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Abstract: Changes in land-use–land-cover (LULC) affect the water balance of a region by influencing
the water yield (WY) along with variations in rainfall and evapotranspiration (ET). Remote sensing
satellite imagery offers a comprehensive spatiotemporal distribution of LULC to analyse changes
in WY over a large area. Hence, this study mapped and analyse successive changes in LULC and
WY between 2000 and 2015 in the Johor River Basin (JRB) by specifically comparing satellite-based
and in-situ-derived WY and characterising changes in WY in relation to LULC change magnitudes
within watersheds. The WY was calculated using the water balance equation, which determines
the WY from the equilibrium of precipitation minus ET. The precipitation and ET information were
derived from the Tropical Rainfall Measuring Mission (TRMM) and moderate-resolution imaging
spectroradiometer (MODIS) satellite data, respectively. The LULC maps were extracted from Landsat-
Enhanced Thematic Mapper Plus (ETM+) and Landsat Operational Land Imager (OLI). The results
demonstrate a good agreement between satellite-based derived quantities and in situ measurements,
with an average bias of ±20.04 mm and ±43 mm for precipitation and ET, respectively. LULC
changes between 2000 and 2015 indicated an increase in agriculture land other than oil palm to
11.07%, reduction in forest to 32.15%, increase in oil palm to 11.88%, and increase in urban land
to 9.82%, resulting in an increase of 15.76% WY. The finding can serve as a critical initiative for
satellite-based WY and LULC changes to achieve targets 6.1 and 6.2 of the United Nations Sustainable
Development Goal (UNSDG) 6.

Keywords: remote sensing imagery; land use land cover; water yield; United Nations Sustainable
Development Goal (UNSDG) 6

1. Introduction

Satellite-based spatio-temporal land-use land-cover (LULC) change analysis can pro-
vide comprehensive and widespread water yield (WY) distribution information [1]. How-
ever, changes in land use affect the water balance of a region by influencing WY along with
variations in rainfall and evapotranspiration (ET) [2]. Land use patterns can directly change
ecosystem types, landscape patterns, and ecological processes [3]. These have a significant
influence on the WY on the surface, a crucial parameter for planning and managing raw
water supply [4,5]. This affects ecosystem services such as biodiversity, WY characteristics,
and rainfall [6].
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The conventional WY measurement is based on a plot representation within a catch-
ment/watershed. The plot could be observations of a single or a few points to measure
rainfall and ET for a given period, producing a WY value based on the representation of the
point or the entire polygon. However, with advances in remote sensing (RS) technologies,
WY information could be obtained spatially and temporally at the pixel level through
specific processing. The advantages of using RS to extract WY information include (1) com-
prehensiveness for every pixel; (2) reduced costs—minimum field observations are made
for calibration and validation only; (3) feasibility even for remote and ungagged watersheds;
and (4) derivation of WY from satellite using selected hydrologically established methods,
i.e., the water balance equation, which provides a simple and robust approach. However,
the approach is replicable at any location, provided there is available corresponding local
satellite data and the needed processing parameters [7].

Previous studies established that satellite-based precipitation data offer high accuracy
worldwide [8,9]. The higher-level data products of the Tropical Rainfall Measuring Mission
(TRMM) and Global Precipitation Measurement (GPM) data products of the satellite-based
precipitation data provide daily rainfall estimation within a three-hour interval at a high
spatial resolution of 0.25◦, which can be localized to reach a higher resolution [10,11].
Several other studies have raised concerns about the effects of changes in land cover due to
LULC changes in the WY [12,13]. An assessment of the relationship between land use and
hydrological cycle components was also carried out [14–17]. Runoff modelling for drought
and flood monitoring was reported [18]. These studies, as mentioned above, only widely
reported the effects of LULC changes on WY, without taking cognizance of the influence
of individual LULC classes on WY. This could lead to an inadequate understanding of
WY dynamics.

Between 1984 and 2015, about 90,000 km2 of permanent surface water was lost from
the Earth’s surface, primarily due to human extraction and increased evapotranspiration
caused by climate change [19]. Thus, accounting for water is critical to developing policies
and procedures that ensure the maintenance of a regional or basin-scale water balance over
time [19,20]. Although Malaysia is considered a low-water-stress country based on the
World Resource Institute Ranking [21], Johor, despite its good river system [22] centred
around the Johor River, which provides 60% of its water supply [23], is known for water
scarcity [24]. According to the National Water Resource study, demand for water in Johor
has consistently increased, and this trend will continue [25]. This may not be unconnected
to the increasing population, urbanisation, industrialisation and large-scale agricultural
activities [26], increasing demands for water [27].

The increasing human activities in Johor are also causing large-scale LUCCs [23,28,29],
which, in turn, are affecting the water balance with intermittent and regular incidences
of droughts and flooding [27,29–33]. At present, the city-state of Singapore draws 40%
of its water from the Johor River [34]. Hence, the Johor River Basin (JRB) plays a pivotal
role in the water resource management of both Peninsular Malaysia and the island state of
Singapore. Consequently, this study achieved precise satellite-based reporting of changes
in WY from six LULC classes (agriculture, bare land, forest, oil palm, urban, and water
bodies) with specific objectives: (a) to compare satellite-based WY with the in-situ-derived
WY, and (b) to characterise WY changes in relation to LULC within watersheds according
to their corresponding magnitude of LULC. The results of this study will play a crucial
role in achieving the United Nations Sustainable Development Goal 6 targets 6.1 and 6.2
through satellite-based analysis of changes in WY due to land use.

2. Materials and Methods
2.1. Study Area

The study was carried out in the Johor River Basin (JRB), located in Johor, the south-
ernmost state of Peninsular Malaysia (PM). The state recorded a total population of about
1,638,219 people at the 2020 census (Department of Statistics Malaysia). The basin covers
an area of approximately 2636 km2, with a main river length of 123 km [4]. The elevation
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ranges between 3 and 977 m above mean sea level. The site is an agricultural basin that
lies between latitudes 1◦30’ and 2◦10’N and longitudes 103◦20’ and 104◦10’E (Figure 1).
The primary soil type within the basin is ultisol (Rengam–Jerangau series). This soil is
characterised by yellowish–brown sandy clay with moderate permeability and is well-
drained, making it suitable for oil palm and rubber plantations [35]. The main land uses
of the basin are oil palm and forest [36]. The river flows from the southwest of Johor
from south Gunung Belumut at 1010 m elevation. The main tributaries are the Linggiu,
Sayong, Penggeli, Jengeli, and Belitong rivers. These tributaries serve as sources of fresh
water for the populations of Johor and Singapore. Since the middle of the 1960s, the Public
Utility Board (PUB) and the Johor Water Company, Johor, Malaysia, (SAJ) have each drawn
approximately 0.25 × 106 km3/day from the JRB [37].
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Figure 1. The Johor River Basin of Peninsular Malaysia * Sg. Johor.

The basin receives an average annual rainfall of 2500 mm, and the rainfall pattern
is influenced by two seasons, namely the northeast monsoon (November–February) and
the southwest monsoon (May–August). In between these two monsoons, JRB experiences
intermonsoon periods that usually happen in March and April and September and October.
During the northeast monsoon, most of the eastern coast of Peninsular Malaysia, including
JRB, receives heavy rainfall compared to the southwest monsoon and other seasons [38]. The
east coast regions receive higher rainfall (>350 mm per month), mainly during December
and January.

2.2. Data Used

Five types of data were used in this study. Multitemporal satellite images of Landsat-
7-enhanced thematic mapper plus (ETM+) and Landsat operational land imager (OLI)
with 30 m spatial resolution, acquired from the United States Geological Survey (USGS)
(http://glovis.usgs.gov, accessed on 3 December 2018), were used to generate LULC maps.
Table 1 summarises the attributes of the four Landsat images used in this study, which
were selected based on the longevity of data archiving. An advanced space-borne thermal
emission and reflection radiometer digital elevation model (ASTER GDEM), with a spatial
resolution of 30 m, was used to derive the vertical slope. A topographic map on a scale

http://glovis.usgs.gov
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of 1:25,000 obtained from the Department of Surveying and Mapping Malaysia (JUPEM)
was used to collect ground control points (GCP) for image geometric corrections and the
validation of vertical information. TMPA 3B42 version 7 daily data in hierarchical data
format (HDF) with a high spatial and temporal resolution from 2000 to 2015 were used
to obtain precipitation information for WY extraction. These TMPA data also provide
information on rainfall relative error and gauge relative weighting. Because rainfall is
the most vital input for modelling WY [39,40], corresponding rainfall observations from
rainfall gauges within the JRB were also collected and used for calibration and validation
of the TMPA-derived precipitation. A moderate-resolution imaging spectroradiometer
(MODIS16A2) satellite data from between January 2000 and December 2015 in HDF, from
TERRA and AQUA satellite platforms with 1 km spatial and monthly temporal resolutions,
was used to obtain ET. The MODIS is used to provide high-quality ET data [41], containing
information on potential latent energy and an ET quality check.

Table 1. The attributes of Landsat ETM+ and OLI images were used in the study.

Sensor Scene ID Path/Row Date of Acquisition * Monsoon

Landsat 7 ETM+ LEO71250582000104EDC00 125/058 29 September 2000 Post-SW
LEO71250592005356EDC00 125/059 25 September 2005 Post-SW
LEO71260582010292EDC00 126/058 8 August 2009 SW

Landsat 8 OLI LE081260592015181EDC00 126/059 2 November 2015 NE

* Notes: SW = southwest, NE = northeast.

2.3. Methodology

A series of activities were involved in the processing and analysis of all the data
acquired for the analysis of changes in JRB. These include LULC mapping, satellite-based
water balance extraction, calibration, and validation of TMPA rainfall and MODIS ET data,
the extraction of WY changes from individual LULC classes, and analysis of the WY trend.
The complete methodological flow chart of this study is illustrated in Figure 2.

2.3.1. LULC Mapping

The LULC mapping was accomplished by Landsat multitemporal mapping to identify
and classify different types of land use, such as forests, oil palm, agriculture other than oil
palm, urban areas, bare land, and water bodies. This process consists mainly of satellite
data preprocessing and image classification.

Pre-Processing of Satellite Images

Usually, deficiencies and errors are found in the raw data obtained via remote sensing
satellite-sensor platforms. Therefore, the raw data acquired for the LULC mapping were
enhanced by subjecting them to various preprocessing steps to certify their originality.
The preprocessing consisted of three major steps: radiometric correction to eliminate
systematic errors introduced by sensors and atmospheric conditions, geometric correction
to correct for variations in satellite altitude and orientation during data acquisition, and
image enhancement to improve the visual quality and highlight important features. All
satellite data processing was carried out using the ENVI Digital Image Processing System
and ArcGIS system software, as explained in detail below. This differs from image to image
depending on the category of information being extracted, the composition of the image
scene, and the initial condition of the image.

Initially, the images were radiometrically corrected by applying the rescaling factors
and parameters obtained in the metadata file that came with the images. The correction was
carried out in two-step processes: (1) the image digital numbers (DNs) were converted to top
atmospheric reflectance, and (2) the top atmospheric correction of Landsat OLI and Landsat
ETM+ spectral bands was achieved using the FLASH programme of ENVI v.5 software. The
atmospheric correction using FLAASH was adopted to lessen the atmospheric uncertainties
of nadir-viewing images via inclusivity to correct the effects of adjacency. This is vital to
minimise scattering effects [42].
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Figure 2. Schematic flow chart for water yield assessment. 
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The image-to-map geometric correction technique uses 30 GCP extracted from the
topographic maps to correct the images’ [43]. Similarly, corrections were carried out in two-
step procedures: (1) a second-degree polynomial was employed to transform the images
to map geometry, and (2) the pixel intensity values were created into the transformed
geometry by applying the nearest neighbour resampling scheme. The root mean square
error (RMSE) of the transformation was ensured to be ±0.5 pixels, and the chosen nearest
neighbor resampling scheme in each case was used to avoid loss of details.

Satellite Images Classification

The maximum likelihood classifier, a popular supervised classification method, was
used in the LULC mapping. The classification accuracies were evaluated using cross-
validation statistics through confusion matrices using a set of 600 stratified random points.
An overall accuracy that certifies the minimum threshold of 85% is needed for the effective
and steadfast analysis and modelling of the LULC changes [44]. The entire classification
assessment comprises the confusion matrices, producers, users, and overall accuracies with
the Kappa indexes of the classification images.

2.3.2. Satellite-Based Water Balance Extraction

Satellite-based extraction of water balance operation is focused on the derivation of
WY from the rainfall and ET data from TMPA and MODIS satellites, respectively. The WY
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is normally determined according to the concept of the water balance equation method,
which extracts the WY from the equilibrium of precipitation minus ET (see Equation (1));

WYR = Pi − ETi, ± ∆S (1)

where WYR is water yield (mm), Pi is precipitation (mm) for the ith month, ETi is evapotran-
spiration for the ith month [43], and ∆S is the change in soil moisture, which is insignificant
in this study environment [18].

This process was realised by applying digital image processing to obtain the spatial
aspect where the WY for each pixel is computed. The WY equation is a standard opera-
tion method applied by the Department of Irrigation and Drainage Malaysia (DID). The
parameters used in the process of computing the WY are calibrated rainfall and calibrated
ET from MODIS. In the computation of WY, there are three components inside the water
balance, and all three components cover the initial stages of the water cycle up to the WY.
The two main elements that were determined were ET and rainfall.

The rainfall intercepts the LULC, which infiltrates the soil, producing soil moisture; it
is in this coincidental phenomenon that ET occurs. Since ET occurs when vegetation exists
because of stomatal activities, soil moisture was not addressed. The difference between
rainfall and ET was calculated. The results of the two elements can be positive or negative.
A positive value shows that precipitation is higher than the ET. This shows the possibility
that the WY can be harvested. If the outcome is negative, it means that ET is higher
than rainfall.

Before entering rain and ET from TMPA and MODIS satellites into Equation (1), all
these data sets were calibrated with the corresponding ground-based observations. Once
calibrated, an independent assessment of the calibrated datasets was also performed as part
of the validation process. Satellite-based WY assessment was carried out by (1) validation
against the observed river flow, (2) comparison with similar studies in nearby watersheds
using a water balance equation, and (3) modelling WY using the soil water assessment
tool (SWAT).

Modeling WY Using Soil Water Assessment Tool (SWAT)

The SWAT is a semi-dispersed, comprehensive, process-based catchment, and time-
uninterrupted model applied to model the potential influence of LULC changes and tue
supervision of water quality and quantity [45–49]. SWAT was established by The United
States Agricultural Development (USAID) developed the model using its research services
in the 1998. The model, combined with a geographical information system (GIS), permits
digital LULC, topography, and soil data input. In addition, the model permits the modelling
of evaporation and water yield losses of drainage channels. The model repeatedly enhanced
SWAT to the very recent version of 2012 [50].

Arnold et al. [49] highlight the model’s flexibility in integrating upland and channel
procedures and the modelling of land management. SWAT has several progressive and
global applications [50]. The literature has connected to SWAT in several ways [17]. It is an
appropriate model for carrying out influence studies, as the effect of LULC, climate change,
or both on hydrology has been assessed by applying the SWAT model [51,52]. Additionally,
the model has proved its ability to model water changes in regions with inadequate data
readiness [53,54]. SWAT is gradually being applied on a larger scale [55,56].

In this study, the model was run in ArcSWAT 2012 interface, which works as an
extension in ArcGIS 10.3 software. The SWAT model is freely available on the internet
and downloadable from the official SWAT website https://swat.edu/software/arcswat/
(accessed on 1 November 2018). Generally, SWAT modelling is made up of six main steps,
as shown in Figure 3. The first step needed during the model run set-up is watershed
delineation using a digital elevation model, and the topographic characteristics of the
watershed are estimated. The next step is the analysis of hydrological response units
(HRU), in which layers of LULC and soil maps were added, and slope ranges were defined.
Subsequently, climate station data were added. Next, the input parameters were edited,

https://swat.edu/software/arcswat/
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checked, and validated through data-quality checking, data-sorting or data-processing.
After running the model successfully, sensitivity, calibration, and validation were carried
out. Similar studies were also carried out [57]. Finally, the extra sub-basin outlet was added
based on the location of the hydro-gauging station and Table 2. The primary purpose of
adding an outlet point at the Rantau Panjang Monitoring Station is to compare simulated
and observed discharge.
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Table 2. Climate parameters in SWAT model database.

Parameters Details

WLATITUDE Latitude of the climate station
WLONGITUDE Longitude of the climate station

WELEV Height of the climate station in meters above mean sea level

RAIN_YRS Number of years of maximum monthly half-hour rainfall data used to define
values for average per month of the year

TMPMX Average daily maximum air temperature for each month in degree Celsius (◦C)
TMPMX Average daily maximum air temperature for each month in degree Celsius (◦C)

TMPSTDMN The standard deviation for daily minimum air temperature for each month in
degree Celsius (◦C)

PCPMM The average total of monthly precipitation in milometers (mm)

PCPSTD The standard deviation for daily precipitation for each month expressed as in mm
of water per day.

PCPSKW The skew coefficient for daily rainfall for each month
PR_W1 Possibility of a wet day following a dry day for each month
PR_W2 Possibility of a wet day following a wet day for each month
PCPD mean numbers of days of rainfall for each month

RAINHHMX Most extreme half-hour precipitation for each month
SOLARAV Average daily solar radiation for each month.

DEWPT Average daily few points temperature per month of the year in degree Celsius (◦C)
WNDAV Average daily wind speed for each month (m/s)

Source: [58].
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LULC and soil map are inputs to determine the land/soil categories required to
establish hydrological response units (HRU). The SWAT categorised the closes climate
station to the centroid of sub-catchment and applied it to all the HRUs inside the sub-basin.

Modification of the SWAT model involves the climate and soil parameters in the
database. For the climate, SWAT requires daily variables to populate the weather matrix
with averages for each month of the year over the total period covered by the station. The
parameters are generated from a daily record of the observed data (ideally more than
30 years). For this study, the climate data were from 1980 to 2009, while discharge data
were from 1970 to 2018. Table 2 demonstrates the climate parameters that are essential to
modify the weather generator (WGN) database in the SWAT model.

Soil information varies from place to place, so modification of the soil database in
the SWAT is significant to ensure the better modelling of water within the layers of soil.
The soil parameters required to modify the SWAT model’s soil database are presented in
Table 3. According to the water balance Equation (5), SWAT carries out the simulation.

(SWt = SWo +
t

∑
i=1

(
Rday −Qsur f − Ea −Wseep −Qgw) (2)

where SWt = final soil water content (mm), SWo = initial soil water content on day i (mm),
t = time (days), Rday = amount of precipitation on day i (mm), Qsurf = amount of surface
runoff on day i (mm), E = amount of evapotranspiration on day i (mmH2 O), Wseep = amount
of water entering the vadose zone from the soil profile on day i (mm), and Qgw = amount
of return flow on day i (mm).

Table 3. Parameters for sensitivity analysis in SWAT model.

Parameter Details

TEXTURE Texture of soil layer
HYDGRP Soil hydrologic group
SOL_ZMX Maximum rooting depth for soil profile (mm)

ANION_EXCL A fraction of porosity (void space) from which union are excluded
SOL_CRK Crack volume potential of soil
SOL_PH1 A soil PH of the first layer of soil.
SOL_Z1 Depth from the soil surface to the bottom of the first layer of soil (mm).

SOL_BD1 Moist bulk density of the first layer of soil (g/cm3)
SOL_AWC1 Accessible water capacity of the soil layer number one (mm)

SOL_K1 Wet hydraulic conductivity of the first layer of soil (mm/h).
SOL_CBN1 The organic carbon content of layer one of the soil (%)

CLAY1 The clay content of layer one of the soil (%).
SILT1 Silt content of layer one of the soil (%).

SAND1 Sand content of layer one of the soil (%)
ROCK1 Rock fragment content of layer one of the soil (%)

SOL_ALB1 Moist soil albedo of layer one of the soil.
NLAYERS Number of layers in the soil
SOL_EC1 Soil electrical conductivity of the first layer of soil(ds/m).

SOL_CAL1 Calcium carbonate content of layer one of the soil (%)
USLE_k1 USLE equation of soil erodibility (K) factor of the first layer of soil.

Source: [58].

The parameters listed in Table 3 are considered the most sensitive parameters that
affect the hydrological responses of the river basin. These parameters are applied to control
the amount of erosion from the channel and its catchment as they affect the rate of runoff,
sediment, and soil nutrient loss to the maximum extent.

The SWAT-Cup 2012 program developed by [59] was applied for a sensitivity analysis
of the calibration and validation of the SWAT model. The LULC, DEM, soil and climate data
(precipitation, temperature minimum and maximum, solar radiation, relative humidity, and
wind speed) were applied as SWAT inputs. The observed monthly discharge (1970–2018) at



Remote Sens. 2023, 15, 3432 9 of 26

Rantau Panjang point was applied for calibration and validation. The model was calibrated
for 1985–1999 (15 years) after an initial 5-year model warmup period (1970–1984) was used
to obtain a better parameterisation of the simulation based on local conditions [49].

The global sensitivity analysis method was used to test 10 parameters with 500 runs
(each run has various combinations) performed in parallel with calibration. The fresh
parameters obtained during calibration of the model were used for validation of the model.
The Sequential Uncertainty Fitting algorithm (SUFI-2), a semi-automatic inverse modelling
procedure in the SWAT-CUP, was selected because of its handle and ability to analyse many
parameters using the smallest number of model runs [60,61]. A detailed description and
processing procedure for the SUFI-2 algorithm within the SWAT-CUP can be found in [62].

2.3.3. Calibration and Validation
Calibration of TMPA Rainfall with Reference to Observed Rain Gauge Data

Monthly rainfall data for nine (9) stations in nine catchments in the JRB from 2000
to 2010 were collected from the Malaysian Meteorological Department (MMD) and DID.
Because the reliability of WY measurement depends on the quality of applied rainfall
data [63], the performance of the observed rain gauge and TMPA rainfall in the study area
was evaluated first using conventional statistical indices [64], using long-term daily rainfall
records available at nine catchments in the study area.

The TMPA rainfall observation was also subjected to calibration. This was achieved
by a direct comparison of the TMPA observations with the corresponding rainfall obtained
from the rain gauge observations using a linear regression analysis approach.

Thus, the calibration function of the annual average TMPA observation is formed and
obtained via Equation (3) below:

RFcalibrated = CRF + mRF ∗ (RFTRMM) (3)

where RFcalibrated = calibrated TMPA rainfall, mRF = slope, cRF = constant, and RFTMPA = observed
TMPA. The rainfall averages for individual months over 11 years (11 × 12 = 132 months),
mRF and cRF are 0.93 and 0.04, respectively, with r = 0.90 and R2 = 0.73, at s 99% level of
significance. These demonstrated that the average monthly data enhance the relationship
between the TMPA and the rain gauge data; thus, the average monthly data reduce the
differences between the two measurements. The slope and constant are obtained through
Equation (3). Various months for each station are suitable for calibrating the TMPA for
rainfall at the station level.

Validation of the calibrated TMPA data was also performed. A total of 70% of the rain
gauge data randomly selected from nine (9) stations was applied for the TMPA calibration,
and the remaining 30% was applied for validation. The performance of the calibrated
TMPA was evaluated using RMSE (Equation (4)), where Rsat is the calibrated TMPA, Rg is
the observed ground rainfall, and n is the number of pixels.

RMSE =

√√√√[ 1
n

n

∑
i=1

(
Rsat − Rg

)2
]

(4)

Calibration and Validation of MODIS ET Data

The ET obtained from the MODIS satellite data products is the MODIS high-level data
product formatted by tiles, and the coordinates of the study area were applied to download
the ET. This study used ET retrieved from the digital number (DN) of the MODIS 16A data
product. The ET values were multiplied by a constant to convert DN into millimetres per
month (Equations (5) and (6)).

ET = MODIS 16AHDF xa (5)
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MODIS 16AHDF =
S x A x Cp

(
esat−e

ra

)
s + y

(
l + rs

ra

) (6)

where ET is the total ET estimates at monthly intervals (mm/month), MODIS16AHDF is
unitless ET in HDF format, a is a constant which is set to 0.1, s = d(esat)/dts = denotes the
slope of the curve relating to saturated water-vapour pressure (esat) to temperature, A is the
available energy divided between sensible heat, latent heat, and soil flux on the land surface,
ρ is the air density, Cρ is the specific heat capacity of air, ra is the aerodynamic resistance,
and rs is the surface resistance. Surface resistance was parameterized by applying the
satellite leaf area index and vegetation fraction cover. γ is the psychrometric constant. The
detailed procedure for estimating MODIS 16A (ET) is presented in Figure 4.
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Figure 4. Scheme used for the estimation of evapotranspiration using the MODIS 16 algorithm. LAI
denotes the leaf area index, and EVI symbolizes the enhanced vegetation index [18].

Satellite-based ET provides data on a global scale. Although there are numerous
validations of those data sets for various climates, including in America and Asia, spe-
cific validation, especially for the tropical region, was carried out by [18]. These studies
suggested that it is necessary to calibrate the data. In addition, errors related to seasonal
variation have been shown to require calibration by using a linear regression function
(Equation (7)) based on monsoon characteristics.

ETcalib = a ∗ ETMODIS + c, (7)

where ETcalib is the calibrated satellite ET and a and c are the calibration coefficients with
values of 0.36 and 54.7, respectively.

The calibration of the ET on MODIS 16A2 was performed by computing the ET from
the Kluang meteorological station [18], which is the nearest weather station, using the
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Penman–Monteith (PM) method [65], involving surface and water-vapor aerodynamics
based on Equation (8):

ET =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(8)

where ET = reference ET rate (mm month−1), ∆ = slope of the vapor pressure curve
(kpa◦C−1), γ = psychrometric constant (kpa °C−1) Rn = net radiation at the crop surface (MJ
m−2 d−1), G = soil heat flux density (MJ m−2 month−1) (scale G is daily assumed to be zero),
es = saturation vapor pressure (kpa), ea = actual vapor pressure (kpa), es − ea = saturation
vapor pressure deficit (kpa).

The accuracy of the calibrated ET MODIS 16A was checked and validation tests were
also conducted. The MODIS data were calibrated using rain gauge data collected in the
periods between 2000 and 2006 and validated using data collected in the periods between
2007 and 2010. The performance of the calibrated MODIS 16A was evaluated using RMSE.
The results are shown in Section 3, Results.

2.3.4. Satellite-Based Water Yield Changes from Individual LULC Classes

The extraction of changes in total WY from individual LULC classes was carried
out using a logistic function to establish the correlation between the WY from the water
balance equation and those derived from satellite images of different types of LULCC. The
developed models used in estimating WY from the LULC classes are detailed siEquation (9):

LULCWY = AOOP + BL + FRST + OP + UB + WB, (9)

where:

LULCYTWY = total WY from LULC classes;
AOOP = WY from agriculture LULC class;
BL = WY from bare land class;
FRST = WY from forest class;
OP = WY from oil palm class;
UB = WY from urban class;
WB = WY from water body class.

Therefore, the total WY of the study area was extracted from Landsat ETM+ and
OLI using the developed model. This derivation process was carried out by extracting
satellite-based WY (per pixel) from six LULC classes (agriculture other than oil palm, bare
land, forest, oil palm, urban and water bodies). Therefore, to understand the developed
total WY equation, the coefficients of the variables (which represent the individual LULC
classes) are used as an indicator of the contribution of each LULC to the total WY.

The effects of LULC changes on WY are analysed at 5- and 10-year intervals, focusing
on LULC changes in 2000–2005, 2005–2010, 2010–2015, and 2000–2015. The LULC changes
to total WY ( ∆WY) for the entire JRB from the changes in LULC classes were analysed
using multiple regression analysis, given by (Equations (10)–(13)):

∆WY2000−2005 = b1∆WYAOOP + b2∆WYBL + b3∆WYFRST + b4∆WYOP
+b5∆WYUP + b6∆WYWP

(10)

∆WY2005−2010 = b1∆WYAOOP + b2∆WYBL + b3∆WYFRST + b4∆WYOP
+b5∆WYUP + b6∆WYWP

(11)

∆WY2010−2015 = b1∆WYAOOP + b2∆WYBL + b3∆WYFRST + b4∆WYOP
+b5∆WYUP + b6∆WYWP

(12)

∆WY2000−2015 = b1∆WYAOOP + b2∆WYBL + b3∆WYFRST + b4∆WYOP
+b5∆WYUP + b6∆WYWP

(13)
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where:

WY2000–2005 = changes total WY between 2000 and 2005;
b1, b2, b3, b4, b5, and b6 are coefficients of WY changes due to the LULC classes of agriculture,
bare land, forest, oil palm, urban, and water body, respectively.

The assessment of changes in WY for the changes in LULC changes was carried out,
focusing first on the model-fitness (based on coefficients and significance level) on WY
from each LULC class, and secondly on the validation (using RMSE) of these LULC WY.

2.3.5. Mann–Kendall Statistics for Trends Analysis

Mann–Kendall (MK) statistics [63] were employed to analyse the trends of the WY
(decreasing or increasing) within the JRB. The MK test was selected because it has the
following advantages: (i) it does not require normally distributed data, (ii) it has been
widely used by the World Meteorological Organisation (WMO) and (iii) it can handle
outliers. In the trend test of Mann–Kendall, individual data in a series are compared to
all succeeding data in the series. In this method, the changes between each consecutive
value are computed to show increasing (+1), decreasing (−1), and neutral (0) signs. The
MK (S) for a given data series x1, x2, x3 . . . .., and xn (LULC WY) were computed using
Equations (14)–(17):

S = ∑n−1
k=1 ∑n

i=k+1 sign(x1 − xk

)
(14)

where

sign(x1 − xk) =


+1i f (x1 − xk) > 0
0i f (x1 − xk) = 0
−1i f (x1 − xk) < 0

(15)

where n is the number of data in the series while x1 and xk are the ranks for the data.
The significance of the trends in the data series can be calculated using statistics Z in
Equation (15), as below:

Z =


S−1√
Var(S)

i f S > 0

0 i f S = 0
S+1√
Var(S)

i f S < 0
(16)

where Var (S) is the variance in S positive and negative Z values, indicating the direction of
the trend that exists in the time series. In this expression, V(S) variance, and in case of tied
ranks it is given as in Equation (16):

V(S) =
n(n− 1)(2n + 5)∑m

i=1 t1(t1 − 1)(2t1 + 5)
18

(17)

where m is the number of tied groups and t1 is several observations in the ith group. If
there is no dependence, then V(S) can be obtained through Equation (16).

3. Results

There are two main results in this study. These include a comparison of satellite-based
WY with in-situ-derived WY and a characterization of WY changes in relation to LULC
within watersheds according to their corresponding LULC magnitude. However, validation
and calibration results are first highlighted as valuable additions to further enhance the
findings.

3.1. Calibration and Validation of Satellite Data
3.1.1. Calibration and Validation of TMPA

Table 4 presents the monthly observed rainfall data from nine rain-gauge locations
compared with TMPA rainfall data. Three standard statistical indices were obtained,
namely: coefficient of determination (R2), Nash–Sutcliff efficiency (NSE) and Bias were
obtained to evaluate the performance of the observed rainfall and TMPA data. They showed
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good agreement with TMPA monthly rainfall at the nine observed locations in JRB, with R2

in the range of 0.60–0.75, NSE values > 0.65 at six out of nine locations, and bias at less than
10% at all the locations.

Table 4. Evaluation of the performance of the monthly rainfall of TMPA versus the observation of the
rain gauge in annual rainfall estimation at all nine catchments in the study area.

S/NO. Stations Lat. (N) Long. (E)
Rain Gauge Obs. TMPA Obs.

Annual Rainfall (mm/yr) R2 NSE BIAS%

1 Sg. Jengeli 01◦57′00′′ 103◦39′00′′ 2268.38 0.67 0.65 9
2 Sg. Johor 01◦45′30′′ 103◦50′00′′ 2158.92 0.65 0.63 10
3 Sg. Johor * 01◦35′30′′ 103◦56′30′′ 2592.13 0.69 0.67 8
4 Sg. Layang 01◦32′30′′ 103◦53′00′′ 2106.36 0.64 0.62 −9
5 Sg. Lebak 01◦49′00′′ 103◦48′00′′ 2323.95 0.73 0.71 −7
6 Sg. Linggiu 01◦59′30′′ 103◦40′30′′ 2085.75 0.60 0.60 −8
7 Sg. Sayong 01◦52′30′′ 103◦30′00′′ 2435.79 0.75 0.73 8
8 Sg. Seluyut 01◦45′00′′ 104◦00′00′′ 2388.05 0.70 0.69 4
9 Sg. Semangar 01◦44′00′′ 103◦40′00′′ 2487.75 0.68 0.66 9

* Upper Sg. Johor.

Figure 5 summarises the linear regression analysis used for the calibration of TMPA,
showing the relation between the observed TMPA and the corresponding rainfall gauge
data from 2000 to 2010, from the monthly rainfall of the nine (9) stations, obtained for
132 months in 11 years. The solid line displays the linear relationship, while the dotted line
is a control indicator y = x.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 29 
 

 

Table 4. Evaluation of the performance of the monthly rainfall of TMPA versus the observation of 
the rain gauge in annual rainfall estimation at all nine catchments in the study area. 

S/NO. Stations Lat. (N) Long. (E) 
Rain Gauge Obs. TMPA Obs. 
Annual Rainfall 

(mm/yr) R2 NSE BIAS% 

1 Sg. Jengeli 01°57′00″ 103°39′00″ 2268.38 0.67 0.65 9 
2 Sg. Johor 01°45′30″ 103°50′00″ 2158.92 0.65 0.63 10 
3 Sg. Johor * 01°35′30″ 103°56′30″ 2592.13 0.69 0.67 8 
4 Sg. Layang 01°32′30″ 103°53′00″ 2106.36 0.64 0.62 −9 
5 Sg. Lebak 01°49′00″ 103°48′00″ 2323.95 0.73 0.71 −7 
6 Sg. Linggiu 01°59′30″ 103°40′30″ 2085.75 0.60 0.60 −8 
7 Sg. Sayong 01°52′30″ 103°30′00″ 2435.79 0.75 0.73 8 
8 Sg. Seluyut 01°45′00″ 104°00′00″ 2388.05 0.70 0.69 4 
9 Sg. Semangar 01°44′00″ 103°40′00″ 2487.75 0.68 0.66 9 

* Upper Sg. Johor. 

Figure 5 summarises the linear regression analysis used for the calibration of TMPA, 
showing the relation between the observed TMPA and the corresponding rainfall gauge 
data from 2000 to 2010, from the monthly rainfall of the nine (9) stations, obtained for 132 
months in 11 years. The solid line displays the linear relationship, while the dotted line is 
a control indicator y = x. 

 
Figure 5. Comparison between observed rainfall and TMPA data (mm/month). 

Figure 6 presents a comparison of uncalibrated and calibrated TMPA data using 
RMSE. The calibration minimises the random errors inherent in the TMPA observation, 
reducing the RMSE by up to 16.3%. The RMSE rainfall values estimated from TMPA cali-
brated data indicate that the rainfall data sets improved after calibration in terms of the 
RMSE values. This data calibration improvement pattern agrees with the temporal varia-
tion, where the difference between calibrated TMPA and ground measurement serves as 
evidence. 

Figure 5. Comparison between observed rainfall and TMPA data (mm/month).

Figure 6 presents a comparison of uncalibrated and calibrated TMPA data using RMSE.
The calibration minimises the random errors inherent in the TMPA observation, reducing
the RMSE by up to 16.3%. The RMSE rainfall values estimated from TMPA calibrated data
indicate that the rainfall data sets improved after calibration in terms of the RMSE values.
This data calibration improvement pattern agrees with the temporal variation, where the
difference between calibrated TMPA and ground measurement serves as evidence.
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3.1.2. Calibration and Validation of MODIS ET

The calibration function derived from the regression of the ET MODIS 16A prod-
uct against the corresponding ground ET at the Kluang station is presented in Figure 6.
This study achieved accuracy using RMSE (±43 mm) and the determination coefficient
(R2 = 0.642). These assessments were realised using eleven (11) years’ monthly mean of both
satellite and in situ observations (Figure 7). RMSE plots for MODIS 16A ET and data from
the Kluang meteorological station in 2007 and 2010 in various seasons, showing changes
before and after the calibration, are presented in Figure 8. The variation in error ranged from
16 to 26 mm in the uncalibrated and calibrated MODIS ET. The calibration of MODIS ET led
to improvements in WY monitoring, similarly to the research conducted by [18].
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3.2. Assessment of Fully Satellite-Based Water Yield Compared to In-Situ-Derived Water Yield
3.2.1. Validation with River Flow Data

The satellite-based WY for JRB was also analysed to compare flood and drought
occurrences. The time series graph of WY versus flood and drought is shown in Figure 9,
where this catchment was reported to experience 100-year flooding in recent years [66].
The peak and lowest WY derived from this satellite-based method correspond well to the
records of local flood and drought occurrences in JRB, respectively. The satellite-based and
in-situ-derived WY is shown in Table 5.

3.2.2. Validation with Soil Water Assessment Tool (SWAT)

The observed and modelled monthly discharge at the Rantau Panjang discharge point
is shown in Figure 8. The calibration period started from January 1985 to December 1999,
while the validation period was from January 2000 to December 2009. The NSE, R2 and
PB values were (0.67, 0.67) and (−3.1), respectively, for the calibration period, whereas
(0.63), (0.65) and (−1.9) are the values of NSE, R2 and PB, respectively, for the validation
period. Based on [67], for the calibration period, the NSE values demonstrate that the SWAT
model for the JRB was deemed to have too good a performance for the calibration and
validation times.

In Reference [68], the model demonstrates good discharge modelling performance
in the Bukit Merah Reservoir, Malaysia, with an R2 of 0.87 and 0.69 for the calibration
and validation periods, respectively. For the NSE method, the SWAT output is 0.79 for
calibration and 0.60 for validation periods. The performance of the SWAT model was
considered ‘very good’ in the calibration period and ‘satisfactory’ in the validation period.
Figure 10 demonstrated the observed and simulated means of monthly discharge recorded
at the Rantau Panjang station.

The performance of the SWAT model for the period of calibration is better than
that of validation; this might be because the temporal variations in the SWAT model
parameters were not effectively considered. In addition, the hydrograph validation period
demonstrates an overestimation of the simulated discharge during the southwest monsoon
season, which was also found in other studies [66]. This may be because of the occurrence
of extreme flood, where the model poorly matched the peak flow. The application of
the model in Malaysia is still limited; hence, SWAT model calibration and validation
in this study demonstrate that it is a consistent tool for hydrology cycle modelling in
Peninsular Malaysia.
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Figure 9. Monthly variations in water yield (2000–2015) and trends at the Rantau Panjang water
level station. The bold and framed arrows indicated the occurrences of floods and droughts in JRB,
respectively.

Table 5. The satellite-based and in-situ-derived water yield.

S/No. Months WY from Satellite-Based Water Balance
Equation (mm/Month) WY from SWAT (mm/Month)

2000 2005 2010 2015 2000 2005 2010 2015
1 January 165.76 175.52 124.29 215.86 169.23 135.93 157.87 200.67
2 February 119.49 233.95 250.14 128.24 103.88 247.23 226.17 122.59
3 March 103.86 100.66 118.17 161.44 139.47 55.66 126.02 173.01
4 April 122.57 85.26 94.83 133.98 143.26 42.46 100.00 117.4
5 May 82.38 79.35 62.40 97.51 88.06 83.47 69.59 160.63
6 June 35.17 43.82 54.49 70.20 38.08 34.09 72.12 82.49
7 July 64.88 64.98 66.97 96.81 76.48 82.08 103.29 110.53
8 August 63.60 103.94 75.91 86.81 83.36 118.55 88.80 93.97
9 September 77.49 82.92 84.60 122.44 72.36 124.4 77.35 146.65

10 October 65.63 171.61 86.52 254.29 78.96 189.34 79.73 229.29
11 November 94.40 133.05 294.25 230.85 83.35 174.51 256.78 217.80
12 December 228.87 161.15 219.50 367.89 194.90 171.16 155.32 317.74

Total WY (mm/yr) 1224.10 1436.21 1532.07 1966.32 1251.41 1458.88 1513.04 1972.77
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3.2.3. Comparison of Similar Studies

The WY estimates for selected catchments in Malaysia, which have quite similar
characteristics in terms of land use and rainfall, are compared with the present study
(Table 6). Most of the analyses used the satellite to estimate the WY, except for the studies
by [29] for the Johor River and by [69] for the Layang River, which combined SWAT and
satellite data. The annual WY for various catchments ranges from 706 mm/year for JRB [29]
to 1473 mm/year for Kenyir Lake [18]. For JRB, the WY estimates found in the earlier
studies are quite similar to those in the present study.

Table 6. Estimate of water yield values from selected basins in Malaysia.

Watershed/Catchment Type of Watershed/Catchment Size (km2) Mean Annual
Precipitation (mm)

Total Water
Yield (mm yr−1)

References/Approach
Satellite

Johor River Oil palm plantation, forest, and semi-urban 2367.17 2500 710 This study/Satellite
Langat River Semi-Urban 1257.70 2401 1207 [18]/Satellite

Layang Semi-Urban 33.61 2690 1334 [69]/SWAT/Satellite
Pendang Terap Forest 1032.30 2406 868 [18]/Satellite

Hulu Perak Forest 857.30 2641 687 [18]/Satellite
Kenyir Lake Forest 1260.00 2606 1473 [18]/Satellite
Johor River Semi-Urban 2636.50 788 [18]/Satellite
Johor River Semi-Urban 1652.00 2500 706 [29]/SWAT/Satellite

Hulu Langat Forest 390.26 2453 742 [70]/SWAT/Satellite

3.3. Analysis of LULC Changes and Water Yield

Figure 11 presents the analysis of the change in LULC and WY in JRB between 2000
and 2015. Figure 11a depicts the spatio-temporal pattern of LULC classes, while Figure 11b
presents their corresponding WY. The average WY for the entire catchment is presented
in Figure 11c. The LULC distribution (Table 7) shows that oil palm and agriculture, other
than oil palm, were the main land-cover classes, followed by urban, while there was a
decline in the forested area. The accuracy of the LULC classification, summarised in Table 8,
revealed high accuracy, which could not be unrelated to the use of only six classes in
the classification. However, the results of the accuracy assessment show that the image
classifications met the acceptance criteria.
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Table 7. Individual LULC classes’ area water yield estimated for 2000, 2005, 2010, and 2015, as well
as JRB WY for yearly comparison.

LULC Classes
Yr 2000 Yr 2005 Yr 2010 Yr 2015

Area WY Area WY Area WY Area WY
(ha) (mm/yr) (ha) (mm/yr) (ha) (mm/yr) (ha) (mm/mr)

Agriculture other
than oil palm 11,943.5 535.28 24,412 717.18 33,480.8 879.59 38,169.3 983.06

Bare land 2885.4 856.7 2409.66 632.46 2145.87 314.88 5246.1 306.04
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Table 7. Cont.

LULC Classes
Yr 2000 Yr 2005 Yr 2010 Yr 2015

Area WY Area WY Area WY Area WY
(ha) (mm/yr) (ha) (mm/yr) (ha) (mm/yr) (ha) (mm/mr)

Forest 101,717 77.33 78,060.24 196.29 46,648.6 277.53 25,624.3 358.76
Oil palm 95,051.1 101.03 103,527 118.92 108,755.6 237.97 123,164 280.4

Urban 10,683 170.95 15,517.1 416.41 33,091 549.4 33,924.1 592.9
Water bodies 14,437.4 63.37 12,791.4 55.7 12,595.5 53.08 10,589.6 29.66

Total Water Yield (mm/yr) In JRB 606.32 756.21 803.07 1074.1

Table 8. Classification accuracy of LULC maps of Johor River Basin.

LULU
Categories

2000 (%) 2005 (%) 2010 (%) 2015 (%)
Prod. User Prod. User Prod. User Prod. User

Agricultural area 86.33 92.64 91.33 85.50 86.33 87.83 92.00 89.46
Bare Land 89.67 89.67 88.00 91.10 91.33 92.92 90.26 87.55

Forest 93.00 88.48 85.00 85.93 98.00 88.91 90.68 92.45
Oil Palm 94.67 85.88 88.00 86.52 86.33 86.33 88.76 89.77

Urban 88.00 92.74 86.33 87.83 91.33 92.92 89.44 90.26
Waterbody 91.33 94.55 89.67 89.67 88.00 92.74 92.33 89.84

Overall Kappa 89.00 85.67 88.67 88.05

Overall Accuracy 90.50 87.72 90.22 86.89

The study found that between 2000 and 2015, WY from agricultural land other than
oil palm, forest land, oil palm, urban areas, and water bodies increased by 20.58%, 12.93%,
8.24%, 19.39% and 1.55%, respectively, while WY from bare land decreased by 25.31%.
Mann–Kendall statistics show that WY in JRB with respect to LULC showed an increasing
trend between 2000 and 2005 but a decreasing trend between 2010 and 2015 (Figure 11b).
The sub-basin with the highest average WY was Sg. Layang (160.32 mm/month) while the
sub-basin with the lowest was Sg. Sayong (131.95 mm/month) (Figure 11c).

The results of the WY for all the catchments showed that the WY increased in 2015
compared to 2000, particularly for forest (Figure 12) and agriculture (other than oil palm).
Oil palm and urban WY also increased, while bare land and water bodies WY decreased
in their respective catchments from 2000 to 2015. However, the WY of individual LULC
classes, estimated using a water balance equation in JRB for 2000, 2005, 2010, and 2015,
respectively, is presented in Table 9.

3.4. Characterisation of WY in All Watersheds

The variation in WY intensities within LULC is shown in Table 8, and the changes
in the LULC class versus WY changes are shown in Figure 13. Consequently, between
2000 and 2015, agricultural land increased by 18.78%, which led to an increase in WY by
20.58% in the same period. The bare land is reduced by 0.19%, leading to a reduction
in WY of 25.31%. In contrast, a reduction in forest area to 33.40% increased the WY by
12.93%. Furthermore, an increase in oil palm area to 13.51% increased the WY by 8.24%,
whereas an increase in urban areas to 18.50% increased the WY by 19.39%. The water bodies
are reduced to −1.72%, while the WY extracted from the water bodies is also reduced by
1.55% (Table 10).

As outlined in Equation (1), in modelling the total WY attributed to LULC changes,
it was found that the use of the AIC was the lowest at −394.78, suggesting the model as
the optimum, as in Equation (18), and the full solution tabulated in Table 11. The AIK is a
statistical method to evaluate how well a model fits the data from which it was generated.
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Table 9. Individual LULC classes’ water yield estimation using a water balance equation in JRB for
2000, 2005, 2010, and 2015.

S/No. LULC Classes 2000 WY
(mm/yr)

2005 WY
(mm/yr)

2010 WY
(mm/yr)

2015 WY
(mm/yr) ∆ 2000–2015 (%) p-Val. RMSE

1 Agriculture other than oil palm 535.28 717.18 879.59 983.06 20.58 0.001 0.64
2 Bare land 856.7 632.46 314.88 306.04 25.31 0.001 0.58
3 Forest 77.33 196.29 277.53 358.76 12.93 0.001 0.56
4 Oil palm 101.03 118.92 237.97 280.4 8.24 0.001 0.6
5 Urban 170.95 416.41 549.4 592.9 19.39 0.001 0.62
6 Water body 63.37 55.7 53.08 29.66 1.55 0.001 0.59

Table 10. LULC changes 2000–2015 and WY changes.

* LULC Classes LULC Changes
2000–2005

LULC Changes
2005–2010

LULC Changes
2010–2015

LULC Changes
2000–2015

S/No. Ha % Ha % Ha % Ha %
1 12,455.73 5.26 9081.63 3.84 22,838.76 9.67 44,355.87 18.78
2 −482.94 −0.20 −256.59 −0.11 293.76 0.12 −448.11 −0.19
3 −23,590.98 −9.97 −31,476.87 −13.30 −23,920.47 −10.13 −78,897.78 −33.40
4 8429.49 3.56 5261.31 2.22 18,265.68 7.73 4644.45 13.51
5 4824.90 2.04 17,583.48 7.43 21,307.23 9.02 43,695.90 18.50
6 −1636.20 −0.69 −192.96 −0.08 −2253.60 −0.95 −4061.43 −1.72

Changes in Water yield (mm) 149.89 16.02 46.86 5.01 271.03 28.97 467.78 50.00
* Notes. 1 = agriculture other than OP; 2 = bareland; 3 = forest; 4 = oil palm; 5 = urban; and 6 = water body.
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Table 11. The equation to best predict water yield.

LULC Classes Estimate Std. Error t Value
Intercept −0.004165 *** 0.001056 −3.942

Agriculture 1.643754 *** 0.040208 40.881
Bare land 1.093582 *** 0.060279 18.142

Forest 1.003378 *** 0.089682 11.188
Oil Palm 0.688391 *** 0.149676 4.599

Urban 0.752166 *** 0.016001 47.008
*** indicates a significant difference at p < 0.001.

However, the water body does not contribute significantly to WY. The strongest
parameter that contributed to changes in WY was agriculture. This could be supported
by the fact that the water balance equation used is based on the runoff model; hence, it is
evident of there being no significant runoff over water bodies.

yi = −0.004165 + 1.644x1 + 1.094x2 + 1.033x3 + 0.688x4 + 0.752x5 + εi (18)
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where yi is total water yield (in mm unit) for watershed; x1, x2, x3, x4, x5 is amount for WY
(unit in mm) for land cover classes of agriculture (other than oil palm), bare land, forest, oil
palm and urban, respectively, and ε is error such that ε ∼ N(0, 0.037).

However, there was no viable solution for Equation (17) in a further investigation of
which LULC class changes affect the intensity of respective WY changes due to “limited
LULC changes.” The LULC changes do not show many changes within a short period,
such as a less than a 5-year interval, except for the small percentage of urbanised areas.
From 2000 to 2015, only four LULC maps were generated by classifying Landsat TM and
OLI data acquired in 2000, 2005, 2010, and 2015. On the other hand, the average monthly
satellite-based WY could be obtained from the daily WY derived from satellite precipitation
and ET rates, producing adequate dependent parameters.

4. Discussion

Changes in WY have become a crucial issue in sustainable development across the
globe. One of the obvious reasons for this change in WY is the LULC change. Satellite-based
earth observations, as an important source of data for several aspects of the earth, have the
key benefits of a synoptic view of the earth surface, regular and repeatable observation,
monitoring of remote and inaccessible areas, and time series observation. Therefore, they
can offer valuable data that can be applied to precisely estimate WY [8,71] and its changes
over time due to LULC changes.

The analysis of WY in JRB between 2000 and 2015 revealed that changes in land use
can have a significant impact on WY, as is the case in some forested ecosystems in the
United States of America (USA) [72] due to the impact of landcover changes on evaporation,
streamflow, and runoff [72–74]. However, in line with one of the recommendations by [72]
to consider other landcovers, this study revealed that the highest increase in WY over the
study area came from agricultural land other than oil palm, which increased by 18.78% and
resulted in a 20.58% increase in WY. An increase of 13.51% in oil palm area also resulted
in an 8.24% increase in WY. This demonstrates that an increase in agricultural activity can
result in an increase in water resources and is likely due to a reduction in infiltration due to
the replacement of natural vegetation cover with agricultural products and an increase in
surface runoff. The increase of 12.93% in WY due to the reduction in forest area to 33.40%
further emphasises the argument of an increase in WY due to an increase in agriculture,
which could be due to the conversion of natural vegetation cover to agricultural fields
and a reduction in infiltration. Nevertheless, the case of an increase of 19.39% WY due to
an 18.50% increase in urban land cannot be unrelated to the increased compaction of the
surface, reduced infiltration, and increased surface runoff, as highlighted in [75]. Finally,
the 1.55% decrease in WY due to the reduction in water bodies is not surprising given the
increased conversion of natural land for agriculture and the reduction in forest, which can
expose shallower surface water to scorching evaporation, and, of course, lead to increased
consumption due to increased urbanisation.

However, while the increase in water yield found in this study is a positive result, it is
critical to recognise the potential negative consequences of natural vegetation conversion
to agriculture. Land cover changes in the form of damage to endangered native vegetation
can have a wide range of environmental implications [76], which should be carefully
evaluated. The possible loss of biodiversity and ecosystem services offered by natural
vegetation is one of the major drawbacks of this land cover change. Forests, for example,
are home to many unique plant and animal species that contribute to the general health
and stability of ecosystems. There is a risk of habitat fragmentation, loss of species richness,
and the disruption of ecological processes when forests are converted to agricultural land.
These ecological alterations may have long-term consequences for ecosystem functioning,
such as diminished pollination, nutrient cycling, and natural pest control, among other
things [77,78]. Furthermore, the conversion of natural vegetation to agriculture frequently
involves the use of intensive farming practices, such as the application of artificial fertilisers
and pesticides. The improper management of these inputs can lead to soil deterioration,
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water contamination, and a loss of soil fertility over time. Furthermore, the removal of
vegetation cover can enhance soil erosion, as already reported in the study area by [79],
resulting in sedimentation in surrounding water bodies and potentially detrimental effects
on water quality, as reported in [80]. It is also important to think about the social and
economic implications of land cover changes. The conversion of natural vegetation to
agricultural land may have consequences for local communities, particularly those that rely
on forest resources for a living. Some of the social consequences that should be considered
include the displacement of indigenous or marginalised communities, the loss of traditional
knowledge, and changes in cultural practices.

Notwithstanding, this study highlights the importance of natural ecosystem conserva-
tion and minimising land conversion for other uses, as well as the importance of proper
water body management in order to maintain their contributions to water resources. Over-
all, these findings indicate that careful consideration of LULC changes in the JRB is critical
to ensure the basin’s water resource sustainability and contributes to the development of a
baseline for the effects of LULC changes on WY in the basin, which is highly significant
for efficient land-use planning, ecological restoration, and management and guidance for
regional socioeconomic development. Furthermore, the study can contribute significantly
to related industries, such as the Public Utility Board, in deciding water resource assess-
ment with regard to the quantity of water. The study contributes substantial support to
understanding the degree of expansion in urban planning and the distribution of resources
within the watershed.

5. Conclusions

In summary, the study reveals satellite-based techniques’ ability to serve as a powerful
tool to monitor the effects of spatiotemporal trend mapping and the estimation of LULC
changes on WY. This effort was carried out between 2000 and 2015 in the JRB of Peninsular
Malaysia. The effects of LULC changes on WY were achieved using a water balance equa-
tion technique that determines WY from the equilibrium of precipitation minus ET. The
process was achieved by applying digital image processing to obtain WY from individual
LULCs for the entire catchment. The method was validated using in situ measurement and
derived values and reported good agreement with ground-based rainfall, ET, and river dis-
charge. Between 2000 and 2015, agricultural areas other than oil palm increased to 11.07%,
forest decreased to 32.15%, oil palm increased to 11.88%, urban areas increased to 9.82%,
and WY increased to 15.76%. The findings will provide valuable information for water
resource management and planning, as well as aiding policymakers in taking proactive
steps to mitigate the effects of changes in LULC to WY. Consequently, the outcome will
fast-track the attainment of the 2030 agenda of United Nations Sustainable Development
Goal 6, targets 6.1 and 6.4.
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