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Abstract

:

Convolutional neural networks (CNNs) have achieved great progress in the classification of surface objects with hyperspectral data, but due to the limitations of convolutional operations, CNNs cannot effectively interact with contextual information. Transformer succeeds in solving this problem, and thus has been widely used to classify hyperspectral surface objects in recent years. However, the huge computational load of Transformer poses a challenge in hyperspectral semantic segmentation tasks. In addition, the use of single Transformer discards the local correlation, making it ineffective for remote sensing tasks with small datasets. Therefore, we propose a new Transformer layered architecture that combines Transformer with CNN, adopts a feature dimensionality reduction module and a Transformer-style CNN module to extract shallow features and construct texture constraints, and employs the original Transformer Encoder to extract deep features. Furthermore, we also designed a simple Decoder to process shallow spatial detail information and deep semantic features separately. Experimental results based on three publicly available hyperspectral datasets show that our proposed method has significant advantages compared with other traditional CNN, Transformer-type models.
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1. Introduction


In recent years, due to the vigorous development of earth observation projects, the application of hyperspectral sensors has received extensive attention. A large number of hyperspectral images (HSIs) can be captured using spaceborne or airborne sensors. These images have rich spectral and spatial information, which brings opportunities for various applications such as image reconstruction [1], change monitoring [2], and crop classification [3].



With the continuous progress in the field of computer vision, computer vision models have attracted the attention of a large number of scholars and have been used in the field of remote sensing. Convolutional neural networks have been widely used in hyperspectral remote sensing. However, using a fixed-size convolution kernel will provide a small receptive field, which makes CNN unable to effectively model long-range dependencies and global context [4]. For patch-based hyperspectral image classification, contextual hints can be used to disambiguate between objects that may have similar visual features, and ultimately guide the model to better solve the classification task. For semantic segmentation, local pixel classification is more accurate if supported by global context information [5]. In order to solve the above problems, some studies modify the convolution operation of the model [6] or use the attention mechanism [7]. The former aims to expand the receptive field by using larger convolution kernels, dilated convolutions or feature pyramids, while the latter introduces spatial or point attention modules in CNNs to better capture contextual information. However, these methods fail to free the network from the dependence on convolutional encoders, and they are more biased towards local interactions.



Fortunately, the emergence of Vision Transformer [8] has meant that Transformer is widely used in computer vision tasks. Transformer formulates the semantic segmentation task as a sequence-to-sequence problem and effectively extract semantic features with long-range dependencies. Vision Transformer has also been widely used in hyperspectral image classification tasks, after Zhong et al. [9] proposed a novel spectral spatial transformation network (SSTN), which combines spatial attention and spectral correlation modules to overcome the constraints of convolution kernels. Hong et al. [10] re-explored hyperspectral image classification from a sequential perspective and proposed SpectralFormer, which uses skip connections and adaptively learned residual connections for cross-layer fusion to transfer information from shallow to deep layers. Yu et al. [11] developed a multi-stage spectral spatial transformation network (MSTNet) for hyperspectral image classification. They designed a self-attention encoder and combined CNN with a four-layer Transformer encoder to learn deep features. Su et al. [12] proposed a spectral–spatial feature tokenization transformer (SSFTT) method to capture spectral–spatial features and high-level semantic features. The above methods all demonstrate the great potential of Transformer in hyperspectral classification tasks.



However, the above models do not consider the superiority of the hierarchical model, nor do they fully combine the advantages of CNN and Transformer. Swin Transformer [13] employs a hierarchical architecture and integrates both CNN and Transformer components to achieve a state-of-the-art performance in various computer vision tasks. By combining Transformers and CNN, the advantages of the two architectures can be integrated to capture the long-term dependencies and spatial features in remote sensing data. This further enhances Transformer’s potential in different tasks, and is widely used in various remote sensing tasks, especially in the hyperspectral field. For example, Chen et al. [7] proposed a multi-scale mixed-spectral-attention model based on Swin Transformer, using the spectral attention module and multi-scale feature extraction module to enrich spectral features and classify ground objects. Peng et al. [14] proposed a spectral shifted window self-attention-based transformer. They enriched spatial features by adding a spatial-feature-extraction module, and also used Swin Transformer to classify ground objects. The above works have improved the model’s feature-extraction ability at the spectral and spatial levels, respectively, but unfortunately, have not fully considered the shortcomings caused by single-feature enhancement.



Most of the traditional hyperspectral object classification methods are based on patch [12,15,16,17,18], which requires cumbersome preprocessing and takes up a lot of storage space. The diagram of patch-based method is shown in Figure 1. Using the patch-based method, one can only classify a single feature point at a time, and the data set needs to be cut into pieces before testing, which leads to low efficiency and complicates data-processing. Recently, a large number of hyperspectral object classification methods based on semantic segmentation have been introduced [11,19,20,21]. We attempted to perform a direct segmentation of hyperspectral images and achieved satisfactory results. The semantic segmentation method is presented in Figure 2. The use of the semantic segmentation method does not require too much preprocessing of the data, and directly predicts the ground features end-to-end, treats the hyperspectral image as an ordinary image containing multiple bands, and labels the real ground features externally. These processes can be viewed as manually marking and selecting regions of interest (ROIs) in the software. In the loss calculation process, only mask is used to calculate the gradient of known types of ground objects. After experimental verification, this method was shown to be simple but very effective.



In addition, the guidance of shallow information is crucial to the model, especially for remote sensing tasks [22,23]. For example, Meng et al. [22] proposed a category information-guided Swin Transformer, and believed that category information and shallow spatial details are crucial to accurate semantic segmentation. They applied convolution to automatically extract category-based semantic features with rich spatial details from the input remote sensing images, jointly processed them with the features extracted by Swin Transformer, and achieved excellent results on multiple datasets.



Based on the above method, we propose a shallow-guided hierarchical Transformer (SGHViT). We deploy simple convolution and max-pooling modules as shallow spatial-detail feature-extraction modules, and combine CNN with Transformer. We also redesign the Decoder module, introduce a feature-aggregation module to process deep information, and exploit shallow spatial-detail features at appropriate positions. Satisfactory results were achieved on three datasets.



The main contributions of this paper can be summarized as follows:




	(1)

	
This paper proposes a concise and efficient hierarchical model combining CNN and Transformer. While using CNNs to reduce the spatial dimension and spectral dimension of input HSIs, we introduce the concept of shallow guidance, and use shallow spatial-detail information to make up for the lack of spatial modeling abilities in hierarchical models.




	(2)

	
We design a simple decoder module for processing deep semantic information and shallow spatial details separately. At the same time, detailed ablation experiments are carried out to prove the effectiveness and high efficiency of our designed Decoder in hyperspectral semantic segmentation tasks.




	(3)

	
We qualitatively and quantitatively evaluate our proposed method (SGHViT) on five public datasets, and conduct comprehensive comparisons with patch-based and semantic segmentation-based methods, including advanced CNN-based methods and Transformer-based methods.










2. Method


To facilitate image semantic segmentation tasks for remote sensing images, our proposed model, SGHViT, takes advantage of the adoption of convolution modules in the model’s shallow layer. SGHViT follows the classic hierarchical designs of Transformers [13,24,25,26]. SGHViT is a pyramid-structure model consisting of four hierarchical stages. Multi-level features are obtained at {1/2, 1/4, 1/8, 1/16} of the original image resolution through the modules of Stages 1–4. Differing from classical works, to make the model more suitable for the classification of hyperspectral objects and to fully obtain the shallow spatial details of different objects, our architecture includes an additional shallow information-extraction module. An overview of SGHVIT is shown in Figure 3.



The shallow information extraction module, as its name implies, extracts the detailed features of shallow space. Specifically, the module consists of 2D convolution and maximum value pooling, and the size of the output feature map is    F  s g   ∈   R    H / 2  ×  W / 2  × 64    . Directly converting images to tokens often ignores the structural information of images, which is intolerable for remote sensing images [27,28]. Therefore, in Stage 1, we compress the spectral dimension information. Two parallel three-dimensional convolutions are used to extract spectral information, and the use of convolution kernels of different sizes allows for the spectral and spatial dimension information to be the focus. Afterwards, we splice the feature maps of two convolution kernels into different sizes, then perform normalization processing through a two-dimensional convolution module, and convert the hyperspectral data into    F  s t a g e 1   ∈   R    H / 2  ×  W / 2  × 64    .



In Stage 2, our module consists of convolutions. Our module is similar to the Transformer encoder, but replaces attention with group convolution, and replaces the feedforward network (  F F N  ) with a conv feedforward network (  C F F N  ). Compared with standard convolution, group convolution reduces the number of parameters and computational complexity, which can speed up training and improve model efficiency. Group convolution can also be used to encourage feature diversity by enforcing that the kernel weights are shared only within each group, but not across groups. This can help prevent overfitting and improve the generalization ability of the model [29].   C F F N   pays more attention to spatial information than   F F N  . In Stages 3 and 4, the original Transformer Encoder is utilized. In Stages 2–4, Patch Embed [13] is used to perform feature map downsampling, and the sampling factor is 2. Specifically, patch embed consists of a convolutional layer with a convolution kernel size of 2 and a layer normalization operation [30]. After the above process, we obtain 4 sets of feature maps with different sizes. It is worth noting that the dimensionality reduction feature map of Stage 1 is not used, and we use the result of the shallow information extraction module.



2.1. Conv Transformer Encoder


Figure 4 shows the architecture of the conv Transformer Encoder. Transformer’s high emphasis on global information will lead to excessive parameters and calculations, so using Transformer on the upper layer of the model is very unfriendly to the device. Moreover, the most important task of hyperspectral surface object classification should be the correlation of local object features, not the global correlation. Using convolution in the upper layer of the model not only retains more locally relevant features, but also maked the model more compact. PoolFormer [25] proves the superiority of the Transformer architecture, which can only achieve reasonable results in semantic segmentation tasks by replacing the attention in the Transformer structure with average pooling. Average pooling is a type of pooling operation that reduces the dimensionality of an input image by computing the average value of non-overlapping rectangular regions. We also follow the structure of PoolFormer, replacing the attention module in Transformer with a convolution module, and replacing   L a y e r n o r m   with BatchNorm. In addition, we introduce relative positional encoding at the beginning of the module. There are two main motivations for using relative positional encoding. First, it enhances the model’s inductive bias, which is crucial for learning and generalization [31,32]. Secondly, it can enhance the local modeling ability of the model, and enable the model to implicitly encode the position information, which plays a key role in the classification of hyperspectral objects. In addition, [6,33] found that adding lightweight 3 × 3 depthwise convolutions to   F F N   can improve performance. We inherit and extend this convolutional embedding mechanism. The feedforward network (  F F N  ) is completely replaced by a convolutional module, which we call the conv feedforward network (  C F F N  ).



Specifically, our Attention module consists of three layers of 2D convolutional layers to replace MSA and carry out local feature extraction instead of global feature extraction. The relative position encoding consists of grouped convolutions with a kernel size of 3.   C F F N   consists of two layers of 2D convolutions that pay more attention to spatial information, and the convolution kernel size is set to 1. Also, the GELU activation function [34] is used for the first convolutional layer. The forward pass can be formulated as follows:


   z  k  ′  = C o n v A t t e n t i o n  B N   z  k − 1     + P o s   z  k − 1    ,  



(1)






   z k  = C F F N  L N   z  k  ′    +  z  k  ′  ,  



(2)




where    z  k − 1   ∈   R   h × w × 64     represents the input feature map of the module,   z  k  ′   represents the intermediate variable,   P o s   represents the relative position encoding,   C o n v A t t e n t i o n   represents the Attention module, which is composed of convolutions,   C F F N   represents the   F F N   formed by convolutions, and   B N   represents batch normalization.




2.2. Transformer Encoder


Figure 4 shows the architecture of the Transformer Encoder [35]. We use the Transformer module designed in the ViT [8]. Transformer uses multi-head self-attention (MSA) to capture global information, extracting richer spatial features and high-level semantic features than convolution.



For classification tasks [12,36], transformers have shown to be effective at extracting deep semantic features that are more linearly separable than pure convolutional models. This is because transformers can capture long-range dependencies and global context information, which can be useful for understanding the relationships between different parts of the input image.



For semantic segmentation tasks [37,38], transformers can be used to model long-range dependencies and global context information, which can help to improve the accuracy of the segmentation results. By incorporating transformer layers into the encoder–decoder architecture, the model can capture global context information from the input image, which can help to improve the segmentation performance by allowing the model to better understand the relationship between different parts of the image. The decoder part of the architecture can then use the features extracted by the encoder to determine the segmentation position.



Specifically, our Transformer Encoder steps are as follows: first, obtain the relative position code of the feature map entering the current stage, then pass   L a y e r n o r m   and   A t t e n t i o n  , and finally enter the feedforward network (  F F N  ) module.   F F N   comprises two fully connected layers of neural networks, referred to as multilayer perceptrons (MLPs), followed by a non-linear activation function GELU [39]. The MLPs compute discrete transformations of the input at each position in the sequence independently and identically, making them non-continuous. The   F F N   captures non-linear dependencies between different parts of the sequence, enhancing the model’s ability to represent complex patterns and features in the input. The forward pass can be formulated as follows:


   z  l  ′  = M S A  L N   z  l − 1     + P o s   z  l − 1    ,  



(3)






   z l  = F F N  L N   z  l  ′    +  z  l  ′  ,  



(4)







In the above formula,   P o s   represents the relative position code,   L N  ∼    represents a layer normalization operator, and   z  l  ′   represents the intermediate variable.



Multi-head Self-attention is the core of the Transformer Encoder. This component allows the model to attend to different parts of the input sequence and capture dependencies between them. It computes multiple attention heads in parallel, with each head attending to a different part of the sequence. The attention heads are then combined to produce a single output sequence that incorporates information from all the heads, through the following equation


  Q , K , V =  Φ q    z  l − 1    ,  Φ k    z  l − 1    ,  Φ v    z  l − 1    ,  



(5)




where   Q , K , V ∈   R   W H × C     represent query, key, and value, respectively, and C represents input features. The number of channels of the graph is denoted by  Φ , which represents the linear layer, and linearly projects the input feature   z  l − 1    to obtain   Q , K , V   vectors.


  M S A  ( Q , K , V )  = C o n c a t  (  H  1   , … ,  H i  )  W ,  



(6)






   H i  = A t t e n t i o n  (  Q i  ,  K i  ,  V i  )  = S o f t M a x  (    Q i     K i   T    d   )   V i  ,  



(7)







In the above formula,    Q i  ,  K i  ,  V i  ∈   R   W H ×  C / n      represents the  query ,  key  and  value  matrices of the i-th head. It is obtained by dividing  Q , K , V  according to n in the channel dimension.   W ∈   R   C × C     represents the learned parameter. d represents the dimension of  query  and  key .   C o n c a t  ∼  ∈   R   W H × C     means to concat the matrix.




2.3. Decoder


The decoder of the model is illustrated in Figure 5. In this part of the model, we leverage the feature maps obtained from the Encoder (Stages 3 and 4) through the use of UperNet [40]. Notably, we process the features generated by the Transformer Encoder and the convolutional Transformer Encoder separately to improve the model’s capacity to capture non-linear dependencies between different parts of the input.



To produce the final output, we combine the feature maps from Stages 2–4 and shallowly extracted feature maps. Our decision to exclude the feature map from Stage 1 is based on the observation that it does not preserve shallow spatial details well. Instead, we use the feature map that passes through the shallow information-extraction module. Specifically, we performed the add operation on the feature map that is mixed and upsampled by Stages 2, 3, and 4 before upsampling, and then used the superposition of shallow information. This approach allows us to incorporate information from both the shallow and deep layers effectively, enabling the model to capture fine-grained details.



We argue that preserving shallow spatial detail information is crucial for the success of hyperspectral semantic segmentation tasks, as demonstrated by the ablation studies presented in Section 3. These studies provide detailed analyses of the role of shallow spatial-detail information in the model’s performance. Specifically, we examine the impact of excluding Stage 1’s feature map and the effectiveness of using the feature map that has undergone shallow information extraction. Our findings demonstrate that the inclusion of shallow spatial-detail information significantly improves the model’s performance, indicating the importance of this information for hyperspectral semantic segmentation tasks.



To summarize, the decoder of the model combines feature maps obtained from the Encoder through UperNet and processes features generated by the Transformer Encoder and the convolutional Transformer Encoder separately. We excluded the feature map from Stage 1 and used the feature map that has undergone shallow information extraction to preserve shallow spatial detail information effectively. Our ablation studies reveal the critical role of shallow spatial detail information in hyperspectral semantic segmentation tasks, emphasizing the importance of preserving this information in the model’s success. The process of feature map aggregation in the decoder is similar to that of LinkNet [41,42], while UperNet is used to combine feature maps from the Encoder. Overall, our approach enables the model to capture both shallow and deep spatial details effectively, leading to an improved performance in hyperspectral semantic segmentation tasks.





3. Experiments


3.1. Experimental Platform Parameter Settings


All experiments were run on Windows 11 and Nvidia GeForce RTX 3060 graphics card, and the models were run on pytorch 1.9. In order to reduce the experimental error, the model selects limited samples from the training set for training, and all experimental results take the average of 5 experiments. For the semantic segmentation method, the optimizer to be selected had the default parameters AdamW optimizer [43]. The learning rate is   3 ×  10  − 4     in [42],   5 ×  10  − 4     in [11],   1 ×  10  − 4     in [25], and   6 ×  10  − 5     in [13,38]. In order to compare various models more fairly, we set the learning rate to   2 ×  10  − 4    , and set the epoch to 200 to ensure that the model can fully converge. AdamW is a variant of the Adam optimizer that decouples weight decay from the learning rate and applies it directly to the weight updates to improve stability and prevent overfitting in deep learning models. For patch-based methods, the optimizer to be chosen had a default parameter AdamW optimizer with a learning rate set to   1 ×  10  − 3     and epoch set to 400.



To evaluate the performance of different models in terms of hyperspectral image classification, overall accuracy (OA), average accuracy (AA), and Kappa coefficient (K) were used as evaluation criteria. OA reflected the total correct classifications, AA considered the correctness within each category, and K accounted for chance agreement to determine the true accuracy and reliability of the predictions. Higher values of OA, AA, and K indicated a better performance in hyperspectral image classification.



In this study, we evaluated the performance of different models for hyperspectral image classification. We used a variety of traditional semantic segmentation methods, including Unet [44], FPN [45], Deeplabv3 [46], and Deeplabv3+ [47]. For these methods, we used ResNet50 as the backbone to extract features from the input data. We also used several hierarchical backbones, including ConvNeXt [26], Swin [13], ResT [48], PVT [24], and PoolFormer [25], and paired them with the UperNet decoder. For SegFormer [38], we used the proposed decoder, which consisted of fully connected layers. For SGHViT, we also paired this with UperNet as the decoder, as discussed in the ablation experiments section. For the semantic segmentation method, the number of input channels of all models was the same as the bands in Table 1, and the output was classes + 1, where 1 represented the background.



Regarding the patch-based methods, we used the principal component analysis (PCA) method to reduce the dimensionality of the dataset to a specific size. Specifically, for 1DCNN [16], we set the patch size to 1 and the number of principal components to 18. For 3DCNN [17] and Hybrid [15], we set the patch size to 15 and the number of principal components to 18. For SSFTT [12], we set the patch size to 11 and the number of principal components to 30.




3.2. Datasets


Indian Pines. The Indian Pines dataset was captured at a farm test site in northwest Indiana and collected using AVIRIS, an onboard sensor. The band range of the data set was 400–2500 nm, the spatial resolution was 20 m, and the original size of the image was 145 × 145. In this paper, the data of 200 bands were classified after water absorption and low signal-to-noise ratio bands were eliminated. During the experiment, 10% of each type of ground objects was randomly selected for training, and the remaining samples were used for testing. When the number of selected samples of each type of ground object was less than 5, we set it to 5. The specific training samples and test samples are shown in Table 2.



Pavia University. The dataset of Pavia University (PU) was shot in the University of Pavia, northern Italy, and was collected by airborne sensor ROSIS. The spatial resolution was 1.3 m, and the original image size was 610 × 340. In this paper, the data of 103 bands were classified by eliminating the bands affected by noise. Compared with the Indian Pines dataset, this dataset has a larger sample size and fewer categories. During the experiment, 3% of each type of ground objects were randomly selected for training, and the remaining samples were used for testing. The specific training samples and test samples are shown in Table 3.



Salinas. The Salinas (SA) dataset was taken in the Salinas Valley, California, USA, and, like the India dataset, was collected using the airborne sensor AVIRIS. However, unlike Indian Pines, it has a spatial resolution of 3.7 m. During the experiment, 1% of each type of ground objects were randomly selected for training, and the remaining samples were used for testing. The specific training samples and test samples are shown in Table 4.




3.3. Comparative Experiment


We conducted a comparative evaluation of various methods for hyperspectral image classification using a publicly available dataset. The results are presented in Table 5, Table 6 and Table 7. Our analysis showed that the patch-based approach is not very effective for hyperspectral image classification. Ordinary 1DCNN and 3DCNN models have difficulties classifying ground objects with similar spectral characteristics. However, Hybrid, which combines 2DCNN and 3DCNN, can mitigate this limitation to some extent.



We also evaluated SSFTT, which uses a combination of Transformer and CNN to fully extract spatial and spectral features. However, this method is limited by patch-based data-processing methods, which restrict its ability to model the global scene effectively. In contrast, semantic segmentation-based methods can make good use of spatial features for global scene modeling. Nevertheless, most of these methods were designed for three-channel images and did not fully consider the spectral dimension. Additionally, traditional semantic segmentation methods tended to focus on regional features, which could make it challenging to extract deep semantic features. Although models like Unet, FPN, and Deeplabv3 were widely used for various computer vision tasks, they did not perform optimally for hyperspectral semantic segmentation. Moreover, these models tend to have a large number of parameters, which can lead to higher computational costs and memory requirements. In contrast, SGHViT had promising results on hyperspectral semantic segmentation tasks while utilizing significantly fewer parameters and moderate floating-point operations per second (FLOPS). Thus, SGHViT was a more effective choice for hyperspectral semantic segmentation tasks.



Transformer-based models showed promising results for hyperspectral semantic segmentation tasks. This is attributed to Transformer’s ability to extract features effectively and model spectral dimension information accurately. Swin, SegFormer, ResT, and other Transformer-based models demonstrated impressive potential in hyperspectral semantic segmentation tasks. In particular, SegFormer achieved comparable results to our proposed model on the three datasets, indicating that a simple decoder could often achieve a better performance for hyperspectral semantic segmentation tasks.



To further improve the performance of our proposed model, we designed a novel decoder architecture that efficiently the transmitted texture information extracted by the upper layers of the model to the decoder. This reduced the misclassification of the model and enhanced its segmentation accuracy. In the ablation experiment section, we compared our decoder architecture with UperNet, and the results demonstrated the effectiveness of our proposed approach.



It is worth noting that PoolFormer is a hierarchical model that uses simple pooling modules. It achieved good results on the three datasets, which further confirms the importance of the hierarchical structure in hyperspectral image classification. In our study, we also adopted the traditional hierarchical structure and used stages 1–4 to represent the model structure.



The ConvNeXt experiment provided additional evidence supporting the importance of the hierarchical structure for hyperspectral semantic segmentation tasks. We found that pure convolution-based Transformer-like models cannot fully extract deep semantic information, and therefore cannot achieve a good segmentation performance. To address this limitation, our model combines CNN and Transformer layers to extract shallow and deep information, respectively. Specifically, we used CNN to extract shallow information in the early layers of the model, and Transformer to extract deep information in the later layers.



Our analysis of the AA showed that our proposed method could effectively leverage the shallow spatial detail information of hyperspectral images. Specifically, the shallow layer information extraction module significantly enhanced the model’s ability to extract texture information. At the same time, the segmentation accuracy of the model was also enhanced, and the location of the ground objects generated by the model was limited to the effective area. The incorporation of the Decoder part, which operated on the output of the Transformer layer, further improved the segmentation accuracy of our model. The Decoder part effectively refined the output of the model and ensured that the predicted ground objects were within the valid area of the image. As a result, the AA of our model was significantly higher than other, similar models.



Based on the results presented in Table 5 and Figure 6, SGHViT achieved the highest classification accuracy for most ground objects in the IA dataset, with some objects reaching 100%. However, for certain objects, such as alfalfa, corn-notill, corn-mintill, soybean-clean, and stone-Steel-Towers, SGHViT did not achieve optimal results, with a gap of approximately ∼2% compared to the best-performing model. This is because SGHViT needs to fully consider the distribution of various ground objects for classification. The location of these features is concentrated and often difficult to distinguish at the edge. Figure 6 indicates that 1DCNN and Unet had a high number of misclassifications, while 3DCNN exhibited many misclassifications in certain areas. Hybrid models improved a substantial number of misclassifications, and SSFTT only had misclassifications in the edge areas of ground objects. Models such as FPN, Deeplabv3, and Swin only showed misclassifications for some challenging features. Although SGHViT also exhibits misclassifications for some difficult-to-classify objects, it outperforms the semantic segmentation-based methods, improving classification accuracy for most areas.



According to the results presented in Table 6 and Figure 7, SGHViT achieved the best classification accuracy for almost all ground objects in the PU dataset. Specifically, SGHViT achieved 100% accuracy for Gravel, Metal sheets, Bare Soil, and Bitumen, and was only slightly worse than the best-performing model for Meadows, by approximately ∼0.1%. Figure 7 indicates that patch-based methods did not perform well on the challenging PU dataset, with all methods exhibiting misclassifications in the central area of ground objects. However, semantic segmentation-based methods had no misclassifications in the central region of Bare Soil and other objects. Unet, Deeplabv3, and SegFormer exhibit numerous misclassifications for Asphalt, Shadows, and Trees, whereas SGHViT significantly improves the misclassification of these features, especially Trees and Shadows. Overall, SGHViT demonstrates reasonable classification accuracy for different ground objects and outperforms other methods in terms of comprehensive indicators such as OA, AA, and K.



Evidenced by the results presented in Table 7 and Figure 8, SGHViT achieves the best classification accuracy for most ground objects in the SA dataset, with the exception of fallow-rough-plow, grapes-untrained, corn-senesced-green-weeds, lettuce-romaine-7wk, and vinyard-vertical-trellis.SGHViT achieves 100% accuracy for multiple ground objects. Figure 8 clearly shows a significant number of misclassifications in the patch-based and Unet methods. However, other models based on semantic segmentation exhibit partial misclassifications for Vinyard_u, Grapes, Lettuce_4wk, Lettuce_5wk, Lettuce_6wk, Lettuce_7wk, and Corn, which are particularly noticeable at the edge between Vinyard_u and Grapes. SGHViT effectively overcomes the aforementioned misclassification issues, exhibiting very few misclassifications for difficult-to-classify objects such as Vinyard_u and Grapes.




3.4. Ablation Experiment


We present the results of the ablation experiments in Table 8 and Table 9, where we comprehensively evaluated the impact of different modules on the performance of the model. Specifically, we investigated the effect of stacking Transformer blocks on the model’s performance, as well as the performance impact of our designed Decoder compared to the widely used UperNet [13,49].



	(1)

	
The impact of using different Decoders on the SGHViT backbone.







We evaluated the use of UperNet as the Decoder of our model, and present the results in Table 8. Specifically, we designed an SG-UperNet model that used SGHViT-S as the backbone and UperNet as the Decoder. Our results showed that using SGHViT-S as the backbone, combined with UperNet, could achieve good results for hyperspectral semantic segmentation tasks. This reflected the ability of SGHViT-S to effectively extract both shallow and deep semantic information from hyperspectral images and model both local and global context.



However, using UperNet as the Decoder could result in a high parameter quantity and computational complexity. To address this, we proposed a simplified LinkNet-like Decoder that could achieve comparable results with a lower computational cost. Our proposed method used the feature maps of stage3 and stage4 from the Transformer module for feature aggregation, and then applied our simplified Decoder to generate the final segmentation map.



	(2)

	
The effect of using different numbers of Transformer blocks on the SGHViT backbone.







We evaluated the effect of stacking Transformer blocks on the performance of our model, and the specific results are presented in Table 8. Specifically, we investigated the impact of varying the number of components of SGHViT-S, SGHViT-M, and SGHViT-L, with the number of components set to [1, 1, 1], [2, 2, 2], and [2, 6, 2], respectively.



Our experimental results showed that, as the number of stacked Transformer blocks increased, the performance of our model improved on all three datasets. This demonstrated the effectiveness of our method in leveraging the multi-scale context information of hyperspectral images.



	(3)

	
The effect of different components.







We conducted ablation experiments to evaluate the impact of different modules on the performance of our model for hyperspectral semantic segmentation tasks. Specifically, we evaluated the relative position encoding module (Pos), shallow feature extraction module (Shallow), and feature aggregation module (Fusion).



Our results showed that the relative position encoding module improved the performance of the model in the classification of lower hyperspectral ground objects and had a positive impact on all three datasets. The shallow feature extraction module also had a crucial impact on the correct classification of ground objects, particularly for dense prediction tasks. The OA, AA, and K indicators of the model without the shallow feature extraction module showed a significant decline, especially on the AA indicator. This highlighted the importance of incorporating shallow spatial detail features in the model to reduce misclassifications.



We also found that the feature aggregation module had a significant impact on hyperspectral images with high spatial resolution. For lower-resolution images, the effect of the module was not as significant. However, the module significantly improved various performance indicators for high-resolution images, which was consistent with the module’s design goal. This demonstrated the necessity of feature aggregation processing on the feature maps extracted by Transformer, as discussed in the previous literature [38].




3.5. Comparative Experiments on Other Datasets


To further evaluate the effectiveness of our method, we compared it with several representative models on two challenging datasets, namely the Pavia Center and Botswana datasets. The experimental results of these comparisons were presented in Table 10. For the Pavia Center dataset, we used 0.2% of the total samples for training and the remaining 99.8% for testing. Similarly, for the Botswana dataset, we randomly selected 5% of the data for training and the remaining 95% for testing. To ensure the effective execution of our method on the device, we replaced the multi-head self-attention in the Transformer Encoder at Stages 3 and 4 with window-based self-attention. Window-based self-attention restricted the attention mechanism to a fixed-size window around each token, reducing the computational complexity of the self-attention operation and improving the efficiency of the model. However, this also limited the ability of tokens to attend to distant information in the sequence. Despite this limitation, our method demonstrated a superior performance on these challenging datasets, which demonstrated the reliability and superiority of the SGHViT architecture, especially in scenarios with limited training data.




3.6. Robustness Evaluation


We evaluated the robustness of SGHViT by conducting experiments on our proposed model and several representative models under different numbers of training samples. Figure 9 showed the experimental results on the three datasets. We varied the number of training samples by selecting 2%, 4%, 6%, 8% and 10% of the samples for the IA dataset, 0.5%, 1%, 1.5%, 2% and 3% of the samples for the PU dataset, and 0.2%, 0.4%, 0.6%, 0.8% and 1% of the samples for the SA dataset.



Our results showed that SGHViT outperformed other models in all cases. As the number of training samples decreased, SGHViT achieved higher accuracy compared to other models. This reflected the robustness of SGHViT in small-sample scenarios, where it could achieve a superior performance, even with extremely limited training data.





4. Conclusions


In this paper, we explore the possibility of using hierarchical Transformers in hyperspectral semantic segmentation tasks. We designed a backbone for the hyperspectral semantic segmentation task. The hyperspectral space and spectral features are fully extracted through the shallow-information feature-extraction module and the spectral feature-extraction module. The conv Transformer Encoder and Transformer Encoder were used in appropriate locations to effectively combine CNN and Transformer. At the same time, we designed a simple Decoder, which allows the model to achieve remarkable results in the hyperspectral semantic segmentation task. We conducted detailed comparison experiments with mainstream hierarchical Transformer models, traditional semantic segmentation models, and Patch-based methods. The experimental results show that the hierarchical Transformer has great potential in the field of hyperspectral remote sensing due to its advantages of high precision and low computational cost.



Although the SGHViT model presented in this paper demonstrates excellent hyperspectral object classification performance, the introduction of Transformers for feature extraction enhances the model’s capacity to model long-range dependencies and capture global context information, thus improving segmentation performance. However, this improvement comes at the cost of an increase in the number of model parameters and computational complexity. Therefore, future research efforts will focus on designing lightweight models that balance performance and efficiency.



In addition, we did not consider introducing Transformers into the Decoder component of the model. Future research will continue to explore the application of lightweight models in hyperspectral object classification tasks and investigated how to effectively integrate Transformers into the Decoder to improve the model’s ability to capture spatial information. Specifically, we will investigate techniques for reducing the computational cost of incorporating Transformers into the Decoder, such as knowledge distillation and model compression.



Overall, the successful application of Transformers in hyperspectral object classification tasks highlights their potential for improving the performance of deep learning models in the hyperspectral domain. However, the increased computational cost of using Transformers underscores the need for more efficient model designs. Future research efforts will focus on developing lightweight models that balance performance and efficiency while exploring the potential benefits of integrating Transformers into the Decoder component of the model.
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The following abbreviations are used in this manuscript:





	CNN
	Convolutional Neural Network



	HSI
	Hyperspectral Image



	ViT
	Vision Transformer



	RNN
	Recurrent Neural Network



	GNN
	Graph Convolutional Neural Network



	ROI
	Regions Of Interest



	   F F N   
	Feed-Forward Network



	MLP
	Multi-Layer Perceptron



	OA
	Overall Accuracy



	AA
	Average Accuracy



	K
	Kappa coefficient



	IA
	Indian



	PU
	Pavia University



	SA
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Figure 1. Patch -based training method. 
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Figure 2. Semantic Segmentation Training Method. 
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Figure 3. The architecture of SGHViT. 
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Figure 4. The architecture of Transformer Block. 
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Figure 5. The Decoder of SGHViT. Fusion refers to the UperNet module, which comes from [40]. 
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Figure 6. Comparative experiments on IA dataset. 
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Figure 7. Comparative experiments on PU dataset. 






Figure 7. Comparative experiments on PU dataset.



[image: Remotesensing 15 03366 g007]







[image: Remotesensing 15 03366 g008 550] 





Figure 8. Comparative experiments on SA dataset. 
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Figure 9. Classification results in different training percent of samples on the three datasets. (a) IA dataset. (b) PU dataset. (c) SA dataset. 
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Table 1. Three public dataset parameters.
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	Dataset
	Sensor
	Bands
	Spatial

Resolution
	Image Size
	Classes





	IA
	AVIRIS
	200
	20 m
	145 × 145
	16



	PU
	ROSIS
	103
	1.3 m
	610 × 340
	9



	SA
	AVIRIS
	204
	3.7 m
	512 × 217
	16
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Table 2. The number of training and testing pixels per category in the IA dataset.
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No.

	
Class

	
Train

	
Test

	
Total






	
1

	
Alfalfa

	
5

	
41

	
46




	
2

	
Corn-notill

	
143

	
1285

	
1428




	
3

	
Corn-mintill

	
83

	
747

	
830




	
4

	
Corn

	
24

	
213

	
237




	
5

	
Grass-pasture

	
49

	
434

	
483




	
6

	
Grass-trees

	
73

	
657

	
730




	
7

	
Grass-pasture-mowed

	
5

	
23

	
28




	
8

	
Hay-windrowed

	
48

	
430

	
478




	
9

	
Oats

	
5

	
15

	
20




	
10

	
Soybean-notill

	
98

	
874

	
972




	
11

	
Soybean-mintill

	
246

	
2209

	
2455




	
12

	
Soybean-clean

	
60

	
533

	
593




	
13

	
Wheat

	
21

	
184

	
205




	
14

	
Woods

	
127

	
1138

	
1265




	
15

	
Buildings-Grass-Trees

	
39

	
347

	
386




	
16

	
Stone-Steel -Towers

	
10

	
83

	
93




	
Total

	
1036

	
9213

	
10,249
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Table 3. The number of training and testing pixels per category in the PU dataset.
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No.

	
Class

	
Train

	
Test

	
Total






	
1

	
Asphalt

	
199

	
6432

	
6631




	
2

	
Meadows

	
560

	
18,089

	
18,649




	
3

	
Gravel

	
63

	
2036

	
2099




	
4

	
Trees

	
92

	
2972

	
3064




	
5

	
Metal sheets

	
41

	
1304

	
1345




	
6

	
Bare Soil

	
151

	
4878

	
5029




	
7

	
Bitumen

	
40

	
1290

	
1330




	
8

	
Bricks

	
111

	
3671

	
3682




	
9

	
Shadows

	
29

	
918

	
947




	
Total

	
1286

	
41,490

	
42,776
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Table 4. The number of training and testing pixels per category in the SA dataset.
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No.

	
Class

	
Train

	
Test

	
Total






	
1

	
Brocoli-green-weeds-1

	
21

	
1988

	
2009




	
2

	
Brocoli-green-weeds-2

	
38

	
3688

	
3726




	
3

	
Fallow

	
20

	
1956

	
1976




	
4

	
Fallow-rough-plow

	
14

	
1380

	
1394




	
5

	
Fallow-smooth

	
27

	
2651

	
2678




	
6

	
Stubble

	
40

	
3919

	
3959




	
7

	
Celery

	
36

	
3543

	
3579




	
8

	
Grapes-untrained

	
113

	
11,158

	
11,271




	
9

	
Soil-vinyard-develop

	
63

	
6140

	
6203




	
10

	
Corn-senesced-green-weeds

	
33

	
3245

	
3278




	
11

	
Lettuce-romaine-4wk

	
11

	
1057

	
1068




	
12

	
Lettuce-romaine-5wk

	
20

	
1907

	
1927




	
13

	
Lettuce-romaine-6wk

	
10

	
906

	
916




	
14

	
Lettuce-romaine-7wk

	
11

	
1059

	
1070




	
15

	
Vinyard-untrained

	
73

	
7195

	
7268




	
16

	
Vinyard-vertical-trellis

	
19

	
1788

	
1807




	
Total

	
549

	
53,580

	
54,129
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Table 5. Classification accuracy (%) of the IA image with different methods.
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	No.
	1DCNN
	3DCNN
	Hybird
	SSFTT
	Unet
	FPN
	Deeplabv3
	Deeplabv3+
	ConvNeXt
	Swin
	SegFormer
	ResT
	PVT
	PoolFormer
	SGHViT-S





	1
	41.304
	89.130
	100.000
	97.826
	50.000
	93.478
	95.652
	82.609
	89.130
	89.130
	89.130
	84.783
	97.826
	89.130
	97.826



	2
	71.218
	88.305
	97.269
	97.829
	97.899
	98.459
	98.109
	97.129
	99.510
	97.129
	98.810
	99.020
	98.739
	94.048
	99.370



	3
	57.831
	91.205
	97.108
	97.831
	95.060
	96.988
	96.988
	96.386
	93.012
	96.386
	97.711
	96.386
	96.506
	94.458
	96.867



	4
	42.616
	58.650
	96.625
	96.203
	91.561
	99.156
	91.983
	99.578
	94.937
	98.312
	97.468
	97.890
	98.734
	96.624
	100.000



	5
	86.750
	96.273
	98.758
	99.586
	95.445
	98.137
	98.344
	99.172
	97.309
	92.754
	98.551
	97.308
	99.586
	98.137
	99.586



	6
	96.986
	99.041
	99.315
	99.452
	95.890
	96.849
	98.767
	98.767
	99.863
	97.945
	98.767
	97.808
	97.534
	97.123
	100.000



	7
	75.000
	75.000
	100.000
	100.000
	57.143
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000



	8
	98.745
	100.000
	100.000
	100.000
	96.653
	99.372
	99.791
	100.000
	100.000
	99.582
	99.582
	100.000
	100.000
	99.582
	100.000



	9
	30.000
	65.000
	90.000
	100.000
	70.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000



	10
	70.576
	90.021
	98.868
	97.634
	95.062
	99.177
	99.691
	98.457
	97.531
	98.045
	99.794
	95.267
	98.765
	98.971
	99.691



	11
	80.693
	96.660
	99.348
	98.860
	98.778
	98.982
	98.819
	99.104
	98.045
	97.556
	99.104
	98.289
	96.741
	98.534
	99.226



	12
	64.250
	77.403
	93.592
	95.784
	96.796
	98.314
	95.110
	96.965
	98.651
	95.616
	96.627
	97.639
	97.470
	99.831
	98.145



	13
	96.098
	83.415
	100.000
	100.000
	91.220
	100.000
	99.512
	98.537
	100.000
	97.561
	100.000
	100.000
	100.000
	100.000
	100.000



	14
	92.648
	96.364
	99.763
	99.842
	99.763
	99.526
	99.605
	100.000
	99.447
	99.684
	100.000
	99.605
	100.000
	100.000
	99.921



	15
	50.000
	91.969
	94.042
	97.928
	88.860
	99.741
	100.000
	100.000
	99.741
	99.223
	100.000
	99.741
	99.741
	99.223
	100.000



	16
	80.645
	89.247
	100.000
	100.000
	80.645
	98.925
	98.925
	96.774
	96.774
	95.699
	93.548
	93.548
	94.624
	94.624
	97.849



	OA
	77.353
	92.038
	98.292
	98.527
	96.302
	98.654
	98.448
	98.497
	98.175
	97.531
	98.878
	98.058
	98.205
	97.746
	99.278



	AA
	70.959
	86.730
	97.792
	98.673
	87.548
	98.569
	98.205
	97.717
	97.747
	97.163
	98.068
	97.330
	98.517
	97.518
	99.280



	K
	74.100
	90.897
	98.053
	98.321
	95.780
	98.465
	98.232
	98.287
	97.921
	97.187
	98.721
	97.787
	97.955
	97.431
	99.177



	params
	−
	−
	−
	−
	33.141
	26.734
	40.256
	27.299
	29.202
	14.271
	14.299
	14.085
	14.979
	22.318
	2.057



	flops
	−
	−
	−
	−
	8.195
	7.026
	19.961
	7.569
	3.111
	2.753
	2.288
	1.729
	2.370
	3.060
	7.137
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Table 6. Classification accuracy (%) of the PU image with different methods.






Table 6. Classification accuracy (%) of the PU image with different methods.





	No.
	1DCNN
	3DCNN
	Hybird
	SSFTT
	Unet
	FPN
	Deeplabv3
	Deeplabv3+
	ConvNeXt
	Swin
	SegFormer
	ResT
	PVT
	PoolFormer
	SGHViT-S





	1
	91.072
	98.492
	98.175
	99.231
	98.794
	98.477
	96.863
	98.944
	99.925
	99.608
	99.668
	94.752
	93.742
	99.879
	99.970



	2
	98.027
	99.979
	99.957
	99.737
	99.759
	99.984
	99.930
	99.973
	99.190
	99.968
	99.968
	99.598
	94.799
	100.000
	99.989



	3
	66.937
	89.757
	98.237
	99.285
	94.664
	100.000
	99.047
	99.524
	99.809
	100.000
	99.762
	96.570
	99.952
	100.000
	100.000



	4
	87.304
	94.713
	94.615
	98.140
	96.540
	92.950
	77.350
	90.960
	91.482
	95.463
	97.781
	93.832
	95.431
	95.561
	98.205



	5
	99.703
	100.000
	99.703
	100.000
	98.736
	97.175
	95.316
	96.283
	99.703
	99.851
	100.000
	99.851
	89.145
	99.628
	100.000



	6
	86.797
	99.423
	98.012
	99.801
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	99.940
	100.000
	100.000
	100.000



	7
	76.165
	94.211
	99.850
	99.474
	99.850
	99.850
	99.023
	99.850
	99.398
	99.850
	100.000
	99.474
	98.722
	99.699
	100.000



	8
	88.512
	92.966
	91.662
	97.637
	98.343
	97.909
	96.469
	96.089
	99.430
	99.484
	99.457
	84.329
	93.373
	97.827
	99.864



	9
	97.043
	75.396
	98.099
	98.733
	89.006
	92.503
	67.582
	90.391
	95.354
	96.093
	98.205
	95.248
	98.310
	94.509
	99.050



	OA
	91.867
	97.478
	98.219
	99.327
	98.766
	98.812
	96.615
	98.483
	98.836
	99.460
	99.677
	96.919
	95.444
	99.334
	99.829



	AA
	87.951
	93.882
	97.590
	99.115
	97.299
	97.650
	92.398
	96.890
	98.255
	98.924
	99.427
	95.955
	95.942
	98.567
	99.675



	K
	89.149
	96.648
	97.635
	99.108
	98.367
	98.426
	95.507
	97.988
	98.457
	99.284
	99.572
	95.919
	94.035
	99.116
	99.774



	params
	−
	−
	−
	−
	32.836
	26.429
	39.950
	26.993
	29.052
	14.121
	13.993
	14.056
	14.675
	22.014
	1.939



	flops
	−
	−
	−
	−
	54.759
	44.668
	158.734
	49.431
	25.253
	21.427
	15.825
	13.661
	16.550
	22.623
	36.180
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Table 7. Classification accuracy (%) of the SA image with different methods.






Table 7. Classification accuracy (%) of the SA image with different methods.





	No.
	1DCNN
	3DCNN
	Hybird
	SSFTT
	Unet
	FPN
	Deeplabv3
	Deeplabv3+
	ConvNeXt
	Swin
	SegFormer
	ResT
	PVT
	PoolFormer
	SGHViT-S





	1
	98.805
	99.204
	100.000
	99.552
	95.669
	99.851
	98.855
	100.000
	99.004
	99.801
	100.000
	99.104
	100.000
	99.452
	100.000



	2
	99.597
	99.973
	100.000
	100.000
	100.000
	99.249
	99.919
	100.000
	99.678
	99.758
	100.000
	99.919
	99.678
	99.463
	100.000



	3
	98.785
	99.038
	99.949
	100.000
	92.864
	100.000
	100.000
	100.000
	99.494
	100.000
	100.000
	99.899
	99.494
	100.000
	100.000



	4
	98.852
	95.768
	98.924
	99.785
	90.961
	92.611
	96.270
	100.000
	98.780
	100.000
	100.000
	100.000
	98.780
	99.641
	99.857



	5
	95.930
	95.519
	98.432
	99.813
	90.403
	99.664
	96.079
	99.776
	98.021
	96.565
	99.813
	98.954
	99.178
	98.170
	99.515



	6
	99.773
	99.899
	98.687
	100.000
	99.747
	99.874
	97.247
	99.798
	99.949
	99.874
	100.000
	99.646
	100.000
	99.545
	100.000



	7
	99.329
	99.497
	100.000
	99.888
	96.899
	99.665
	98.128
	99.916
	99.637
	99.329
	100.000
	99.888
	99.441
	99.832
	100.000



	8
	82.113
	96.469
	98.341
	98.199
	99.379
	99.965
	99.574
	99.752
	99.991
	99.565
	99.947
	99.973
	99.973
	99.911
	99.840



	9
	99.936
	99.936
	100.000
	100.000
	99.613
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000



	10
	91.245
	97.224
	98.780
	99.664
	96.888
	97.010
	99.634
	97.590
	100.000
	100.000
	98.841
	99.786
	99.939
	99.512
	99.847



	11
	86.704
	92.603
	98.596
	99.157
	91.760
	100.000
	98.689
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000



	12
	99.844
	99.948
	99.222
	99.844
	91.801
	96.990
	94.136
	96.419
	94.551
	96.938
	99.273
	97.094
	97.613
	97.353
	99.948



	13
	83.297
	95.961
	99.891
	98.144
	57.860
	95.742
	75.873
	90.066
	99.782
	99.782
	100.000
	100.000
	100.000
	99.127
	100.000



	14
	93.551
	98.318
	97.477
	99.346
	92.523
	91.215
	96.355
	99.720
	98.785
	97.196
	100.000
	91.776
	94.953
	96.636
	99.720



	15
	69.056
	91.194
	96.395
	94.950
	99.532
	99.917
	97.936
	98.101
	97.826
	98.170
	99.367
	95.638
	99.408
	99.051
	99.972



	16
	95.517
	89.983
	99.281
	97.178
	81.350
	99.889
	100.000
	99.945
	100.000
	100.000
	100.000
	100.000
	100.000
	100.000
	99.668



	OA
	90.347
	96.885
	98.762
	98.727
	96.285
	99.148
	98.234
	99.213
	99.250
	99.248
	99.799
	99.002
	99.577
	99.448
	99.908



	AA
	93.271
	96.908
	98.998
	99.095
	92.328
	98.228
	96.793
	98.818
	99.094
	99.186
	99.828
	98.855
	99.279
	99.231
	99.898



	K
	89.247
	96.529
	98.622
	98.582
	95.856
	99.052
	98.033
	99.124
	99.165
	99.163
	99.776
	98.889
	99.529
	99.385
	99.897



	params
	−
	−
	−
	−
	18.372
	11.420
	40.268
	27.312
	29.195
	28.869
	14.298
	14.069
	14.977
	22.331
	2.059



	flops
	−
	−
	−
	−
	38.893
	34.624
	89.783
	34.205
	13.959
	14.097
	10.323
	7.757
	10.692
	13.816
	32.541
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Table 8. Backbone experiments on different Decoders and different numbers of Transformer blocks.






Table 8. Backbone experiments on different Decoders and different numbers of Transformer blocks.





	
No.

	
IA

	
PU

	
SA




	
SG-UperNet

	
SGHViT-S

	
SGHViT-M

	
SGHViT-L

	
SG-UperNet

	
SGHViT-S

	
SGHViT-M

	
SGHViT-L

	
SG-UperNet

	
SGHViT-S

	
SGHViT-M

	
SGHViT-L






	
1

	
91.304

	
97.826

	
97.826

	
97.826

	
98.492

	
99.970

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000




	
2

	
99.510

	
99.370

	
99.090

	
99.020

	
100.000

	
99.989

	
99.984

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000




	
3

	
97.470

	
96.867

	
97.711

	
98.072

	
100.000

	
100.000

	
99.714

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000




	
4

	
100.000

	
100.000

	
100.000

	
100.000

	
98.042

	
98.205

	
98.401

	
98.597

	
99.857

	
99.857

	
100.000

	
99.713




	
5

	
98.344

	
99.586

	
99.586

	
99.586

	
100.000

	
100.000

	
100.000

	
100.000

	
98.954

	
99.515

	
99.963

	
100.000




	
6

	
98.219

	
100.000

	
99.863

	
99.863

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000




	
7

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
99.972

	
99.972




	
8

	
100.000

	
100.000

	
100.000

	
100.000

	
99.946

	
99.864

	
99.946

	
100.000

	
99.796

	
99.840

	
99.920

	
99.973




	
9

	
100.000

	
100.000

	
100.000

	
100.000

	
100.000

	
99.050

	
99.578

	
99.894

	
100.000

	
100.000

	
100.000

	
100.000




	
10

	
99.588

	
99.691

	
99.794

	
99.588

	
−

	
−

	
−

	
−

	
100.000

	
99.847

	
99.908

	
99.908




	
11

	
98.819

	
99.226

	
99.226

	
99.470

	
−

	
−

	
−

	
−

	
100.000

	
100.000

	
99.906

	
100.000




	
12

	
96.965

	
98.145

	
98.145

	
98.820

	
−

	
−

	
−

	
−

	
99.948

	
99.948

	
100.000

	
99.741




	
13

	
100.000

	
100.000

	
100.000

	
100.000

	
−

	
−

	
−

	
−

	
100.000

	
100.000

	
100.000

	
100.000




	
14

	
99.921

	
99.921

	
99.921

	
100.000

	
−

	
−

	
−

	
−

	
95.234

	
99.720

	
98.879

	
99.813




	
15

	
100.000

	
100.000

	
100.000

	
100.000

	
−

	
−

	
−

	
−

	
99.959

	
99.972

	
99.862

	
99.904




	
16

	
97.849

	
97.849

	
97.849

	
97.849

	
−

	
−

	
−

	
−

	
100.000

	
99.668

	
99.723

	
100.000




	
OA

	
98.956

	
99.278

	
99.307

	
99.415

	
99.621

	
99.829

	
99.850

	
99.897

	
99.800

	
99.908

	
99.922

	
99.954




	
AA

	
98.624

	
99.280

	
99.313

	
99.381

	
99.609

	
99.675

	
99.736

	
99.832

	
99.609

	
99.898

	
99.883

	
99.939




	
K

	
98.810

	
99.177

	
99.210

	
99.333

	
99.498

	
99.774

	
99.802

	
99.864

	
99.778

	
99.897

	
99.914

	
99.949




	
params

	
2.176

	
2.057

	
3.093

	
3.891

	
2.057

	
1.939

	
2.974

	
3.773

	
2.278

	
2.059

	
3.093

	
3.889




	
flops

	
8.340

	
7.137

	
7.365

	
7.683

	
46.766

	
36.180

	
38.190

	
40.989

	
37.916

	
32.541

	
33.564

	
34.983
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Table 9. Ablation experiments on three datasets.
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Module

	
IA

	
PU

	
SA




	
Shallow

	
Pos

	
Fusion

	
Params

	
Flops

	
OA

	
AA

	
K

	
Params

	
Flops

	
OA

	
AA

	
K

	
Params

	
Flops

	
OA

	
AA

	
K






	
✗

	
✔

	
✔

	
1.942

	
4.187

	
98.927

	
98.758

	
98.776

	
1.879

	
22.815

	
99.696

	
99.420

	
99.597

	
1.944

	
19.050

	
99.832

	
99.838

	
99.812




	
✔

	
✗

	
✔

	
2.049

	
7.138

	
99.199

	
99.087

	
99.087

	
1.931

	
36.191

	
99.764

	
99.567

	
99.686

	
2.054

	
32.532

	
99.847

	
99.867

	
99.829




	
✔

	
✔

	
✗

	
1.942

	
7.118

	
99.171

	
99.087

	
99.054

	
1.824

	
36.020

	
99.752

	
99.625

	
99.671

	
1.947

	
32.445

	
99.828

	
99.756

	
99.808




	
✗

	
✗

	
✔

	
1.937

	
4.186

	
98.868

	
98.711

	
98.710

	
1.875

	
22.801

	
99.633

	
99.206

	
99.513

	
1.940

	
19.043

	
99.826

	
99.699

	
99.806




	
✗

	
✔

	
✗

	
1.827

	
4.168

	
98.810

	
99.036

	
98.643

	
1.765

	
22.655

	
99.460

	
99.273

	
99.284

	
1.830

	
18.968

	
99.754

	
99.852

	
99.726




	
✔

	
✗

	
✗

	
1.938

	
7.116

	
99.258

	
98.965

	
99.154

	
1.820

	
36.006

	
99.733

	
99.688

	
99.646

	
1.943

	
32.438

	
99.762

	
99.830

	
99.734




	
✗

	
✗

	
✗

	
1.823

	
4.167

	
98.849

	
98.715

	
98.687

	
1.760

	
22.641

	
99.425

	
99.008

	
99.238

	
1.825

	
18.961

	
99.728

	
99.804

	
99.697
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Table 10. Comparative experiments on other datasets.






Table 10. Comparative experiments on other datasets.





	
Method

	
Pavia Center

	
Botswana




	
OA

	
AA

	
K

	
OA

	
AA

	
K






	
Hybrid

	
97.722

	
92.875

	
96.769

	
91.478

	
91.062

	
90.770




	
SSFTT

	
98.550

	
95.012

	
97.946

	
96.468

	
95.655

	
96.172




	
FPN

	
94.390

	
81.345

	
97.723

	
99.261

	
99.288

	
99.200




	
Swin

	
95.855

	
86.713

	
94.120

	
99.569

	
99.602

	
99.533




	
SegFormer

	
96.670

	
89.335

	
95.278

	
99.938

	
99.943

	
99.933




	
SG-UperNet

	
98.116

	
94.763

	
97.334

	
99.969

	
99.977

	
99.967




	
SGHViT-S

	
98.812

	
96.345

	
98.317

	
100.000

	
100.000

	
100.000
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