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Abstract: Contrastive learning techniques make it possible to pretrain a general model in a self-
supervised paradigm using a large number of unlabeled remote sensing images. The core idea is
to pull positive samples defined by data augmentation techniques closer together while pushing
apart randomly sampled negative samples to serve as supervised learning signals. This strategy is
based on the strict identity hypothesis, i.e., positive samples are strictly defined by each (anchor)
sample’s own augmentation transformation. However, this leads to the over-instancing of the
features learned by the model and the loss of the ability to fully identify ground objects. Therefore,
we proposed a relaxed identity hypothesis governing the feature distribution of different instances
within the same class of features. The implementation of the relaxed identity hypothesis requires the
sampling and discrimination of the relaxed identical samples. In this study, to realize the sampling
of relaxed identical samples under the unsupervised learning paradigm, the remote sensing image
was used to show that nearby objects often present a large correlation; neighborhood sampling was
carried out around the anchor sample; and the similarity between the sampled samples and the
anchor samples was defined as the semantic similarity. To achieve sample discrimination under the
relaxed identity hypothesis, the feature loss was calculated and reordered for the samples in the
relaxed identical sample queue and the anchor samples, and the feature loss between the anchor
samples and the sample queue was defined as the feature similarity. Through the sampling and
discrimination of the relaxed identical samples, the leap from instance-level features to class-level
features was achieved to a certain extent while enhancing the network’s invariant learning of features.
We validated the effectiveness of the proposed method on three datasets, and our method achieved
the best experimental results on all three datasets compared to six self-supervised methods.

Keywords: semantic segmentation; remote sensing (RS); self-supervised learning; contrastive learning

1. Introduction

With the maturation of high-definition satellite technology, the acquired RSIs have
greatly improved in both quantity and quality, and the extracted feature content and details
are becoming increasingly rich [1–4], allowing satellites to become a true “eye on the earth”.
However, the massive scale of RSIs presents new difficulties for manual annotation. In the
face of a large number of high-quality RSIs, starting from the detailed features of the images
themselves becomes the key to quickly decoding the information content of these images.
Traditional unsupervised representation learning methods lack an effective feedback mech-
anism after abandoning manual annotations, resulting in the learned features not being
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discriminative and invariant enough for RSI understanding tasks. Self-supervised learning
uses pretext tasks [5–7] to generate pseudo-labels for massive unlabeled data, learning
good representations that benefit various downstream tasks.

As a representative method of self-supervised learning, contrastive learning is both
efficient and effective, and is therefore widely used in the remote sensing community.
It treats each sample (called an anchor sample) as a separate class and augments the
anchor sample to obtain corresponding positive samples while treating the rest of the
samples in the dataset as negative samples. Based on the construction of such similar and
different samples, the distances between the similar samples (anchor samples and positive
samples) are reduced, and the distances between different samples (anchor samples and
negative samples) are increased, thereby constructing comparative supervision signals to
enable a model to learn the features of similar and different instances. This supervision
signal construction approach based on sample contrast is widely used, and several typical
methods such as SimCLR [8,9] and MoCo [10–12] follow the approach of treating each
sample as a separate class and generating positive samples through data augmentation.
Different data augmentation methods simulate anchor samples with different time and
state representations and aid in the learning of the intraclass invariance [13] and interclass
differentiability [14] of features by correspondingly reducing and increasing the distances
between features. Interclass invariance means that the features extracted from similar
samples remain the same or essentially the same regardless of changes in the external
conditions. Interclass differentiability means that the features extracted from samples of
different classes are differentiable or significantly different, regardless of how similar the
features are to each other.

Traditional contrastive learning methods use data augmentation [8,15,16] as a means
of learning invariance, and various studies have also shown that data augmentation is an
important part of bridging intraclass distances. The hypothesis underlying the method
of obtaining positive samples through the data augmentation of anchor samples only is
called the strict identity hypothesis; in this method, positive samples are strictly defined
as the samples obtained through anchor sample augmentation. This definition allows one
to reduce the distances between the anchor sample and the positive samples under the
strict identity hypothesis without establishing other connections between samples in the
same class while ignoring other samples of the same class as the anchor sample in the
dataset. This limited data augmentation approach cannot model the features of different
samples within a class, let alone constrain the distribution of different instances of the same
class in the feature space. Especially in the field of remote sensing, since the features of
samples in the same class often exhibit considerable richness, complexity, and imbalance
in space [17,18], the data augmentation of anchor samples alone is insufficient to support
the learning of the feature invariance of samples within the same class. Therefore, we
proposed a relaxed identity hypothesis under which the definition of positive samples is
extended from the augmentation of anchor samples to the augmentation of anchor samples
and similar samples. Under this hypothesis, the selection of similar samples is particularly
important. Some works have attempted to increase the number of similar samples by prior
knowledge [19,20]. However, this type of approach is too certain in regard to the samples
obtained from prior knowledge, leading false-positive samples to have a large impact on
the network. In addition, some works have used clustering [21,22] to select similar samples,
that is, selecting samples close to the anchor sample cluster center as similar samples.
In the field of remote sensing, the selection of similar samples relies on hyperspectral RSIs
for spectral clustering [23,24]. The results of such work will be affected by the clustering
results, and poor clustering results will erroneously pull in the distance of different classes.
Even works that attempt to reduce or eliminate the impact of false-positive samples on
the network through correction methods still cannot escape from this over-reliance on
prior knowledge. In summary, the available methods for contrastive learning from similar
positive samples still suffer from the limitations of using only data augmentation methods,
employing simple clustering methods, and relying excessively on prior knowledge.
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To address the above problem, we proposed a relaxed positive sample selection and
discrimination method for RSI contrastive learning. Since self-supervised learning cannot
rely on labels to help find similar features and distinguish different features, we defined
a double constraint of semantic similarity under the relaxed identity sampling strategy and
feature similarity under relaxed sample discrimination to sample and discriminate relaxed
positive samples. First, to perform relaxed identity sampling, we sampled the features
within the neighborhood of the anchor samples according to the fact that nearby objects
in a remote sensing dataset tend to have a strong correlation [25]; the samples obtained in
this way were grouped into the relaxed sample queue, and a semantic similarity measure
was defined. Second, to discriminate the samples in the relaxed sample queue, we defined
the feature similarity, ranked the samples in the relaxed sample queue by means of the
self-discriminating ability of the network, and fused the samples at the front end of the
ranked relaxed sample queue as the relaxed positive samples; these fused samples were
used as positive samples to close the distance with the anchor sample. We used a two-
branch network to implement the sampling and discrimination of samples under the above
relaxed identity sampling strategy. One of the network branches performed instance-level
feature learning to provide the initial network weights for the sampling and discrimination
of relaxed samples, and the other performed the discrimination of relaxed samples based
on this instance-level learning. Our approach moved away from sole reliance on either
data augmentation, clustering, or prior knowledge while elevating feature learning from
instance-level to class-level learning. We present experiments conducted on three datasets
to demonstrate the effectiveness of our method.

The main contributions of this paper are as follows:

(1) We proposed a relaxed identity hypothesis as an extension of the strict identity hypoth-
esis currently used to define positive samples for contrastive learning, i.e., to consider
similar samples as positive samples instead of considering only augmented views
of the same sample. Our proposed relaxed identity hypothesis could fundamentally
alleviate the problem of incomplete object recognition due to the over-instantiation of
features obtained by contrastive learning.

(2) Following the relaxed identity hypothesis, we proposed a novel contrastive learn-
ing method, RiSSNet, which used spatial proximity sampling and visual similarity
discrimination strategies to filter out similar samples for the construction of positive
sample pairs. With the dual constraints of spatial proximity and visual similarity
used to construct positive samples, RiSSNet achieved a more compact feature space
through contrastive learning to obtain category-level features instead of instance-level
features.

(3) We experimentally verified the effectiveness of the proposed RiSSNet on three repre-
sentative semantic segmentation datasets, which contributed to a deeper understand-
ing of the relaxation hypothesis.

2. Materials and Methods
2.1. Related Works
2.1.1. Semantic Segmentation of Remote Sensing Images

The semantic segmentation task for RSIs is regarded as an important way to obtain
information from RSIs, and these segmentation results are widely used in many fields,
such as disaster acquisition and land resource exploration. Long et al. [26] proposed
a fully convolutional neural network (FCN) semantic segmentation model, which achieved
more robust results by combining the results of different layers for image segmentation.
Ronneberger et al. [27] designed a U-Net model with a symmetric network structure to
perform the stitching operation, using the symmetric structure of the network to fuse
shallow and deep image features. Chen et al. [28] proposed DeeplabV3+, which more
effectively preserved the shallow information of the network through feature fusion com-
pared to DeepLabV3 [29] in order to obtain stable and highly accurate segmentation results.
Because RSIs have the distinctive characteristics of large scale differences, a large number
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of spectra, and a high resolution, the semantic segmentation methods based on the above-
mentioned models must often be optimized specifically for RSIs. Wu et al. [30] solved the
problem of small-feature loss in ASPP by constructing feature pyramids and improved
the segmentation results for roads by using dense links. Ding et al. [31] proposed an
attention-based mechanism for LANet, which added contextual information by means of
patch-level attention modules to complement the spatial structure in high-level features.

The abovementioned works focused on the importance of dense contextual relation-
ships for the semantic segmentation of RSIs, but most of them simply supplemented
semantic segmentation with spatial correlations and failed to establish the semantic correla-
tions between different dense blocks.

2.1.2. Semantic Segmentation for Remote Sensing Images Based on Self-Supervised
Contrastive Learning

Since self-supervised contrastive learning methods were proposed, they have seen
wide application in the field of semantic segmentation for RSIs. Contrastive learning has
been proven to enable models to learn good instance-level features under the strict identity
hypothesis and has been widely used in various fields, becoming a mainstream method
for unsupervised learning. Wu et al. [32] first proposed the instance discrimination task,
which treats an anchor sample and its augmented counterpart as a positive sample pair
to be pulled closer together and the rest of the samples as negative samples to be pushed
away, as a means to learn the features of different instances. Since the introduction of
instance-discriminative contrastive learning, data augmentation has been regarded as an
important part of contrastive learning, as data augmentation can simulate the variations
in sample instances at different times and locations in order to learn instance features
under different conditions. Chen et al. [8] investigated the effect of data augmentation in
the self-supervised domain and found that among three augmentation methods (random
cropping, color distortion, and Gaussian blur), random cropping and color distortion were
more beneficial for the learning of instance sample representations. Subsequently, further
studies [33–37] were conducted on data augmentation. Tian et al. [15] proposed an idea for
how positive sample pairs should be designed from the perspective of mutual information.
Peng et al. [38] started from cropping as a data augmentation tool; cropping the foreground
part of an image can allow a network to distinguish foreground from background and thus
learn the foreground better. In addition, Li et al. [39] proposed augmentation methods for
the spatiotemporal learning of RSIs and supplemented the learned feature details using
global and local contrastive learning. Mao et al. [40] developed a multilevel self-supervised
contrastive learning framework for constructing local semantic-level positive and negative
sample pairs.

Although the above methods optimized the features learned under the strict identity
condition from various perspectives, the overly strict identity constraint nevertheless restricts
feature learning to the instance level and prevents the construction of feature associations at
the class level. Especially for RSIs, the complexity and variability of the features make the gap
between the instance level and the class level highly prominent. In [39–41], we attempted to
use patch-level feature learning to overcome the above problem but still failed to extend the
content considered in patch-level learning beyond instance-level features.

2.1.3. Positive Sampling Strategies

With the continuous improvement of contrastive learning techniques, work related
to positive sample sampling is also emerging, and research extends from self-supervised
contrastive learning to supervised contrastive learning. The current sampling methods for
contrastive learning can be broadly divided into three main categories: work related to
label-assisted sampling under supervised learning conditions, work related to clustering
sampling under self-supervised learning and other for work related to sampling of dataset
characteristics under self-supervised conditions.
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Positive sampling under supervised learning was first proposed by
Khosla et al. [42], who integrated supervised learning and contrastive learning to sample
positive samples with the help of labels and suggested that harder positive samples would
bring greater gain to a network. In this way, the ability of a network to learn the invariant
features of similar samples can be improved by associating similar samples with the help
of labels. The work related to positive sampling in the context of self-supervised learning
can be broadly divided into two categories: positive sampling based on clustering and
positive sampling based on the characteristics of the dataset itself. Li et al. [43] performed
positive sampling via clustering from a self-supervised perspective by searching neighbor-
ing samples in the clusters to which the anchor samples belonged and retaining samples
close to the center of a cluster in the corresponding anchor sample category as positive
samples; however, the positive samples selected by this method were highly similar to
the anchor samples, and the differences were too small to achieve a large beneficial im-
pact. Ayush et al. [44] achieved the spatial alignment of RSIs using the spatiotemporal
structure of the images and considered regions of both temporal and geographic proximity
for positive sampling in order to sample positive samples for self-supervised contrastive
learning. This method was able to expand the capabilities of data augmentation to some
extent. Jean et al. [45] extended Word2Vec to remote sensing datasets based on the fact that
words in similar contexts in natural language often have similar meanings and accordingly
proposed the Tile2Vec method to sample positive samples from augmentations of only the
corresponding anchor sample itself to augmentations of similar samples, making it possible
to select more diverse positive samples without relying on labels. Jung et al. [46] proposed
using multiple positive samples for learning based on Tile2Vec, i.e., the fusion of features,
as a way to avoid the impact of false-positive samples on the network.

The above methods suffer from limitations such as relying solely on clustering results
or a priori knowledge of random sampling results; consequently, the constraints on the
sampling methods for positive samples are too restrictive, meaning that the selected
positive samples are not optimal. To overcome these limitations, we established a doubly
constrained sampling and discrimination method for positive samples under relaxed
conditions to ensure that the obtained samples had greater similarity to the anchor samples
while controlling the distribution of different sample instances of the same class in the
feature space, thereby newly realizing the leap from instance-level feature learning to
class-level feature learning.

2.2. Method

This section introduces our proposed RiSSNet architecture. The overall framework of
the network is summarized and the RiSSNet schematic is presented in Section 2.2.1, the
relaxed identity sampling principle is introduced in Section 2.2.2, and the relaxed identical
sample discrimination strategy is discussed in Section 2.2.3.

2.2.1. Overview of RiSSNet

RiSSNet is a two-branch contrastive learning network built under relaxed identity
constraints. The two branches of the network run in parallel. One branch learns the features
of each sample itself by enforcing strict identity constraints to enhance the discriminative
power of the base network. The other branch performs sampling and discrimination at
the patch level with relaxed identity constraints, enabling feature augmentation learned
from the instance level to some extent. The specific network structure is shown in Figure 1.
The two-branch network consists of four main parts: data augmentation, an encoder,
a projection head, and a loss function.
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Figure 1. Overall structure of RiSSNet. The network consists of two branches for comparison, where
one branch still performs instance-level contrastive learning, and the other branch performs sampling
and discrimination with relaxed identity constraints.

RiSSNet first performs data augmentation on the input image. The data augmentation
methods used in this paper were random cropping, color distortion, and Gaussian blur.
Specifically, for a given anchor sample xi and the remaining samples y1, y2...yN−1 in the
batch, the positive sample pair t(xi)t′(xi) and the negative sample pair t(y1)t′(y1) . . .
t(yN−1)t′(yN−1) were obtained after data augmentation. Based on the data augmentation
results, relaxed identity sampling was performed in the local neighborhood of the anchor
sample in the data-augmented image, and all samples in the neighborhood were grouped
into the relaxed identical sample cohort. The data-augmented image and the relaxed
identical sample cohort were passed to the encoder of the strict identity sampling branch
and the encoder of the relaxed identity sampling branch, respectively, and each encoder
performed feature extraction. The specific formula of the encoder part is as follows:

hxi = fxi = e(t(xi)) (1)

where hxi represents the output after the pooling layer, and e() represents the feature vector
after the encoder.

Feature mapping was then performed by the projection head. The projection head
was composed of an MLP with a hidden layer. The output after the projection head was

zxi = g(hxi ) = W(2)σ(W(1)hxi ) (2)

where zxi is the representation output of the projection head, g() is the projection head,
and σ is the ReLU layer. After the projection head obtained the strictly identical sample
features and the relaxed identical sample features, the relaxed identical sample features
were used to discriminate the relaxed identical samples, the MSE loss was used to reorder
the relaxed identical sample queue, and the samples at the front end of the queue were
selected as the final positive samples under the relaxed identity hypothesis. Finally, the
InfoNCE loss between the positive sample features and the anchor sample features under
the strict identity hypothesis and the relaxed identity hypothesis was calculated separately
to complete the learning of the image features by RiSSNet.
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2.2.2. Relaxed Identity Sampling

The relaxed identity sampling strategy is a self-supervised sampling strategy without
labels. In order to obtain similar samples for the anchor samples, we performed the
neighborhood sampling of the anchor samples by virtue of the fact that the ground objects
that are closer to the anchor samples in remote sensing have a stronger correlation than
those that are farther away from the anchor samples. We defined the semantic similarity
index to measure whether the anchor samples had the same semantics as the samples in
the sampling queue (Figure 2). In this paper, semantic similarity is defined as the label
similarity between anchor samples and sampled samples. The larger the semantic similarity,
the more the sample matches the expectation.

Anchor Neighbor1 Neighbor2 Neighbor3 Neighbor4 Neighbor5 …… Neighbor22 Neighbor23 Neighbor24

……

……

Figure 2. Schematic diagram of the sampling of relaxed identity samples. Based on the fact that
the closest neighbors of remote sensing features tend to have greater similarity, we sampled the
anchor sample neighborhood, and the extracted samples were recorded as the positive sample queue.
The red box indicates the anchor sample, and each white box represents an extracted neighborhood
sample, all of which together form the sample queue.

We assumed that the dataset D contains a total of n classes of samples,
i.e., D = {i1, i2, . . . , in}, and the extracted local area is denoted by d. According to the
semantic similarity defined in this paper, if the extracted local area contains features of
only a single class, e.g., da = {i1}, then its semantic similarity to the sample dn = {i1},
which also has only features of the same single class, is maximal. If there are multiple
types of feature in the extracted local area, e.g., da = {i1, i2, i3}, then its semantic similarity
to another sample with one or more of the same feature categories is defined as follows:
dn = {i1, i2, i3} > dn = {i1, i2} > dn = {i1}, with a larger percentage of shared feature
classes corresponding to a larger similarity. Specifically, we denote the anchor sample by
xi, whose size is H ×W × C. With the centroid of the anchor sample as the center, the
neighborhood of the anchor sample is defined by a radius R. The image was sampled
within the neighborhood radius, and the corresponding image samples, each with a size
of H ×W × C, are denoted by xRj(j∈ N). A total of N positive samples were obtained,
i.e., the sample queue before relaxed identical sample discrimination contained a total of N
positive samples.

2.2.3. Relaxed Identical Sample Discrimination

The relaxed identical sample discrimination strategy was based on anchor sample
features and features in the relaxed sample cohort for scoring, for which we defined feature
similarity. The feature similarity is an important constraint of the relaxed identical sample
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discrimination strategy and allows for greater visual variability in the case of semantic
similarity. In contrast, when only traditional data augmentation is used to learn different
transformations of a single sample, often the full diversity of possible representations is
difficult to learn.

To obtain positive samples with high feature similarity as described above, we used
the self-discriminatory ability of the network, i.e., we used the network itself to discriminate
and score the samples of the relaxed identical sample cohort. In the early stage of training,
due to the weak discriminative ability of the network, we used only a single-branch
contrastive learning network; later, we loaded the single-branch network parameters for
two-branch network training, adding the network branch responsible for relaxed identity
sampling and discrimination. To achieve instance-level to class-level learning, we selected
four samples from the scored relaxed identical sample queue that exhibited large differences
in feature similarity as positive samples and performed feature fusion. Specifically, the
anchor sample is denoted by xi, and the positive sample cohort is denoted by xRj(j∈ N).
We computed the similarity between the anchor sample and each sample in the positive
sample cohort as shown in Equation (3), where the feature difference between two samples
is computed as the mean squared difference, and ranked the samples according to their
feature differences.

D
(

xi, xRj

)
=

(
xi − xRj

)2
(3)

We then selected the top k samples to undergo feature fusion to prevent the impact of
false-positive samples on the network, as follows:

hx′ =
1
k

j∈k

∑
j=1

hxRj
(4)

where hxRj
denotes the representation extracted from the j-th positive sample in the positive

sample queue after the encoder.

2.2.4. InfoNCE Loss

To draw the anchor sample, the relaxed identical samples, and their augmentations
closer together in the feature space, the anchor sample was pushed farther from the
remaining negative samples in the batch to control the spatial distribution of the features of
different instances in the same class. We defined the loss between the anchor sample and the
relaxed identical samples as shown in Equation (5). Specifically, we denoted the features of
the anchor sample after the projection head by z and the features of the remaining negative
samples in the batch after the projection head by zxk . The anchor sample was approximated
by the fused relaxed identical positive samples and pushed away from the other samples
in the batch, i.e.,

l = − log
exp(sim(z, hx′)/τ)

exp(sim(z, hx′)/τ) + ∑
2(N−1)
k=1 exp

(
sim

(
z, zxk

)
/τ

) (5)

where N is the number of samples in the batch and a total of 2N samples are obtained after
data augmentation, meaning that 2(N − 1) is the number of samples minus the positive
samples and their augmentations, and sim(z, hx′) denotes the cosine similarity between the
anchor sample z and the relaxed sampling and discrimination positive sample hx′ .

3. Experiments
3.1. Datasets

We validated the effectiveness of the method on three remote sensing semantic segmenta-
tion datasets: Xiangtan [39], Potsdam [47], and GID [48], dividing the training and validation
sets at a ratio of 9:1 and taking 1% of the training data for fine-tuning to verify the results of
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the upstream pretrained model effects. The three images had different resolutions, but we
uniformly cropped the images to 256 × 256, and the data are shown in detail in Table 1.

Table 1. Summary of the datasets. The Potsdam and GID datasets are from an open network, and the
Xiangtan dataset contains real data collected from the city of Xiangtan, Hunan Province, China.

Dataset Resolution Image Size Classes Training Fine-Tuning Val

Xiangtan [39] 2 m 256 × 256 9 16051 160 3815
ISPRS Potsdam [47] 0.05 m 256 × 256 6 16080 160 4022

GID [48] 1 m 256 × 256 5 98218 983 10919

3.1.1. Xiangtan

The Xiangtan dataset was collected from the city of Xiangtan, Hunan Province, and
captured by the Gaofen 2 satellite with a resolution of 2 m. It contains image data labeled
as background, farm land, urban, rural, water, forestland, grass, road, and other, for a total
of nine feature classes, of which forestland accounts for a relatively large proportion, and
the features show an unbalanced distribution. We cropped 106 images of size 4096 × 4096
to images of size 256 × 256 and obtained 16051 training data samples, 160 fine-tuning data
samples, and 3815 validation data samples.

3.1.2. ISPRS Potsdam

The ISPRS Potsdam dataset was collected from the city of Potsdam, Germany, with
a spatial resolution of 5 cm. Six classes of features are included: water, buildings, vegetation,
trees, cars, and other, with water accounting for a large proportion and cars accounting
for a very small proportion. We cropped 38 images of size 6000 × 6000 to images of size
256 × 256 and obtained 16080 training data samples, 160 fine-tuning data samples, and
4022 validation data samples.

3.1.3. GID

The GID dataset covers more than 60 cities in China and was captured by the Gaofen-2
satellite with a spatial resolution of 1 m. It contains five classes of features: buildings,
farmland, forests, grass, and water, which are more balanced than the classes in the other
datasets. We cropped 150 images of approximately size 6800 × 7300 to images of size
256 × 256 and obtained 98218 training data samples, 983 fine-tuning data samples, and
10919 validation data samples.

3.2. Experiments

We mainly compared the experimental results obtained under the relaxed identity
hypothesis with those obtained under the strict identity hypothesis using the following
baselines: Random [28], Inpainting [49], Tile2Vec [45], SimCLR [9], MoCo v2 [11], Barlow
Twins [50], and FALSE [51]. The specific experimental details are as follows: the pretraining
of an instance-level network was conducted first, and after 20 epochs, our network was
loaded and trained for 130 epochs. The chosen optimizer was Adam, with the weight decay
set to 10−5 and the batch size set to 32. In the fine-tuning part, we used 1% of the training
data set for training, the number of training epochs was 100, and the Adam optimizer and
a batch size of 32 were used again.

(a) Random [28]: a supervised learning method, using the network Deeplab V3+ and only
1% of the fine-tuning data volume for training.

(b) Inpainting [49]: a patch-level generative network that learns by computing the loss of
the patched image relative to the original image.

(c) Tile2Vec [45]: a primitive sampling method based on spatial proximity, with samples
within the neighborhood treated as positive and samples at a farther distance treated
as negative.
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(d) SimCLR [9]: a standard strict-identity-constrained network for which positive samples
are obtained through the data augmentation of the anchor samples and negative
samples are obtained from the rest of the samples in the same batch.

(e) MoCo v2 [11]: a standard strict-identity-constrained network that outperforms Sim-
CLR in several respects, for which positive samples are also obtained by augmenting
anchor samples and negative samples are stored in a queue.

(f) Barlow Twins [50]: a self-supervised network with only positive samples, where the
positive samples are also augmented by the anchor samples.

(g) FALSE [51]: a self-supervised network that removes false-negative samples from
negative samples in contrastive learning.

Among the methods compared above, the ’Random’ method used 1% of the data for
supervised training, and the rest of the self-supervised methods used 1% of the data for
fine-tuning the network. From Table 2, we can see that our method achieved improved
metrics on each dataset compared to the baseline methods, especially on the GID dataset,
where the mIOU was improved by 2.77%. On the Xiangtan dataset, the overall metrics of
our method showed less improvement compared to the optimal baseline method, while
on the GID dataset, our method showed the most improvement compared to the optimal
baseline method. Next, we visualized the accuracy for each category of features in the
different datasets, and it can be seen from Figure 3 that our method maintained the highest
accuracy for each category of features in the three datasets. On the Xiangtan dataset, our
method achieved the greatest improvements for urban and water; on the Potsdam dataset,
our method showed the most significant improvement in the car category; and on the GID
dataset, the improvements were more balanced due to the more balanced nature of the
feature categories. In addition, we also visualized the semantic segmentation result graph
Figure 4.

Figure 3. Plots of the IoU for the various classes in the three datasets. Each graph represents a dataset,
and the different feature accuracies in the dataset are plotted in different colors.
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Table 2. Experimental results comparing our method (RiSSNet) with current advanced methods in
terms of three evaluation indicators: Kappa, OA, and mIOU. Bold numbers represent the maximum
value under this indicator.

Method
Xiangtan Potsdam GID

Kappa OA mIOU Kappa OA mIOU Kappa OA mIOU

Random [28] 65.31 78.52 34.73 53.78 64.87 38.85 52.61 72.14 52.45
Inpainting [49] 65.40 78.45 34.93 55.74 66.28 35.45 55.94 73.82 52.48
Tile2Vec [45] 64.45 77.73 33.98 56.85 70.57 36.33 32.30 61.19 37.84
SimCLR [9] 70.08 81.12 39.17 63.40 72.02 43.63 65.18 79.40 58.63

MoCo v2 [11] 65.40 78.45 34.93 54.20 65.13 34.37 52.31 71.56 52.25
Barlow Twins [50] 67.55 79.85 36.86 58.59 68.44 39.23 54.80 72.79 54.14

FALSE [51] 69.41 80.99 40.27 55.96 66.31 43.15 60.98 77.52 55.25
RiSSNet 70.16 81.21 40.25 64.81 73.08 44.96 66.10 80.21 61.41

Image

Label

Random

Inpainting

Tile2vec

SimCLR

MoCo

Barlow Twins

FALSE

Ours

Xiangtan ISPRS Potsdam GID

Figure 4. Visualization of semantic segmentation results on different datasets.
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3.3. Result Analysis

To verify whether the samples obtained under the semantic similarity and feature
similarity constraints of the RiSSNet method were positive samples with respect to the
anchor samples, we compared the numbers of positive and negative samples obtained
under both constraints with those obtained through random selection while visualizing
the images and labels of the selected regions and observed whether our method enriched
the number of in-class samples. To verify the invariance of the features learned by the
model, we used t-SNE visualizations of the feature distributions to observe the variations
between different classes of sample features as learned by the model and illustrate whether
samples within the same class were sufficiently closely distributed, and we also calculated
the distances between the features within a class.

3.3.1. Relaxed Identity Sampling

To verify whether the semantic similarity was improved under relaxed identity sam-
pling, we calculated and visualized the positive and negative sample statistics for the
different datasets. Positive samples were defined as those with the same single feature
category if the anchor sample contained only one feature category or as those with the max-
imum percentage of the same feature categories if the anchor sample contained multiple
feature categories.

As seen from the Table 3, compared to the random selection of the positive sample
cohort, there was an approximately 8% increase in the number of positive samples and
an approximately 18% decrease in the number of negative samples under relaxed identity
sampling. In addition, we visualized the images and labels of patches selected under the
random selection approach (Rs) and patches selected under the joint semantic similarity
approach (Ss) to see whether the samples selected by our method increased the number of
positive samples. As shown in the Figure 5, the conclusions obtained from the visualizations
were consistent with those obtained in the table.

Table 3. This table shows the numbers of positive and negative samples extracted by the relaxed
identity sampling method and through the random selection of positive samples and their trends,
where ‘Anchor’ is the anchor sample, ‘N_pos’ represents positive samples, ‘N_neg’ represents
negative samples, ‘Random’ is the random extraction method, and ’Trend’ indicates whether the
number of positive or negative samples extracted by our method increased or decreased compared to
the random method, with ’↑’ meaning that our method increased the number of samples compared
to the random method and ’↓’ meaning that our method decreased the number of samples compared
to the random method.

Selection Method
Xiangtan Potsdam GID

Anchor N_pos N_neg Anchor N_pos N_neg Anchor N_pos N_neg

Random 16064 41305 22951 7257 39027 25101 98272 308316 84772
Our Method 16064 42395 21733 7257 46180 18076 98272 325000 68088

Trend - ↑1.02 ↓0.94 - ↑1.18 ↓0.72 - ↑1.05 ↓0.80
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Figure 5. Visualization of the results of relaxed identity sampling and random sampling, where ’Rs’
represents the random selection method and ’Ss’ represents the method considering semantic similarity.
For each sample, the ’img’ column presents the cropped image region, and the ’lab’ column presents
the label map of the cropped region, with different colors representing different feature categories.

3.3.2. Relaxed Identical Sample Discrimination

To verify whether the feature similarity was improved under relaxed identical sample
discrimination, we statistically analyzed and visualized the corresponding results on
different datasets. Again, we defined positive and negative samples in the same way as
in the section on relaxed identity sampling, and the results for the random method were
the numbers of positive and negative samples obtained by randomly selecting samples
without the relaxed identical sample discrimination strategy.

From Table 4, it can be seen that the number of positive samples extracted by our
method after relaxed identical sample discrimination was also increased compared with the
random selection method. Additionally, from the image visualization results in Figure 6,
it can be observed that there was some variability between the anchor samples and the
positive samples obtained by our method, and the improvement brought by this difference
could not be obtained through data augmentation. To verify the feature similarity, we again
visualized some of the positive samples in the datasets.
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Table 4. This table shows the numbers and trends of positive and negative samples extracted with
relaxed identical sample discrimination and with the random selection method, where ’Anchor’ is the
anchor sample, ’N_ Pos’ represents positive samples, ’N_ Neg’ represents negative samples, ’Random’
is the sample selection method, and ‘Trend’ indicates whether the number of positive or negative
samples extracted by our method with relaxed identical sample discrimination was increased or
decreased compared to the random selection method, with ’↑’ indicating an increase in the number of
samples compared to the sample sampling method and ’↓’ indicating a decrease in the number of
samples extracted by our method compared to the random selection method.

Selection Method
Xiangtan Potsdam GID

Anchor N_pos N_neg Anchor N_pos N_neg Anchor N_pos N_neg

Random 16000 36110 27890 4000 8950 7050 98240 277515 115445
Our Method 16000 37919 26081 4000 10279 5721 98240 308359 84601

Trend - ↑1.05 ↓0.93 - ↑1.14 ↓0.81 - ↑1.11 ↓0.73

Figure 6. Visualization of the results of relaxed identical sample discrimination, where ’Rs’ represents
the random selection method and ’Ss’ represents our method considering semantic similarity. For each
sample, the ’img’ column presents the cropped image region, and the ’lab’ column presents the label
map of the cropped region, with different colors representing different feature categories.
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3.3.3. Feature Invariance Augmentation Verification Experiments

For the feature invariance augmentation validation experiments, we randomly selected
some data from each dataset for feature invariance validation. Some feature categories
were missing in the validation experiments for the Xiangtan dataset and Potsdam dataset
because of the serious imbalance in the feature categories in these datasets. In addition,
we visualized the distribution of the features learned by the different methods on the
three datasets, using the GID dataset as an example, as shown in Figure 7.

As seen from this figure, our method yielded more compact features for the GID
dataset, reflecting an improvement in the feature invariance for this dataset. To further
verify the improvement in the feature invariance in the experimental results of the proposed
method, we randomly extracted some of the data from each dataset to calculate the intra-
class distances. Due to the uneven distributions of features in the Xiangtan and Potsdam
datasets, some categories of features were not extracted, and the corresponding intraclass
distances were 0. We calculated the distance between intraclass features as follows, where
Ci denotes the i-th feature class, ’Intra-class’ is the intraclass distance of the i-th feature class,
and ’Best’ represents the method with the highest accuracy among the current methods
(excluding our method).

Figure 7. Graphs of t-SNE visualizations of the results, where differently colored dots represent
different types of class objects.

The Table 5 shows that our method further reduced the intraclass distances between
samples in each dataset compared to the ’Best’ method, achieving the closer clustering
of similar samples and an improvement in the invariance of the sample characteristics.
The improvement in intraclass distance was most obvious in the Potsdam dataset and less
obvious in the Xiangtan and GID datasets, but our method did have a narrowing effect for
each class of features.
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Table 5. This table shows the intraclass distances between features of the same class in different
datasets. ’Best’ represents the intraclass distance of the best method among the current baseline
methods excluding our method, and ’Ours’ denotes our method. ’→←’ means that our method made
the intraclass distance shorter than the best method, and ’←→’ means that our method made the
intraclass distance greater than the best method.

Class
Xiangtan Potsdam GID

Best Ours Trend Best Ours Trend Best Ours Trend

C_1 80.27 127.97 ←→ 2748 1907 →← 1723 1152 →←
C_2 214.63 118.27 →← 4594 3656 →← 769 237 →←
C_3 0 0 - 3782 2372 →← 1.75 1.77 →←
C_4 0 0 - 1010 684 →← 22.62 18.87 →←
C_5 0.78 0.28 →← 0 0 - 37.41 23.55 →←
C_6 7118 5000 →← 1799 1081 →← / / /
C_7 0 0 - 0 0 - / / /
C_8 0 0 - / / / / / /
C_9 0 0 - / / / / / /

4. Discussion

In this paper, to address the transition from instance-level feature learning to class-
level feature learning in contrastive learning, we proposed a relaxed identity hypothesis,
validated the effectiveness of the proposed method through experiments on three datasets,
and further verified that the relaxed identity hypothesis played a role in learning the
invariance of features within classes. Our two-branch network design avoided bias during
initial training and guided sample selection to form the relaxed identical sample queue in
addition to the sampling and discrimination of the relaxed identical samples by means of
a double constraint on the positive sample queue.

An increase in resolution with the same patch size yielded better results under the
relaxed identity hypothesis. We experimentally observed that under the condition that
the sizes of the training and fine-tuning datasets were the same, a resolution increase
led to a greater improvement under the relaxed identity hypothesis; for the example of
the Xiangtan and Potsdam datasets, both datasets had training and fine-tuning sets of
almost the same size, but the relative index gains were higher for the Potsdam dataset.
Furthermore, from the visualizations of anchor samples and relaxed identical samples and
from the figure analysis results, we could see that due to the improved resolution, the
collection of features contained within a single sample obtained from our positive sample
cohort was more uniform and singular, leading to a significant increase in the number
of positive samples drawn from the relaxed identical sample cohort, which was a major
reason for the improved experimental results.

An increase in the number of training samples for a dataset led to a more significant
improvement under the relaxed identity hypothesis. In the comparison between the GID
dataset and the Potsdam dataset, it could be seen that the improvement in the mIOU on
the GID dataset was more significant compared to the baseline, corresponding to a gain of
2.77%.

The relaxed identity sampling principle was beneficial for helping the network learn
feature invariance. As seen from the results of the t-SNE visualization and the calculated
intraclass distances, the relaxed identity sampling principle made the intraclass distances
smaller, i.e., the classes were more compact. Compared to the experimental results of the
best baseline method, our method made the classes more compact.

5. Conclusions

In this paper, we addressed the shortcomings of the strict identity principle used in
existing contrastive learning methods, which inherently leads to instance-level feature
learning, and proposed a relaxed identity principle for application to RSIs to bridge the
gap from instance-level feature learning to class-level feature learning in order to improve
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a model’s learning of feature invariance. In contrast to previous studies, we switched
from a single-constraint focus to a double-constraint focus by defining two constraints
on semantic similarity considering relaxed sample identity and feature similarity under
relaxed identical sample discrimination to sample and discriminate the relaxed sample
cohort. Our method surpassed existing contrastive learning methods under the strict
identity hypothesis, such as SimCLR, MoCo v2, and Barlow Twins, and its effectiveness
was validated on three remote sensing datasets. However, our relaxed identity sample
queue still needs to be further optimized—for example, by considering whether a priori
knowledge could be used more effectively for the selection of relaxed identical samples,
whether we could establish better criteria and indicators for the discrimination of relaxed
identical samples, how samples from different images could be linked in our method, and
how best to choose the patch size for images of different resolutions. These issues are all
worthy of future study.
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