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Abstract: Due to significant electromagnetic interference, radar interruptions, and other factors,
Azimuth Missing Data (AMD) may occur in Synthetic Aperture Radar (SAR) echo, resulting in
severe defocusing and even false targets. An important approach to solving this problem is to
utilize Compressed Sensing (CS) methods on AMD echo to reconstruct complete echo, which can
be abbreviated as the AMD Imaging Algorithm (AMDIA). However, the State-of-the-Art AMDIA
(SOA-AMDIA) do not consider the influence of motion phase errors, resulting in an unacceptable
estimation error of the complete echo reconstruction. Therefore, in order to enhance the practical
applicability of AMDIA, this article proposes an improved AMDIA using Sparse Representation
Autofocusing (SRA-AMDIA). The proposed SRA-AMDIA aims to accurately focus the imaging result,
even in the Phase Error AMD (PE-AMD) echo case. Firstly, a Phase-Compensation Function (PCF)
based on the phase history of the scene centroid is designed. When the PCF is multiplied with the
PE-AMD echo in the range-frequency domain, a coarse-focused sparse representation signal can be
obtained in the range-Doppler domain. However, due to the influence of unknown PE, the sparsity
of this sparse representation signal is unsatisfying, breaking the sparse constraints requirement of the
CS method. Therefore, we introduced a minimum entropy autofocusing algorithm to autofocus this
sparse representation signal. Next, the estimated PE is compensated for this sparse representation
signal, and a more sparse representation signal is obtained. Hence, the non-PE complete echo can be
reconstructed. Finally, the estimated complete echo can be used with classic imaging algorithms to
obtain high-resolution imaging results under the PE-AMD condition. Simulation and real measured
data have verified the effectiveness of the proposed SRA-AMDIA.

Keywords: azimuth missing data; compressed sensing; minimum entropy autofocusing; phase errors;
SAR imaging

1. Introduction

With the accumulation of Synthetic Aperture Radar (SAR) imaging technology and
the development of complex electromagnetic environments, the application background faced
by SAR is becoming more practical and the imaging configuration is more complex [1–8].
Therefore, the focus of SAR research has gradually shifted from ideal configurations to
complex configurations. Various improved SAR imaging algorithms have emerged [9–12].
Azimuth Missing Data (AMD) SAR imaging problem, an unavoidable imaging difficulty in
practice, has attracted attention for nearly 30 years [13–15].

The emergence of AMD is mainly due to the following reasons: (1) Strong electromag-
netic interference occurs at certain azimuth positions between the imaging area and the
SAR platform; (2) The high-power radar cannot work continuously for a long time and
needs to intermittently stop during the data acquisition process; (3) In order to improve its
concealment and flexibility, the SAR platform actively shuts down the radar when entering
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the reconnaissance area. Compared to complete aperture data, AMD will result in missing
portions of the Doppler bandwidth. If the classical SAR imaging algorithm is used directly,
serious defocusing and even false targets will occur. The accuracy of the final imaging
result will be significantly reduced [16].

An early solution to AMD-SAR mainly relied on introducing various parameter
estimation algorithms to estimate and reconstruct complete aperture data, such as APES
algorithm, MIAA, and the relevant improved algorithms [17–21]. However, their limitations
are significant. First of all, the estimation accuracy of these algorithms is limited when
the data loss rate is large. In the meantime, the computational complexity of the above-
mentioned algorithms is high when facing large imaging scenes. In 2006, the proposed
Compressive Sensing (CS) technology discovered that a complete signal with sparsity
constraints can be accurately recovered from a small-size signal that does not satisfy
the Nyquist–Shannon sampling theorem [22,23]. Therefore, CS methods were quickly
introduced into SAR imaging field. A series of sparse SAR imaging algorithms were
proposed [24–26]. In order to enhance the applicability of sparse SAR imaging algorithms
in the presence of motion errors, Ref. [27] once proposed a phase error estimation and
compensation method, which can compensate for one-dimensional and two-dimensional
phase errors in the observed data. Ref. [28] proposed a method for the joint optimization of
sparse target reconstruction and observation position error, which significantly improved
the quality of target reconstruction in the presence of unknown phase errors. Ref. [29]
further introduced an autoencoder model with a Convolutional Neural Network structure
and considered the motion compensation in CS-based SAR imaging, proposing a deep
SAR imaging method that can significantly reduce the data sampling rate. However, due
to the need to convert SAR’s two-dimensional data into one-dimensional data in sparse
SAR imaging, there is a heavy computational burden, making it only suitable for small
scene imaging. Although various optimization algorithms have been proposed to solve
the problem of large scene sparse SAR imaging [30,31], their effectiveness is still limited.
Additionally, since sparse imaging algorithms directly reconstruct strong scattering points
in the scene, they are sensitive to the echo Signal-to-Noise Ratio (SNR).

To address the heavy computational burden and sensitivity to echo SNR in sparse SAR
imaging, an aperture completion imaging algorithm based on AMD, which is abbreviated
as AMD Imaging Algorithm (AMDIA), was proposed in 2018 [32]. Unlike sparse SAR
imaging algorithms, the AMDIA does not directly reconstruct strong scattering points
in the scene. They found that a Phase Compensation Function (PCF) can be constructed
based on the phase history of the scene centroid. After multiplying the echo signal with
the PCF in the range-frequency domain, a coarse-focused image can be obtained in the
range-Doppler domain when the imaging scene satisfies sparse constraints. Then, by
reconstructing the coarse-focused signal, the complete echo is estimated. After obtaining
the complete echo, the classical matched filtering methods can be used to focus the accurate
imaging results in the case of AMD. In recent years, the development of AMDIA algorithms
has been rapid. K. Liu introduced this idea into spaceborne FMCW SAR and significantly
improved the imaging performance [33,34]. Ref. [35] improved the AMDIA algorithm so
that it can quickly obtain accurate imaging results without prior knowledge of sparsity.
An enhanced AMDIA algorithm was proposed by [36], which no longer reconstructs the
original complete echo signal, but the complete range migration correction echo, improving
the reconstruction accuracy with a low computational burden. Moreover, based on Ref. [36],
a sub-echo segmentation and reconstruction AMDIA is proposed to enhance the sparsity of
the phase-compensated signal and enlarge the two-dimensional imaging scene [37]. The
AMD-SAR imaging performance advantage is theoretically verified. Moreover, Ref. [38]
also incorporated the AMDIA concept into distributed along-track swarm SAR imaging,
which can obtain high-resolution imaging results in a fast data acquisition time.

In fact, the aforementioned AMDIA and its improved algorithms are derived based
on the assumption of an ideal trajectory of SAR. However, the ideal trajectory cannot be
strictly guaranteed in practice. An additional unknown phase error will generate and result
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in defocusing of the final imaging results [7]. Various autofocusing methods have been
proposed to address the phase errors problem, including Phase Gradient Autofocusing
(PGA) [39,40], Map Drift (MD) [10,41], and non-parametric techniques such as Maximum
Contrast Autofocusing (MCA) [42], Minimum Entropy Autofocusing (MEA) [43,44], Sharp-
ness Optimization Autofocusing (SOA) [45], which are based on measurements of global
image quality. They are exploited to autofocusing the final imaging results with the phase
error, which can be regarded as a post-processing method. However, the autofocusing
processing can no longer be simply used as a post-processing in the AMD case. This is
because the AMDIA-class algorithms aim to reconstruct Phase-Compensated (PC) sparse
representation signal. Due to the presence of unknown phase error, the sparsity of the PC
sparse representation significant decreases. Once the sparsity of the signal is no longer
satisfied, the CS method fails, resulting in a serious estimation error and obtaining an
inaccurate reconstruction of the complete echo. There is no doubt that when there are both
phase errors and estimation errors in the estimated complete aperture data, it will be more
difficult to obtain an accurate imaging result using post-focusing processing methods.

For this issue, we propose an improved AMDIA via Sparse Representation Autofo-
cusing (SRA-AMDIA). In order to obtain an accurately estimated complete echo, we no
longer used autofocusing as a form of post-processing for imaging results. Instead, we
first performed autofocusing of the PC AMD signal before estimating the complete echo.
Specifically, we still designed the PCF based on the phase history of the scene center under
no phase error, named 1st-PCF. Then, we multiplied this 1st-PCF with the AMD signal
in the range-frequency domain to obtain a coarse-focused sparse representation in the
range-Doppler domain. Obviously, the sparsity of the sparse representation signal was
seriously affected. Subsequently, we introduced Image Entropy (IE), which can measure
the sparsity and focusing performance of the image, to construct an objective function.
Then, the MEA method was adopted to perform autofocusing on this sparse representation
signal. When the IE of the sparse representation signal meets the iterative convergence
condition, a 2nd-PCF is designed based on the estimated phase error. Then, the residual
phase error of the 1st PC sparse representation signal can be compensated. At this moment,
the sparsity prerequisite of the sparse representation is satisfied. Thus, the CS method can
be used to accurately estimate the complete echo from the Phase Error AMD (PE-AMD)
signal. Finally, a high-resolution imaging result can be obtained by applying classical SAR
imaging algorithm with the estimated complete echo.

The main innovation of this paper is the introduction of the MEA for PE estimation in
AMDIA-class algorithms, along with the design of a more efficient PCF. This PCF enables an
accurate reconstruction of the complete echo in the PE-AMD case, leveraging the estimated
PE. Concurrently, we cleverly estimate only the PE in the sparse representation signals
of the AMD echo, rather than all the PE in the reconstructed complete echo. This brings
two distinct advantages. Firstly, there is a significant reduction in the amount of data that
the MEA need to process. Secondly, the MEA only needs to estimate the PE within the
AMD echo, eliminating the need for estimating the reconstruction PE generated during
the echo reconstruction process. Consequently, this advancement has led to substantial
enhancements in both the speed and accuracy of the autofocusing. The applicability of
AMDIA has been significantly expanded.

The structure of this article is as follows. In Section 2, we modeled the PE-AMD
SAR echo. In Section 3, we analyzed the influence of phase errors on the reconstruction
of complete echo. Furthermore, in Section 4, we provided a detailed derivation of the
proposed SRA-AMDIA. In Section 5, we validated the proposed SRA-AMDIA using both
simulation and real measured data, and conducted a detailed analysis of the imaging
performance under different imaging algorithms. Finally, the conclusions are given in
Section 6.
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2. PE-AMD Echo Modeling

Firstly, we assume that the SAR system moves along the nominal trajectory. The ideal
echo of an arbitrary target P(x0, y0) can be expressed as

sr(t, η) = βrwr

(
t− 2RP(η)

c

)
wa(η) exp

{
−j4π fcRP(η)

c

}
× exp

{
jπKr

(
t− 2RP(η)

c

)2
}
+ n

(1)

t and η are the fast time and slow time, respectively. βr is the back-scattered coefficient,
which can be neglected, Kr is the frequency modulation slope, c represents the velocity of
light, and fc denotes the central frequency of transmit signal. n is random noise. Moreover,
wr and wa are the range and azimuth windowing function, respectively. RP(η) is the
instantaneous slant range of target P(x0, y0), which can be demonstrated as

RP(η) =
√

R2
0 + (y0 − vη)2 (2)

where R0 is the shortest slant range of target P(x0, y0) and the ideal moving velocity of
SAR is denoted by v.

In the presence of phase error, the real echo s̃r(t, η) can be viewed as an echo signal
that is affected by phase error ψ, which can be expressed as

s̃r(t, η) = sr(t, η) exp(jψ(t, η)) (3)

Then, after the range Fast Fourier Transform (FFT) process of s̃r(t, η), the real echo S̃r( fr, η)
at range-frequency domain can be expressed as

S̃r( fr, η) = wr( fr)wa(η) exp
(
−jπ f 2

r
Kr

)
× exp

{
−j4π( fc + fr)RP(η)

c

}
exp(jψ( fr, η))

(4)

To eliminate invalid azimuth data, the basic step is to set these invalid data to zero [46].
Therefore, the zero-padding echo S̃m can be obtained by

S̃m = ΛmS̃r (5)

where Λm is the azimuth missing matrix; that is,

Λm = diag
[
λN1 , · · · , λNi , · · · , λNA

]
(6)

NA represents the number of complete azimuth samples, and{
λNi = 1, when Ni ∈ Gv
λNi = 0, others

(7)

Gv stands for the position set of the azimuth valid samples. Accordingly, the number
of complete range samples is presented by NR, and assume that the total number of the
azimuth valid samples equals NV (NV < NA).

If all invalid data of S̃m are removed, a small-size PE-AMD echo S̃y is acquired as

S̃y = ĨyS̃m (8)
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where Ĩy stands for a deformed identity matrix, which is

Ĩy ⇐⇒ I(Ni, :)|Ni /∈Gv
= ∅ (9)

where I and ∅ represent the identity matrix and empty set, respectively. Obviously, the
two-dimensional size of S̃r, S̃m, and S̃y are equal to NA × NR, NA × NR, and NV × NR,
respectively.

3. Analysis of Phase Error Effect on Complete Echo Reconstruction

According to the phase history of scene center point Pre f (xre f , yre f ), the 1st-PCF θre f
can be designed based on Ref. [32], that is

θre f ( fr, η) = exp

(
jπ fr

2

Kr

)
exp

( j4π( fc + fr)Rre f (η)

c

)
(10)

where Rre f (η) represents the instantaneous slant range of Pre f (xre f , yre f ). Similarly, an
AMD 1st-PCF θyre f corresponding to S̃y( fr, η) can be calculated using Equations (5) and (8).
Thus, 1st PC AMD echo signal S̃ypc1( fr, η) is obtained by

S̃ypc1( fr, η) = S̃y( fr, η)θyre f ( fr, η) (11)

Obviously, when there is no phase error in the SAR echo, the above Equation (11) is
written as

Sypc1( fr, η) = Sy( fr, η)θyre f ( fr, η) (12)

According to the former research, such as [32,37,46], they are trying to reconstruct the
first PC complete signal Spc1(t, fa) from sypc1(t, η) using CS method. This process can be
demonstrated as follows:

min
Spc1(t, fa)

||Spc1(t, fa)||1,

s.t. ||MyAIFTSpc1(t, fa)− sypc1(t, η)||2 ≤ ε1

(13)

where ε1 is a threshold parameter and MyAIFT denotes the AMD sensing matrix, which is
obtained based on the azimuth inverse Fourier transform matrix MAIFT,

MyAIFT = ĨyΛm MAIFT (14)

Additionally, the waiting-reconstruction coarse-focused signal Spc1(t, fa) can be illustrated as

Spc1(t, fa) = FFTa

[
IFFTr

[
Sr( fr, η)θre f ( fr, η)

]]
(15)

However, due to the influence of unknown phase errors, the State-Of-the-Art (SOA)
AMDIA actually reconstructs S̃pc1(t, fa) instead of Spc1(t, fa). Therefore, compared with
Equation (13), the problem we actually face is:

min
S̃pc1(t, fa)

||S̃pc1(t, fa)||1,

s.t. ||MyAIFTS̃pc1(t, fa)− s̃ypc1(t, η)||2 ≤ ε1

(16)

Obviously, phase errors will lead to a serious degradation in the focus performance and
sparsity of S̃pc1(t, fa). Therefore, the reconstruction precision of the complete echo will be
significantly reduced using CS method. In order to obtain an accurate reconstruction of the
complete aperture, the sparsity of S̃pc1(t, fa) should be enhanced.
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4. Proposed Sparse Representation Autofocusing Azimuth Missing Data
Imaging Algorithm

The procedures of the proposed SRA-AMDIA can be divided into three steps. They are
sparse representation signal autofocusing, complete echo reconstruction, and SAR imaging.

4.1. Sparse Representation Signal Autofocusing

Firstly, in order to clearly demonstrate the focusing performance difference of the
first PC AMD signal before and after being affected by phase error, we assume that there
are five symmetrical targets in the scene and illustrate the corresponding Sypc1(t, fa) and
S̃ypc1(t, fa), as shown in Figure 1a and Figure 1b, respectively.

Figure 1. (a) The sparse representation signal Sypc1(t, fa) obtained by Non-PE echo. (b) The sparse
representation signal S̃ypc1(t, fa) obtained by PE echo.

Observing Figure 1a, the central target can be precisely focused in the range-Doppler
domain, while other targets can be coarse-focused. The sparsity of Sypc1(t, fa) is satisfied.
However, when residual phase error exists, the focusing performance of S̃ypc1(t, fa) is
severely affected. Compared to Figure 1a, the sparsity of Figure 1b significantly decreases.
Therefore, in order to obtain a high reconstruction accuracy of the complete echo, an
MEA-based ISAR autofocusing imaging algorithm is introduced to enhance the focusing
performance of S̃ypc1(t, fa) [43]. This step can be expressed as

Sauto(t, fa) =
NA−1

∑
η=0

s̃ypc1(t, η) exp
(
−jψη

)
exp

(
−j

2π

NA
faη

)
(17)

where Sauto is an autofocusing 1st PC AMD signal. ψη denotes the η-th element of phase
error vector ψ. Then, the IE of Sauto is set as an objection function, which can be illustrated as

E = −
NA−1

∑
η=0

NR−1

∑
t=0

|Sauto(t, fa)|2

W
ln
|Sauto(t, fa)|2

W
(18)

where W stands for the total energy of the image. According to Parseval theorem, W
remains unchanged before and after the Fourier transform. Thus, it can be neglected, and
Equation (18) is further simplified as

Es = −
NA−1

∑
η=0

NR−1

∑
t=0
|Sauto(t, fa)|2 ln |Sauto(t, fa)|2 (19)
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Subsequently, the main purpose is to calculate the phase error corresponding to the
minimum IE, namely

ψ̂η = arg

{
min[Es]

ψη

}
, η = 0, 1, · · · , NA − 1 (20)

The above equation can be solved using the Newton method [43]. Meanwhile, a step-size
parameter µ is utilized to accelerate the iteration process. The l-th update of ψη can be
presented as

ψη
(l+1) = ψη

(l) − µ

(∂2Es

∂ψ2
η

)−1
∂Es

∂ψη

∣∣∣∣∣∣
ψη=ψη

(l)

, l = 1, 2, · · · , lmax − 1 (21)

where the first-order derivative ∂Es/∂ψη and second-order derivative ∂2Es/∂ψ2
η are ex-

pressed as

∂Es

∂ψη
= 2 Im

{
NR−1

∑
t=0

g∗(t, η)s̃ypc1(t, η) exp
(
−jψη

)}
(22)

and

∂2Es

∂ψ2
η
= 2 Re

{
NR−1

∑
t=0

g∗(t, η)s̃ypc1(t, η) exp
(
−jψη

)}

− 2
NR−1

∑
t=0

FA−1

∑
fa=0

(
2 + ln |Sauto(t, fa)|2

)∣∣s̃ypc1(t, η)
∣∣2 (23)

respectively. FA denotes the number of azimuth frequency samples and ∗ represents the
conjugate operation. The l-th iteration of g(t, η) is defined as

g(l)(t, η) , IFFTa

[([
1 + ln

∣∣∣S(l)
auto(t, fa)

∣∣∣2]S(l)
auto(t, fa)

)]
(24)

Next, the termination condition for an iteration of Equation (21) is set as follows,

E(l+1)
s − E(l)

s ≤ ε2, l = 1, 2, · · · , lmax − 1 (25)

where ε2 is the threshold of iteration termination. After the autofocusing process is com-
plete, we can take the multiplication of ψ

(l)
η obtained from each iteration to receive an

effective estimation of the phase error ψ̂, which can be presented as

ψ̂ =
lmax−1

∏
l=1

ψ̂
(l)
η (26)

Then, the residual phase error of s̃ypc1(t, η) can be compensated by the 2nd-PCF ψ̂. The
second PC AMD echo signal s̃ypc2(t, η) can be expressed as

s̃ypc2(t, η) = s̃ypc1(t, η) exp
(
−jψ̂(t, η)

)
(27)

In order to demonstrate the focus performance of the proposed sparse representation signal
autofocusing method, the contour of S̃ypc2 is shown in Figure 2a.
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Figure 2. (a) The sparse representation signal S̃ypc2(t, fa) obtained by sparse representation autofo-
cusing with PE echo. (b) Normalized error between Sypc1(t, fa) and S̃ypc2(t, fa). (c) Normalized error
between S̃ypc1(t, fa) and S̃ypc2(t, fa).

The focus performance is almost identical to the Figure 1a. Moreover, the normal-
ized errors between the Sypc1(t, fa) and S̃ypc2(t, fa), and the S̃ypc1(t, fa) and S̃ypc2(t, fa)
are calculated to evaluate the autofocusing performance. The results are illustrated in
Figure 2b and Figure 2c, respectively. This implies that the sparse presentation signal
autofocusing method can effectively eliminate the residual phase error of S̃ypc1(t, fa), and
obtain an identical focus performance of the Non-PE AMD signal Sypc1(t, fa). Therefore, the
defocusing effect caused by phase error has been eliminated using the sparse representation
signal autofocusing. The accuracy of the reconstructed complete echo is reliable.

4.2. Complete Echo Reconstruction and Imaging

The second PC AMD signal s̃ypc2(t, η) is obtained. Thus, compared with Equation (13),
the more reliable complete echo reconstruction process is improved as follows:

min
S̃pc2(t, fa)

||S̃pc2(t, fa)||1,

s.t. ||MyAIFTS̃pc2(t, fa)− s̃ypc2(t, η)||2 ≤ ε1

(28)

where S̃pc2(t, fa) denotes the twice phase-compensated complete echo, which is also the
waiting-recovered signal. To avoid the influence of reconstruction errors from different
CS methods, we utilized the GOMP [47] algorithm used in [32,36,37,46] to reconstruct
S̃pc2(t, fa). Since the GOMP algorithm is a one-dimensional processing algorithm, the
reconstruction of S̃pc2 should be divided into NR row vectors and recovered individually.
s̃ypc2(t, :) and S̃pc2(t, :) represent the t-th row vectors of s̃ypc2 and S̃pc2, respectively, where
t = 1, 2, · · · , NR. The detailed steps of the GOMP algorithm are introduced in Table 1
or [47].
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Table 1. The specific steps for the GOMP algorithm based on s̃ypc2(t, :).

Step1 Input the indices number of each selection P, the maximum number of
iterations Itmax, the threshold parameter ε1 and MyAIFT;

Step2 Initialize the iteration parameter It=1, let the residue signal r0 = s̃ypc2(t, :),
and set a new sensing matrix B0 = ∅;

Step3 Let It = It + 1;

Step4 Calculate the largest P values in
∣∣〈r It−1, MyAIFT

〉∣∣ from the largest to smallest,
and then the corresponding φmaxp

are selected;

Step5 Update matrix BIt = BIt−1 ∪
[
φmax1

, · · · , φmaxP

]
and calculate the estimated

value of complete signal vector by α̂ =
((

BIt)H
BIt
)−1(

BIt)H
s̃ypc2(t, :), where

H represents the conjugate transpose operation;

Step6 Update residue signal r It = s̃ypc2(t, :)− BItα̂;

Step7 If It = Itmax or ||r It||2 ≤ ε1, let S̃pc2(t, :) = α̂. Else go to Step 3.

When the reconstruction of S̃pc2(t, fa) is realized, it is necessary to multiply it with the
conjugate of 1st-PCF θre f in the range-frequency domain to remove the effects caused by
the previous coarse-focused step. This process can be expressed as

S̃pc3( fr, η) = S̃pc2( fr, η)θ∗re f ( fr, η) (29)

Hence, the accuracy estimated complete echo s̃pc3(t, η) is obtained. There is no phase
error in s̃pc3(t, η) since the unknown phase error is eliminated before signal reconstruction.
Finally, a high-resolution focusing result can be obtained in the PE-AMD echo case using
the traditional SAR imaging algorithm with s̃pc3(t, η). The flow chart of the proposed
SRA-AMDIA is illustrated in Figure 3.

Figure 3. Flow chart of the proposed SRA-AMDIA.
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5. Experiment Results and Analysis

To verify the effectiveness of the proposed SRA-AMDIA, we designed multiple sets of
simulation experiments. Firstly, we compared the imaging performance of the proposed
SRA-AMDIA with the SOA-AMDIA based on a 50% periodic and a 50% random PE-AMD
signal. Secondly, we explored the Azimuth Missing Ratio (AMR) application boundary of
the proposed algorithm and investigated its imaging performance under multiple different
AMR conditions. Finally, we added a phase error to real measured data based on a sparse
scene prior and validated the effectiveness of the proposed algorithm on the basis of the
measured data.

5.1. Imaging Performance Analysis of Different Phase Error Models

Considering the frequent start–stop issue of the intermittent SAR system during
operation, we designed a periodic PE-AMD signal in the first simulation. The relevant
simulation parameters are demonstrated in Table 2.

Table 2. Key parameters for simulation.

Parameters Value

fc: Central frequency 1 GHz
Rref0: Shortest central slant range 2864 m
B: Signal frequency bandwidth 100 MHz
fs: Range sampling rate 200 MHz
PRF: Pulse repetition frequency 200 Hz
NR: Range samples 334
NA: Azimuth samples 1000
ε2: Iteration termination threshold 10−3

We assume that the SAR system needs to be turned off for a period of time every
50 samples, resulting in 50 missing azimuth samples. Therefore, the SAR system actually
acquires a 50% periodic AMD echo. There are five symmetric point targets set in the scene,
which are labeled from Target 1 to Target 5, as shown in Figure 4a. The imaging result
obtained by classical Range Doppler Algorithm (RDA) for the Non-PE complete echo is
shown in Figure 4b. This can be abbreviated as the RDA Non-PE complete echo result for
the sake of convenience.

Figure 4. (a) Geometric arrangement of the simulations. Target 1 to Target 5 are labeled. (b) The
imaging result obtained by RDA for the non-PE complete echo.

Then, we designed three different range-invariant phase error models, namely, the
Sine function PE (S-PE) model, the Random PE (R-PE) model, and the Linear PE (L-PE)
model, as shown in Figure 5a–c. The imaging results obtained by RDA for the S-PE, R-PE,
and L-PE complete echo are illustrated in Figure 5d–f. It can be observed that the unknown
phase errors lead to significant defocusing of the point targets in the image results.
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Figure 5. (a) S-PE model. (b) R-PE model. (c) L-PE model. (d) The imaging results obtained by RDA
for the S-PE complete echo. (e) The imaging results obtained by RDA for the R-PE complete echo.
(f) The imaging results obtained by RDA for the L-PE complete echo.

To verify the effectiveness of the proposed SRA-AMDIA in the periodic PE-AMD
echo case, the following Figure 6 demonstrates the imaging results obtained by four
different algorithms for three different PE models’ echo. Specifically, Figure 6a–c show the
results obtained by imaging 50% periodic S-PE-AMD, R-PE-AMD, and L-PE-AMD echo
directly using RDA, which can be named the RDA S-PE-AMD echo result, RDA R-PE-AMD
echo result, and RDA L-PE-AMD echo result, respectively, for the sake of convenience.
Figure 6d–f show the results obtained by SOA-AMDIA with the 50% periodic PE-AMD
echoes, which are the SOA-AMDIA S-PE-AMD echo result, SOA-AMDIA R-PE-AMD echo
result, and SOA-AMDIA L-PE-AMD echo result, respectively. Figure 6g–i illustrate the
results obtained after autofocusing based on Figure 6d–f, which can be abbreviated as the
SOA-AMDIA+Autofocusing PE-AMD echo results. Figure 6j–l demonstrate the results
obtained by proposed SRA-AMDIA with the 50% periodic PE-AMD echoes. These stand
for the SRA-AMDIA S-PE-AMD echo result, SRA-AMDIA R-PE-AMD echo result, and
SRA-AMDIA L-PE-AMD echo result, respectively.

Observing Figure 6, it can be seen that different phase error models have little impact
on the imaging performance of different algorithms. Firstly due to the presence of PE-AMD
in the echo signal, the RDA will significantly degrade the quality of the imaging results,
leading to indistinguishable results, as shown in Figure 6a–c. When the SOA-AMDIA is
utilized to reconstruct the complete echo signal, since the SOA-AMDIA does not consider
the effect of phase errors on the sparse representation signal, a large estimation error is
generated in the reconstructed complete echo. Therefore, the imaging results obtained by
SOA-AMDIA are still not as ideal as expected, as shown in Figure 6d–f. Moreover, after
further autofocusing of the imaging results obtained by SOA-AMDIA, Figure 6g–i can be
obtained when the iterative convergence condition is reached. Compared with Figure 6d–f,
although the focusing effect of Figure 6g–i is slightly improved, the imaging results still
cannot meet the requirements for SAR imaging. On the other hand, the proposed SRA-
AMDIA can achieve excellent imaging results under any phase error model, as shown in
Figure 6j–l. Its imaging performance is far superior to other imaging algorithms under any
phase error condition. Compared with the RDA Non-PE complete echo result shown in
Figure 5b, the imaging performances of all SRA-AMDIA PE-AMD echo results are almost
the same.
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Figure 6. (a) RDA 50% periodic S-PE-AMD echo result. (b) RDA 50% periodic R-PE-AMD echo
result. (c) RDA 50% periodic L-PE-AMD echo result. (d) SOA-AMDIA 50% periodic S-PE-AMD echo
result. (e) SOA-AMDIA 50% periodic R-PE-AMD echo result. (f) SOA-AMDIA 50% periodic L-PE-
AMD echo result. (g) SOA-AMDIA+Autofocusing 50% periodic S-PE-AMD echo result. (h) SOA-
AMDIA+Autofocusing 50% periodic R-PE-AMD echo result. (i) SOA-AMDIA+Autofocusing 50%
periodic L-PE-AMD echo result. (j) Proposed SRA-AMDIA 50% periodic S-PE-AMD echo result.
(k) Proposed SRA-AMDIA 50% periodic R-PE-AMD echo result. (l) Proposed SRA-AMDIA 50%
periodic L-PE-AMD echo result.

In order to quantitatively evaluate the focusing performance of the imaging results
obtained by different imaging algorithms, we calculated the azimuth Impulse Response
Width (IRW) and Peak Side Lobe Ratio (PSLR) of Target 3 in the above imaging results,
and conducted a comparative analysis. The specific numerical results are summarized in
Table 3.

Observing Table 3, it can be found that regardless of the PE-AMD RDA results, the
SOA-AMDIA results, or the SOA-AMDIA+Autofocusing results, the azimuth IRW corre-
sponding to Target 3 is better than the RDA Non-PE complete echo result of 0.95 m. The
reason for this is that the lack of azimuth data or incorrect reconstruction causes the energy
of the main lobe to spread to the side lobes, resulting in a decrease in the width of the
main lobe. Therefore, the optimal corresponding azimuth PSLR is only −6.51 dB, and the
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worst result will reach −0.57 dB, which is far higher than the −13.08 dB. Obviously, this
imaging performance for point targets is completely unacceptable. On the other hand,
the proposed SRA-AMDIA can achieve a comparable imaging performance to the RDA
Non-PE complete echo result under any phase error model. The azimuth IRW and PSLR of
Target 3 are almost the identical to the latter.

Table 3. Target imaging performance parameters in the 50% periodic PE-AMD situations.

RDA Non-PE
Complete Echo

RDA
PE-AMD

SOA-
AMDIA

SOA-AMDIA+
Autofocusing

SRA-
AMDIA

IRW (m) 0.95

S-PE 0.74 0.70 0.74 0.95

R-PE 0.77 0.85 0.89 0.95

L-PE 0.75 0.75 0.80 0.95

PSLR (dB) −13.08

S-PE −3.67 −6.51 −5.04 −12.68

R-PE −1.03 −5.50 −5.92 −12.76

L-PE −2.50 −0.57 −2.58 −13.02

Moreover, after evaluating the imaging performance of a single target, we attempted
to evaluate the overall imaging performance of the imaging results. The IE and Image
Contrast (IC) values were calculated for each imaging result in Figures 5 and 6. They are
summarized in Table 4.

Table 4. IE and IC values of different imaging results in the 50% periodic PE-AMD situations.

RDA Non-PE
Complete Echo

RDA
PE-AMD

SOA-
AMDIA

SOA-AMDIA+
Autofocusing

SRA-
AMDIA

IE 1.18

S-PE 1.77 1.37 1.31 1.18

R-PE 2.34 1.96 1.88 1.18

L-PE 1.83 1.49 1.37 1.18

IC 23.29

S-PE 16.07 21.37 21.36 23.29

R-PE 15.99 15.95 15.95 23.29

L-PE 16.02 18.30 21.35 23.29

Compared with the processing free, the use of SOA-AMDIA can enhance the image
focusing performance to some extent. The IE values of SOA-AMDIA S-PE-AMD result,
SOA-AMDIA R-PE-AMD result, and SOA-AMDIA L-PE-AMD result are 1.37, 1.96, and
1.49, respectively, which are 0.40, 0.38, and 0.34 larger than the corresponding RDA PE-
AMD echo results. Furthermore, the IC values are 21.37, 15.95, and 18.30, respectively,
which is still lower than the ideal result of an IC = 23.29. Autofocusing based on SOA-
AMDIA can also improve the image focusing performance to some extent, but this is very
limited. The final IE results obtained under different PE models can only reach 1.31, 1.88,
and 1.37, which is still larger than the IE = 1.18 of RDA Non-PE complete echo results.
On the other hand, using the proposed SRA-AMDIA can significantly enhance the image
focusing performance under any phase error model. The IE and IC values of all results are
1.18 and 23.29, respectively, which are identical to the RDA Non-PE complete echo result.
Therefore, the effectiveness of the proposed SRA-AMDIA has been significantly verified in
the case of periodic PE-AMD.

5.2. Imaging Performance Analysis of Different Azimuth Missing Types

Similarly, as a more general case, we designed a random PE-AMD echo signal for
the problem of an SAR system being subjected to strong electromagnetic interference at
random positions. Specifically, we assume that the SAR system is randomly subjected to
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50 instances of strong electromagnetic interference during data acquisition, each of which
will cause 1% azimuth samples to be invalid. Therefore, the SAR system actually acquires a
random AMD signal with a total signal loss rate of 50%. Since the previous subsection has
analyzed the robustness of the proposed algorithm to different PE models, this section only
assumes the PE model to be an S-PE model. With other simulation conditions unchanged,
the following Figure 7 is obtained.

It can be observed that, under the condition of random PE-AMD echo, the pro-
posed SRA-AMDIA can still achieve a comparable imaging result to the RDA Non-PE
complete echo result, as illustrated in Figure 7d. Similarly, the SOA-AMDIA and SOA-
AMDIA+Autofocusing methods shown in Figure 7b,c cannot obtain an ideal result.

Figure 7. (a) RDA 50% random PE-AMD echo result. (b) SOA-AMDIA 50% random PE-AMD echo
result. (c) SOA-AMDIA+Autofocusing 50% random PE-AMD echo result. (d) Proposed SRA-AMDIA
50% random PE-AMD echo result.

Similarly, we analyzed the imaging performance of Target 3 and obtained its corre-
sponding azimuth IRW and PSLR results under different imaging algorithms, as shown in
Table 5.

Table 5. Target imaging performance parameters in the 50% random PE-AMD situation.

RDA Non-PE
Complete Echo

RDA
PE-AMD

SOA-
AMDIA

SOA-AMDIA+
Autofocusing

SRA-
AMDIA

IRW (m) 0.95 0.85 0.80 0.75 0.95

PSLR (dB) −13.08 −3.88 −3.50 −2.21 −11.30

An identical conclusion can be obtained. RDA for the PE-AMD echo, SOA-AMDIA,
and SOA-AMDIA+Autofocusing cannot achieve satisfactory point target imaging perfor-
mance in the case of random missing PE-AMD echo. Their azimuth PSLR results are equal
to −3.88 dB, −3.50 dB, and −2.21 dB, respectively. This indicates that there is significant
side lobe interference in the imaging results, which is not conducive to the correct discrimi-
nation of image information. However, the proposed SRA-AMDIA still has a significant
imaging advantage in the case of random missing PE-AMD echo, ensuring that the azimuth
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IRW and PSLR of Target 3 reach 0.95 m and −11.30 dB. Moreover, in order to evaluate
the imaging performance for the entire imaging scene, we calculated and summarized
the IE and IC values of Figure 7 into Table 6. In the case of random missing PE-AMD
echo, the proposed SRA-AMDIA can still achieve the best imaging focus performance, with
IE = 1.18 and IC = 23.29. Both indicators are identical to the ideal results, far better than the
IE = 1.34 and IC = 21.36 corresponding to SOA-AMDIA and the IE = 1.28 and IC = 21.30
corresponding to SOA-AMDIA+Autofocusing. Thus, the effectiveness of the proposed
SOA-AMDIA in the more general case of random PE-AMD is also verified.

Table 6. The IE and IC values of different imaging results in the 50% random PE-AMD situation.

RDA Non-PE
Complete Echo

RDA
PE-AMD

SOA-
AMDIA

SOA-AMDIA+
Autofocusing

SRA-
AMDIA

IE 1.18 2.00 1.34 1.28 1.18

IC 23.29 15.95 21.36 21.30 23.29

5.3. Imaging Performance Analysis of Different Azimuth Missing Ratios

To further investigate the impact of different AMRs on the imaging performance
of the proposed SRA-AMDIA, we set a series of different AMRs to explore the imaging
effectiveness of the proposed SRA-AMDIA in the presence of PE-AMD. Specifically, we set
the AMR to 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and 95% using the random missing
rule mentioned above. The imaging results are demonstrated in the following Figure 8.

Figure 8. Proposed SRA-AMDIA PE-AMD results when (a) AMR = 55%; (b) AMR = 60%;
(c) AMR = 65%; (d) AMR = 70%; (e) AMR = 75%; (f) AMR = 80%; (g) AMR = 85%; (h) AMR = 90%;
(i) AMR = 95%.

Observing Figure 8, as the AMR increases, the imaging performance of the proposed
SRA-AMDIA gradually decreases. Especially when the AMR > 75%, the imaging perfor-
mance of the proposed SRA-AMDIA is severely degraded. In the final imaging results,



Remote Sens. 2023, 15, 3425 16 of 20

whether it is severe azimuth defocusing as shown in Figure 8f,i or false targets as shown in
Figure 8g,h, they are all caused by the estimation error between the estimated complete
echo and the true complete echo under the influence of phase errors. However, when
AMR ≤ 75%, the individual point targets in the scene can be well-focused. Although
some side-lobes interference may appear in non-target areas, these side-lobes are mostly
below -25dB, so they do not have a significant impact on the image discrimination. There-
fore, the proposed SRA-AMDIA can achieve an excellent imaging performance when
AMR ≤ 75%. This AMR threshold can already handle most missing data situations. The
impact of different AMRs on the imaging performance of the proposed SRA-AMDIA has
been analyzed.

5.4. Real Measured Data Verification

To verify the effectiveness of the proposed SRA-AMDIA in real measured data, a
measured 77GHz MilliMeterWave (MMW) SAR experiment is carried out. The relevant
experimental parameters are demonstrated in Table 7.

Table 7. The key parameters for MMW-SAR experiment.

Parameters Value

fc: Central frequency 77 GHz
B: Signal frequency bandwidth 2.56 GHz
fs: Range sampling rate 10 MHz
PRF: Pulse repetition frequency 100 Hz
NR: Number of range samples 1024
NA: Number of azimuth samples 1960
vmmw: Velocity of MMW-radar 2.13 cm/s

The layout of the equipment and targets is shown in Figure 9a and Figure 9b, respec-
tively. The MMW radar was placed on a pair of tables with a height of 1.4 m, and moved at
a constant speed of 2.13 cm/s on a track to form a 1.57 m synthetic aperture and receive
two-dimensional echo data. The size of the complete echo equals 1024× 1960 (Azimuth
Samples × Range Samples). The complete number of samples in the range and azimuth
directions was 1024 and 1960, respectively. Five triangular reflectors were placed in the
scene as sparse targets. Their two-dimensional coordinates were Target 1 (−0.5, 10.5), Target
2 (0.5, 10.5), Target 3 (0, 10), Target 4 (−0.5, 9.5), and Target 5 (0.5, 9.5). Using RDA imaging
directly on the complete echo data, the imaging result shown in Figure 9c can be obtained.
We also added a phase error with a sine function model to the measured echo to obtain a
PE complete echo. The PE-AMD echo with an AMR of 50% was generated by sampling
every 40 azimuth samples. Therefore, the size of the PE-AMD echo is equal to 1024× 980.

First, the RDA was exploited to image the PE complete echo and to observe the
impact of phase errors on classical imaging algorithms. The imaging result is illustrated
in Figure 10a. Then, various different algorithms were utilized to image the measured
PE-AMD echo, and the imaging results are shown in Figure 10b–d.

Observing Figure 10a, we find that an unknown phase error will cause significant
defocusing of the imaging result compared to Figure 9c. On this basis, if there is also a
lack of azimuth data, the use of classical imaging algorithms will lead to a drastic drop in
the final imaging performance, as demonstrated in Figure 10b. The true information of
the imaging scene is unable to discern from the imaging results. Furthermore, compared
to simulated data, the shortcomings of SOA-AMDIA are more pronounced in measured
data. The SOA-AMDIA result not only fails to recover the RDA PE complete result,
but also exhibits more obvious defocusing, significantly reducing the authenticity of the
image, as shown in Figure 10c. However, using the proposed SRA-AMDIA still achieves
the best imaging performance in measured data. The five targets in Figure 10d can be
clearly displayed, and its imaging performance improvement under PE-AMD conditions is
significant compared to SOA-AMDIA.
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Figure 9. (a) Layout of the experimental equipment. (b) Layout of the targets. (c) RDA imaging result
of the MMW-SAR experiment.

Figure 10. (a) RDA Measured PE Complete Echo Result. (b) RDA Measured PE-AMD Echo Result.
(c) SOA-AMDIA Measured PE-AMD Echo Result. (d) Proposed SRA-AMDIA Measured PE-AMD
Echo Result.

The IE results of the above figures are also calculated. The identical conclusion can be
obtained by observing Table 8. When using RDA for the direct imaging of the measured
PE-AMD echo, the worst imaging performance was obtained, with an IE of only 2.29.
Meanwhile, the SOA-AMDIA cannot image the ideal imaging results, and the imaging
performance is even worse than the RDA measured PE complete echo result. However,
using the proposed SRA-AMDIA, an almot identical focusing performance to the ideal
imaging result can be obtained under PE-AMD conditions. The IE value difference is only



Remote Sens. 2023, 15, 3425 18 of 20

0.05, reaching E = 1.98. Therefore, the effectiveness of SRA-AMDIA in measured data has
also been verified.

Table 8. The IE results of different imaging results in the measured PE-AMD situation.

Different Imaging Results IE Value

RDA Measured Non-PE Complete Echo Result (Figure 9c) 1.93
RDA Measured PE Complete Echo Result (Figure 10a) 2.15
RDA Measured PE-AMD Echo Result (Figure 10b) 2.29
SOA-AMDIA Measured PE-AMD Echo Result (Figure 10c) 2.19
Proposed SRA-AMDIA Measured PE-AMD Echo Result (Figure 10d) 1.98

6. Conclusions

In this paper, we proposed an SRA-AMDIA to solve the problems in PE-AMD SAR
imaging. Both simulation and experimental data verified the effectiveness of the proposed
algorithm. By observing the simulation and experimental results, we found that since
the SOA-AMDIA did not consider the influence of unknown phase errors, resulting in
a large aperture estimation error in the reconstructed complete echo. Therefore, in the
case of PE-AMD echo, the SOA-AMDIA not only cannot obtain accurate imaging results
but also cannot obtain an identical focusing performance to the RDA PE complete echo
result. The coexistence of aperture estimation errors and unknown phase errors also poses
greater difficulties for autofocusing, leading to the SOA-AMDIA+Autofocusing processing
method being unable to achieve satisfactory focusing performance. However, the proposed
algorithm introduces the MEA to eliminate unknown phase errors before the reconstruction
of the complete echo, allowing for it to obtain excellent imaging results in the PE-AMD echo
situation. Through a quantitative analysis of the SRA-AMDIA results, it can almost achieve
the same focusing performance as the RDA Non-PE complete echo result, with all targets
being clearly displayed. Furthermore, by adjusting different AMRs, the SRA-AMDIA
can achieve ideal imaging results when AMR ≤ 75%. This indicates that the proposed
SRA-AMDIA can cope with most adverse echo conditions. The practical applicability of
SOA-AMDIA has been significantly expanded.
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