-Net but fall short of the performance achieved using the
full model, the improved U-Net. This further validates the benefits of using SE-Net
and ResNet modules. Moreover, U-ResNet generally outperforms U-SENet, indicating
that the ResNet module, with its stronger feature extraction ability, contributes more to
performance improvement.

Table 3. Ablation study on the improved U-Net.

Dice IoU Pr MDR

U-Net 88.2% 85.4% 89.9% 4.1%
U-SENet 88.6% 85.8% 90.2% 3.4%
U-ResNet 88.8% 86.0% 90.3% 3.4%

Improved U-Net 89.0% 86.4% 91.6% 3.0%

5. Experiment
5.1. Detection of Stationary Targets

The designed 2D MIMO through-wall radar was used to detect through-wall multiple
human targets. The MIMO radar used was developed by the Institute of Aerospace
Information Research Institute, Chinese Academy of Sciences. The center frequency and
bandwidth were both 1 GHz. The length of the array was 1 m, including 2 transmitting
antennas at both ends and 6 receiving antennas in the middle. The experimental scene is
shown in Figure 12a. The relative permittivity of the wall measured by the vector network
analyzer is about 7.0, and the measured thickness of the wall is 37 cm. Taking the detection
of 5 human targets as an example, the 5 human targets stood on the other side of the wall
and remained stationary, and the position coordinates were (1.0 m, 1.3 m), (−1.5 m, 2.8 m),
(0.2 m, 4.5 m), (0.6 m, 4.8 m) and (−1.7 m, 6.6 m). The imaging results of through-wall
multiple targets are shown in Figure 12b; the imaging of target 2 is weak, and the energy
intensity is much lower than that of other targets. In addition, the imaging results of
targets 3 and 4 are almost mixed together due to their close range. Comparing the imaging
results of the actual human target with the simulation results, it can be found that the
shape of the target in the through-wall experimental results is very similar to that in the
simulation results, both of which are circular or elliptical. Therefore, the network trained
on the simulation dataset can be used to process the actual experimental data directly to
verify its generalization ability.
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The detection results processed using the OS-CFAR, FCN, traditional U-Net and the
proposed improved U-Net are given in Figure 13. Figure 13a is the detection result of
the OS-CFAR, the weak target 2 is missed, and the adjacent targets 3 and 4 are aliased.
Figure 13b,c are the detection results of FCN and traditional U-Net, respectively. In FCN,
weak target 2 is missed, and the detection result of adjacent target 4 is weak. In the U-Net
result, the weak target 2 is not missed, but the detection result is extremely weak. In
addition, the detection result of adjacent target 4 is also weak, which is similar to the case
with the FCN. Figure 13d is the detection result of the proposed improved U-Net method.
Weak target 2 and adjacent targets 3 and 4 can be detected effectively, resulting in a value
similar to the true value map of the target.
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Briefly, 272 targets in 80 experimental images of through-wall multi targets were
detected, the detection precision and MDR of different detection methods are given in
Table 4. The detection precision of the OS-CFAR is only 66.5%, and the detection precision
of FCN and U-Net is at least 22% higher than that of the traditional OS-CFAR. The precision
of the proposed improved U-Net is the highest, at 89.3%. The missed detection rates of
FCN and the traditional U-Net are much lower than those of the OS-CFAR, which are 5.5%
and 5.2%, respectively. The missed detection rate of the proposed improved U-Net is the
lowest, which is 4.4%. Experimental results show that the proposed improved U-Net can
better detect through-wall weak targets and adjacent targets. The experimental conclusions
are basically consistent with those of the theoretical simulation.

Table 4. Experimental results of different methods.

Pr MDR

OS-CFAR 66.5% 22.8%
FCN 87.1% 5.5%

U-Net 87.5% 5.2%
Improved U-Net 89.3% 4.4%

5.2. Detection of Moving Targets

The proposed U-Net method is used to detect through-wall multiple moving targets
and then to draw the trajectory of the targets. The experimental scene of through-wall
multiple moving targets detection is shown in Figure 14.
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Two sets of detection experiments of moving targets were carried out. The test scenario
of experiment 1 is shown in Figure 14a; two human targets move towards each other
along two trajectories parallel to the normal line of the radar. The interval between the
two parallel trajectories is 0.6 m. The starting point and end point of target 1 are (−0.3 m,
1 m) and (−0.3 m, 7 m), respectively. The starting point and end point of target 2 are (0.3 m,
7 m) and (0.3 m, 1 m), respectively. The test scenario of experiment 2 is shown in Figure 14b;
two human targets move towards each other along two cross trajectories. The starting
point and end point of target 1 are (−2 m, 2 m) and (2 m, 7 m), respectively. The starting
point and end point of target 2 are (−2 m, 7 m) and (2 m, 2 m), respectively. The imaging
frame rate of the designed 2D MIMO through-wall radar is 5 frames/s. The positions of
multiple targets can be extracted after the imaging results are fed into the trained improved
U-Net network.

According to the detection results of imaging through-wall multiple static targets, the
detection effect of the FCN and traditional U-Net on through-wall multiple targets is almost
the same. Therefore, the FCN will not be repeated in the future experiment on through-wall
multiple moving target detection. The improved U-Net, traditional U-Net and OS-CFAR
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are used to detect a through-wall moving target, and then to draw the trajectory of the
targets. The detection results of parallel opposing motion and cross-opposing motion under
different methods are shown in Figure 15.
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Figure 15a,b shows the detection results of parallel opposing motion and cross-
opposing motion based on the OS-CFAR, respectively. It can be seen that the unresolving
phenomenon of the targets is more obvious when moving targets are close, and only a
single target can be detected. In addition, target masking occurs in many places globally
during the detection process and leads to the loss of the target. Figure 15c,d shows the
detection results of parallel opposing motion and cross-opposing motion based on the
traditional U-Net, respectively. The results show that the unresolving phenomenon is
alleviated when moving targets are close, and the masking points of the weak target are
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also reduced, but the two phenomena still exist. Figure 15e,f includes the detection results
of parallel opposing motion and cross-opposing motion based on the proposed improved
U-Net, respectively. In both scenarios, the unresolving phenomenon basically disappears
when the two targets are close, and the number of masking points is minimized.

6. Conclusions

This paper proposes an improved through-wall multi-target detection method based
on U-Net. The ResNet module and SE module are integrated in the traditional U-Net
model. The ResNet module can reduce the difficulty of feature learning and improve the
accuracy of detection. The SE module allows the network to perform feature recalibration
and learn to use global information to emphasize useful features selectively and suppress
less useful features. The ability to detect through-wall weak targets and adjacent targets can
be improved by introducing these two modules into the U-Net model. The proposed U-Net
method is compared with the OS-CFAR, FCN and traditional U-Net methods. Compared to
the OS-CFAR, the detection precision, Pr, of the proposed method is increased by 21.5%, and
the missed detection rate MDR is reduced by 15.1%. Compared to the FCN and traditional
U-Net, the Dice of the proposed method is increased by at least 0.8%, the IoU is increased
by at least 1.0%, Pr is increased by at least 1.7%, and MDR is decreased by at least 1.1%.
In addition, the proposed method can be used to detect through-wall multiple moving
targets. The results show that the proposed method can eliminate weak target masking
and target unresolving effectively when crossing during motion. The proposed method
is also applicable to the detection of stationary and moving targets in other through-wall
scenarios (walls of different thicknesses, different numbers of targets, etc.), which makes
the high-precision detection of through-wall targets possible.
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