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Abstract: In the context of climate change, the occurrence of water stress in forest ecosystems, which
are solely dependent on precipitation, has exhibited a rising trend, even among species that are
typically regarded as drought-tolerant. Remote sensing techniques offer an efficient, comprehensive,
and timely approach for monitoring forests at local and regional scales. These techniques also
enable the development of diverse indicators of plant water status, which can play a critical role
in evaluating forest water stress. This review aims to provide an overview of remote sensing
applications for monitoring water stress in forests and reveal the potential of remote sensing and
geographic information system applications in monitoring water stress for effective forest resource
management. It examines the principles and significance of utilizing remote sensing technologies
to detect forest stress caused by water deficit. In addition, by a quantitative assessment of remote
sensing applications of studies in refereed publications, the review highlights the overall trends
and the value of the widely used approach of utilizing visible and near-infrared reflectance data
from satellite imagery, in conjunction with classical vegetation indices. Promising areas for future
research include the utilization of more adaptable platforms and higher-resolution spectral data, the
development of novel remote sensing indices with enhanced sensitivity to forest water stress, and the
implementation of modelling techniques for early detection and prediction of stress.

Keywords: drought; forest management; leaf and canopy spectral traits; remote sensing platforms;
vegetation indices; water deficit

1. Introduction

Climate change is increasingly impacting on the environment with obvious
evidence [1–4]. Most noticeable is the increase in the average temperature globally that has
led to changes in the Earth’s hydrological cycle [5]. A global trend has been established
that involves a widening of the tropical belt and a drying environment represented by
an increase in both frequency and severity of adverse water-related phenomena, such as
extreme droughts, temperature extremes, and heat waves [3,6,7].

Drought, a complex situation associated with low precipitation and low water avail-
ability in soils, is a significant driver shifting natural vegetation cover and promoting
desertification with water stress leading to reduced growth and increased mortality in
forest ecosystems [6,8,9]. Forest water stress is defined as the condition in which a forest
experiences a prolonged or severe water deficit that exceeds the ability of the trees to cope
with it, leading to physiological and ecological responses that can ultimately affect forest
health and productivity. The symptoms of forest water stress can be broadly classified into
two categories: physiological and ecological [10,11].

Physiological symptoms of forest water stress include changes in plant water status
and gas exchange, as well as alterations in plant growth and metabolism. Water deficit
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disturbs physiological activities of plants that directly restrict their responses to the move-
ment of other elements in the habitat. Lisar et al. [10] summarised the effects of water
stress on plants as the alterations of photosynthesis, respiration, translocation, ion uptake,
carbohydrates, nutrient metabolism, and hormones. Insufficient water availability initially
decreases the water potential in plant cells and increases the concentration of dissolved
substances in the cytosol and extracellular matrices [10–14]. The temporary consequences
include growth inhibition and reproductive failure, and the accumulation of abscisic acid
and compatible osmolytes (e.g., proline) that lead to wilting [12].

Through influencing plant water relations by reduction in leaf water content and
turgor, water stress interrupts stomatal opening and closure, limits gaseous exchange,
reduces transpiration and arrests photosynthesis [11,15]. These changes can lead to altered
plant nutrient and hormonal balances. These responses are typically adaptive and can
help trees conserve water and maintain basic physiological functions under water-limited
conditions. However, interruption of water movement in the plant body brings mineral
nutrient uptake and transportation and metabolism to a standstill, reducing cell expansion
and organ enlargement due to low turgor pressure [16,17]. As a result, water deficit
significantly decreases growth increments and overall plant performance [14,18,19]. The
duration and intensity of stress [11] determine whether water deficit will cause dehydration,
wilting, and mortality [20,21]. Mortality is the worst consequence of prolonged water stress
in forests, and impact can vary from a few individual trees, scattered patches of trees
(Figure 1), to collapse of large forest stands.
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Ecological symptoms of forest water stress include changes in forest structure, com-
position, and function [22–25]. These changes can affect various ecosystem processes,
including nutrient cycling, carbon sequestration, and water use efficiency [26,27]. For
instance, water-stressed forests may exhibit decreased biomass production, increased mor-
tality rates, and altered species composition. Moreover, changes in forest structure can
affect microclimate conditions, soil properties, and understory vegetation, which can in
turn affect biodiversity and ecosystem services. In addition, forest water stress can also
increase the susceptibility of trees to biotic and abiotic stresses, such as insect attacks,
disease outbreaks, forest fire, and extreme weather events. These secondary effects can
exacerbate the impact of water stress on forest health and productivity [28–30].

In order to understand and to attempt to ameliorate the extent of tree decline, we
need effective tools to detect and monitor water stress in forests. Recent remote sensing
technology provides a number of advantages for Earth surface monitoring, including large
coverage, diverse resolution, timely data collection, non-invasive and cost-effective acquisi-
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tion [31,32]. Indeed, remote sensing imagery can provide valuable data from vegetation,
soil, and environmental factors over large areas without physical contact [32–34]. This
technology in association with a geographic information system (GIS) has widespread
practical applications in the analysis of vegetation and environmental dynamics [31,35,36].

Remote sensing techniques are increasingly being used to measure forest water stress
due to their advantages, especially in terms of spatial scale as compared with traditional
ground-based methods [37–39]. These techniques, including satellite imagery, can provide
information about water stress across large areas, even in remote or inaccessible areas,
which can be particularly useful for monitoring forests at the regional or even global
scale [40]. This is especially important given the significant role that forests play in the
global water cycle and energy and carbon balances. Remote sensing techniques are non-
destructive and can provide information about water stress without any physical contact
with the forest [34,41]. Remote sensing technology can measure multiple indicators of
water stress, such as water content, leaf pigments, canopy temperature and chlorophyll
fluorescence, which can provide a more comprehensive picture of forest health and water
use [33,39,42–44].

This review aims to provide an overview of remote sensing applications for monitoring
water stress in forest and reveal the potential for remote sensing and geographic information
system applications in monitoring water stress for effective forest resource management.
It examines the principle and necessity of detecting plant water stress in forests using
remote sensing technologies. From a quantitative literature review, we appraise a wide
range of remote sensing applications in relation to plant water stress detection in forestry
in order to identify overall trends. Lastly, we assess the potential of remote sensing and
GIS applications in water stress monitoring for forest resource management.

2. Remote Sensing for Detection of Plant Water Stress
2.1. General Principles

The principle of remote sensing in vegetation observation involves using sensors to
measure the different wavelengths of electromagnetic radiation emitted or reflected by
plants and their surrounding environment [31,32]. Healthy vegetation reflects and absorbs
different wavelengths in a characteristic way, which can be detected by remote sensing
instruments [31,45]. For example, healthy vegetation absorbs most of the visible light
spectrum, but reflects a high proportion of near-infrared radiation. This means that healthy
vegetation appears green in visible composite images but appears bright in near-infrared
images. By analyzing the patterns of reflected or emitted electromagnetic radiation, remote
sensing instruments can provide information about vegetation properties such as leaf area
index (LAI), chlorophyll content, water content, and biomass [46–49]. This information can
be used to monitor vegetation health, identify areas of vegetation stress, and estimate crop
yields [31,32].

This section provides a description of the remote sensing principles used to detect
water stress in plants, mainly based on the imaging of signals at appropriate wavelengths.
Figure 2 illustrates the spectral ranges of imaging methods that are available for monitoring
plant response to water stress.

The typical spectral reflectance of vegetation exhibits high reflectance in the near-
infrared (NIR) region (around 700–1300 nm) and lower reflectance in the visible region
(around 400–700 nm) [50–52]. This is due to high chlorophyll absorption in the visible
wavelengths and strong reflectance by the internal structures and water content of the plant
cells in the NIR region [33,53]. Additionally, vegetation tends to have low reflectance in the
shortwave infrared (SWIR) region (around 1300–2500 nm) due to the absorption by water
and cellulose in plant tissues [37,54,55]. The interior leaf structure and biochemical compo-
nents, such as greenness content (chlorophyll and carotenoid pigments), water, nitrogen,
cellulose, and lignin, play a major role in the spectral characteristics of plants responding
to radiation of different wavelengths [48,55,56]. The primary factors governing the spectral
responses of leaves in the visible wavelengths are pigments, especially chlorophyll [45],
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which is closely related to photosynthetic capacity and overall primary productivity [45,57].
In addition, the cell structure of the leaf affects the spectral reflectance characteristics at
NIR wavelengths, while the water content in the leaf governs the interaction with the
wavelengths in the SWIR region.
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Water stress occurs when plants experience a shortage of water, leading to changes
in their physiological and biochemical processes that reduce vegetation health [10,16,58].
These changes can be detected through remote sensing in order to monitor the health of
plants and identify areas of water stress [32,40,59,60]. One way to detect water stress in
plants is by measuring changes in the reflectance of visible and near-infrared light [40,59,61].
In general, stressed plants will have a lower reflectance in the near-infrared region and
a higher reflectance in the visible region [45]. Another approach to detecting water
stress is by measuring changes in the thermal properties of plants using thermal infrared
sensors [39,44,62]. As plants become water-stressed, they may have a higher leaf tempera-
ture due to reduced transpiration for cooling and heat accumulation [10,63].

Numerous studies have confirmed the significant connections between leaf chlorophyll
and water content, canopy temperature, and plant water stress [63–66]. Inferring that any
reductions in greenness and water content are a sign of plant stress, these indicators, along
with canopy temperature, have therefore been utilised as “surrogates” of plant water stress.
There are several unique spectral bands and vegetation spectral reflectance indices that can
be used to evaluate the chlorophyll and water content of plants [46,48,67]. With the rapid
development of remote sensing in terms of spectral resolution, precision, and accuracy,
measurements of narrower reflectance bands have allowed researchers to develop more
innovative methods to detect plant water stress, including measurements of photochemical
reflectance and chlorophyll fluorescence [68].
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2.2. Vegetation Indices

A variety of vegetation indices (VIs) have been developed to monitor changes in vege-
tation and related physiological processes by utilizing the spectral reflectance characteristics
of plants captured through different imaging methods combining reflectance at particular
spectral wavelengths. Many of these indices, summarised in Table 1, have been utilised
to detect water stress in plants. These include Typical VIs, Water VIs, Pigment VIs, and
Temperature VIs. More detailed information concerning these indices and the principles
and methods used to calculate them are provided in the corresponding references.

Table 1. Remote sensing indices that have been used for detecting plant water stress.

Vegetation Index Formula Reference

Typical Vegetation Indices

Simple Ratio Index (SR) SR =
ρNIR
ρRED

[69]

Normalised Difference Vegetation Index
(NDVI) NDVI = ρNIR−ρRED

ρNIR+ρRED
[52]

Soil-adjusted Vegetation Index (SAVI) SAVI = (ρNIR−ρRED)(1+L)
ρNIR+ρRED+L

[70]

Enhanced Vegetation Index (EVI) EVI = 2.5 ρNIR−]ρRED
ρNIR+C1ρRED−C2ρBLUE+L

[71]

Dynamic Relative Greenness Index
(DRGI) DRGI = ND0−NDmin

NDmax+NDmin
× 100 [72]

Perpendicular Drought Index (PDI) PDI = 1√
M2+1

ρRED + M× ρNIR) [73]

Modified Perpendicular Drought Index
(MPDI) MPDI = 1√

M2+1
(ρs,RED + M× ρs,NIR) [74]

Water Vegetation Indices

Leaf Water Content Index (LWCI) LWCI = − log(1−ρNIR+ρSWIR)
− log(1−ρNIR,FT+ρSWIR,FT)

[75]

Normalised Difference Water Index
(NDWI) NDWI = ρNIR−ρSWIR

ρNIR+ρSWIR
[76]

Moisture Stress Index (MSI) MSI = ρ1667
ρ927

[46]

Shortwave Infrared Water Stress Index
(SIWSI) SIWSI = ρSWIR − ρSWIRρNIR + ρNIR [77]

Vegetation Dryness Index (VDI) VDI = 1− A′E
A′C′ [78]

Normalised Moisture Index (NMI) NMI = ρNIR−ρRED
ρNIR+ρRED

+
ρNIR−ρSWIR
ρNIR+ρSWIR

[79]

Pigment Vegetation Indices

Photochemical Reflectance Index (PRI) PRI = ρ531−ρ570
ρ531+ρ570

[80]

”Green” NDVI GreenNDVI = ρNIR−ρGREEN
ρNIR+ρGREEN

[81]

Normalised Difference Red-Edge index
(NDRE) NDVI = ρNIR−ρRED−Edge

ρNIR+ρRED−Edge
[82]

Chlorophyll Index (CI) CI = ρNIR
ρRED−Edge

− 1 [83]

Modified Photochemical Reflectance
Index (PRIm)

PRI = ρm−ρ570
ρm+ρ570

m = 531, 515, 525, 535, 545 nm
[84,85]

PRI = ρ531−ρm
ρ531+ρm

m = 512, 515, 551, 555, 602, 645, 667, 668 nm
[86]

Temperature Vegetation Indices
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Table 1. Cont.

Vegetation Index Formula Reference

Crop Water Stress Index (CWSI) CWSI = (Tc−Ta)m−(Tc−Ta)LL
(Tc−Ta)UL+(Tc−Ta)LL

[87]

Water Deficit Index (WDI) WDI = (Ts−Ta)m−(Ts−Ta)r
(Ts−Ta)m+(Ts−Ta)x

[88]

Vegetation Water Supply Index (VWSI) VWSI = NDVI
LST [89]

Vegetation Temperature Condition Index
(VTCI) VTCI = LSTmax(NDVIi)−LST(NDVIi)

LSTmax(NDVIi)−LSTmin(NDVIi)
[90]

Temperature Vegetation Dryness Index
(TVDI) NDWI = LST−LSTmin

a+bNDVI−LSTmin
[91]

Vegetation Water Temperature Condition
Index (VWTCI) VWTCI = LSTmax(VDIi)−LST(VDIi)

LSTmax(VDIi)−LSTmin(VDIi)
[92]

Modified Vegetation Water Supply Index
(VWSI) MVWSI = RNDVI

RLST2 [93]

Temperature Vegetation Soil Moisture
Dryness Index (TVMDI)

√
LST2 + SM2 +

(√
3

3 − PVI
)2 [94]

Temperature Vegetation Water Stress
Index (TVWSI) TVWSI = d(SWCI, NDVI)

RLST
[38]

Typical VIs (Table 1) are calculated on the basis of the reflectance in the red
(600–700 nm) and part of the NIR (700–900 nm) spectral regions, whereas Water VIs use
reflectance in the SWIR bands. In addition, Pigment VIs reflect the concentrations of leaf
pigments, mainly chlorophyll, by using green and red-edge reflectance. The red-edge nar-
row band around 700 nm is unique due to its correspondence to the threshold between the
spectral regions with high light absorption (<700 nm) and high light reflectance (>700 nm)
by chlorophyll pigments [95]. On the other hand, Temperature VIs have been developed
with the participation of thermal infrared signals which provide information concerning
land surface and canopy temperature. This information is usually combined with fractional
vegetation coverage and Typical VIs to form a high-potential trapezoid theory to express
the decline in plant physiological processes as a symptom of stress [91].

2.3. Spectral Characteristics of Leaf Chlorophyll Content

Chlorophyll is a pigment that plays a crucial role in photosynthesis, by which plants
convert light energy into chemical energy. Specifically, chlorophyll molecules within
chloroplasts in plant cells absorb light energy and use it to drive the synthesis of organic
compounds such as glucose, which the plant uses for growth and metabolism. Chlorophyll
is also responsible for giving plants their green colour, as it absorbs light most efficiently in
the blue and red bands of the visible light spectrum and reflects green light.

Reduced leaf chlorophyll concentration in stressed plants alters the ability of plants to
absorb solar radiation, changing their typical spectrum reflectance patterns by a decrease in
green reflection and increases in red and blue reflections [83,96]. Therefore, remote-sensed
detection of water stress in plant requires a determination of typical spectral reflectance
patterns of healthy plants as a basis for comparison.

It has been established that certain reflectance wavelengths in the red and near-infrared
spectrum are responsive to changes in chlorophyll pigments. Maximum reflectance sen-
sitivity to chlorophyll contents have been reported at the wavelengths 550 and 700 nm
(Figure 2) [51,68,97]. As a result, numerous spectral indices have been developed utilising
the combination of spectral reflectance at these wavelengths by describing the relationships
between the reflectance value and chlorophyll content of leaves, including the widely
used normalised difference vegetation index (NDVI) [52] and various chlorophyll indices
(CIs) [95,98,99]. However, these relationships are inconsistent because chlorophyll concen-
tration can vary between plant species, with leaf age, or even among individuals of the
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same species in different habitat conditions. Coops et al. [48] recommend caution when
using this type of index to estimate plant water stress across various plant species, crop
types, or biomes.

2.4. Spectral Characteristics of Leaf Water Content

Water has a strong absorption feature in the mid-infrared (MIR) region (around
1300–2500 nm), and this absorption becomes more pronounced as the water content in-
creases [100,101]. Therefore, plant tissues with higher water content tend to exhibit lower
reflectance in the MIR wavelengths. Additionally, water content also affects the spectral
reflectance in the visible and NIR regions. As water content decreases, the reflectance in the
NIR region decreases while the reflectance in the visible region increases. Several studies
have confirmed the significant correlation between NIR and MIR reflectance and water
content in vegetation and soils [46,76,99–102].

Many water–vegetation indices have been derived from the reflectance of NIR, MIR,
and SWIR regions of the electromagnetic spectrum. For assessing the water content in
leaves utilizing remote sensing, Tucker [102] used a band within the range of 550 to 1750 nm.
Furthermore, Musick and Pelletier [100] suggested using the ratio of spectral bands be-
tween 550–1750 nm and 2080–2350 nm. Nevertheless, in the laboratory study of Hunt
and Rock [101], a strong correlation was observed between water content, leaf area, and
the spectral index derived from the reflectance at 820 and 1600 nm. Especially in the
SWIR region from 1400 to 2500 nm, strong relationships between specific spectral bands
and many field measurements as indication of plant water stress, such as relative water
content, leaf water potential, stomatal conductance, and cell wall elasticity, have been
determined [46,54,103]. Faurtyot and Baret [54] also suggested that the spectral bands at
1530 and 1720 nm were optimal for assessing plant water content.

The normalised difference water index (NDWI) developed by Gao [76] is one of the
most widely used indices for water content assessment as an indication of plant water
stress. It is calculated using the NIR and SWIR wavelengths, which are sensitive to the
presence of water in plant tissues. The formula for NDWI is (NIR − SWIR)/(NIR + SWIR),
where NIR refers to the reflectance at a near-infrared wavelength of 860 nm and SWIR
refers to the reflectance at a short-wave infrared wavelength of 1240 nm. NDWI has been
widely used to estimate water content for various tree species [104], particularly in areas
where water availability is limited or where drought stress is prevalent [59].

2.5. Spectral Characteristics of Canopy Temperature

The spectral characteristics of canopy temperature refer to the way that plants emit
thermal radiation in different parts of the electromagnetic spectrum, depending on their
temperature [60,62,105]. The temperature of a plant canopy is influenced by a number
of factors, including solar radiation, air temperature, humidity, and plant water use. In
the thermal infrared (TIR) region of the spectrum, plants emit radiation at wavelengths
between 800 and 1400 nm, which can be used to estimate their temperature [38,94,106].

When plants experience water stress, they close their stomata to reduce water loss,
which in turn reduces evaporative cooling. This causes the temperature of the plant canopy
to equilibrate with ambient conditions. In contrast, well-hydrated plants can maintain tran-
spiration and evaporative cooling, resulting in cooler canopy temperatures [66]. Therefore,
canopy temperature can be used as a direct indication of plant water stress. By measuring
canopy temperature remotely using thermal infrared imaging, it is possible to detect water
stress in crops and natural vegetation. The spectral characteristics of canopy temperature
can be used to assess plant stress and water use efficiency [107], and to monitor envi-
ronmental conditions such as drought, heat stress, and wildfire risk [32,39,108]. Various
spectral indices have been developed using TIR data to estimate canopy temperature and
detect plant stress, such as the crop water stress index (CWSI) [87] and the temperature
vegetation dryness index (TVDI) [91].
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The crop water stress index (CWSI) is a spectral index used to assess plant water stress
based on vegetation temperature. It was developed to quantify the degree of water stress
in crops, and it is calculated as the difference between the canopy temperature and the
air temperature, normalised by the difference between the canopy temperature and the
temperature of a well-watered reference surface.

TVDI is a spectral index used to assess vegetation water stress based on canopy
temperature and the amount of vegetation cover. The TVDI is calculated by taking the
difference between the surface temperature (measured by thermal sensors) and the tem-
perature of the surrounding environment, and dividing it by the difference between the
surface temperature and a reference temperature that represents maximum transpiration
under the same atmospheric conditions. A higher TVDI value indicates more severe water
stress, while a lower value indicates adequate water supply.

2.6. Spectral Characteristics of Plant Photosynthetic Efficiency

The photosynthetic efficiency of plants can be assessed using a variety of spectral char-
acteristics. In addition to the common measure of chlorophyll content, the photochemical
reflectance index (PRI) reflects changes in the xanthophyll-cycle pigment pool that protects
the plant from excess light energys [80,85,99]. Additionally, the spectral response in the
red and far-red wavelengths, including the emission of chlorophyll fluorescence, can also
indicate changes in photosynthetic efficiency, as plants often adjust their photosynthetic
machinery in response to changes in light conditions [65,108,109].

The PRI is a vegetation index that uses the difference in reflectance between the 531
and 570 nm wavelengths to estimate changes in the xanthophyll-cycle pigment pool [80].
PRI has been shown to be a sensitive indicator of plant stress, particularly in response
to changes in light and water availability. PRI can be measured using high-resolution
spectrometers or hyperspectral sensors that are capable of capturing narrow spectral bands
in the visible and near-infrared regions. The PRI signal can be quantified using the PRI
ratio, which is the difference between the reflectance at 531 and 570 nm divided by the
sum of the reflectance at 531 and 570 nm. Zhang et al. [86] suggested using reflectance
at other wavelengths (i.e., 512, 515, 551, 555, 602, 645, 667, 668 nm) instead of 570 nm.
Gamon et al. [84] also developed PRI using alternative wavelengths (515, 525, 535, 545 nm)
for 531 nm.

Chlorophyll fluorescence has distinct spectral characteristics that can be detected using
remote sensing [65,68,110,111]. When plants absorb light energy in the photosynthetic
process, some of it is dissipated as heat, while the rest is used to power the conversion of
carbon dioxide and water into organic compounds. However, if the amount of absorbed
light energy exceeds the amount needed for photosynthesis, excess energy is dissipated as
fluorescence. Chlorophyll fluorescence emits in the red and far-red regions of the spectrum
mainly in the 650–750 nm spectral range [112], with peak emission occurring at around
685 nm [68,113].

3. Remote Sensing Application for Water Stress Management in Forestry

Remote sensing applications for water stress detection and monitoring have devel-
oped rapidly since the 1970s, involving a wide range of techniques to examine water status
in plants and damage from water deficit [33,114,115]. However, in spite of considerable
investment in developing sensors and platforms as well as data processing, their applica-
tions have been mainly used to support irrigation in agricultural land where crops such
as maize [47,105] and bean [104], are vulnerable to drought [33,116]. In the past, there has
been relatively little research attention on remote-sensed methods to assess water stress in
forests [23,36,41].

Increasingly, climate change is causing water stress in forests with significant ad-
verse impacts on forest ecosystems, including changes in forest structure and composition,
increased susceptibility to pests and diseases, and reduced carbon sequestration capac-
ity [11,12,38,117]. Therefore, there is growing recognition of the importance of forest water
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stress as a critical issue for forest health and resilience, as well as for the provision of
ecosystem services such as carbon sequestration, biodiversity conservation, and water
regulation [5,23,32,38,39].

Interest in remote sensing applications for forest water stress management are gaining
attraction as this could provide a more effective means of implementing forest management.
Forest management practices, such as thinning, pruning, and selective harvesting, can
help maintain soil moisture levels, reduce competition among trees for water, and promote
efficient water use [117–119].

In the following sections, we provide a quantitative assessment of remote sensing
applications in forest water stress management, utilizing Web of Science Core Collection
(www.webofscience.com, accessed on 31 March 2023), CAB Abstracts (www.cabdirect.org,
accessed on 31 March 2023), and Scopus (www.scopus.com, accessed on 31 March 2023).
The search encompassed all publications indexed up until the date of access on 31 March
2023. The key words used for the search in the title, keywords, and abstract were “remote
sensing” or “remotely sensed”, “water stress” or “drought-stress”, and in combination with
“forest” or “forestry”. The results were manually reviewed if an additional search detected
the term “random forest”. This is the name of an algorithm commonly used in remote
sensing processing; however, it leads to confusion when attempting to locate studies related
to forests and forestry.

3.1. Overall Trend of Remote Sensing Applications for Forest Water Stress Assessment

A total of 223 publications were found; 160 of them appeared in all searched databases.
The total result is relatively small compared to the vast number of 1412 similar studies in
agriculture (Figure 3).
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Of all the publications reviewed, the majority of works are concentrated in Europe
and North America, as shown in Figure 4. This is understandable because these areas are
where remote sensing technology was first developed and where numerous breakthroughs
have occurred. However, there has been a significant rise in the number of publications
from 2010 to the present for Asia, particularly in China. It is also worth noting that South
America, which has the world’s largest tropical rainforest ecosystem, has received recent
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interest due to the impact of climate change and an escalating risk of water stress. Overall,
it is clear that many of the world’s forests in the tropics and southern hemisphere are in
need of further input into the remote sensing of forest condition.
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Figure 5 shows the number of research subjects by forest type. The distribution of
studies by geographical area in Figure 4 partly determines which forest types are the
subjects of the reviewed studies. A significant proportion of the study areas are located
in Europe and North America, which have temperate climates and are home to a diverse
range of conifers and deciduous broadleaf species, such as Quercus (oak), Fagus (beech), and
Castanea (chestnut). Research on evergreen broadleaf species is comparatively limited and
primarily concentrated in the tropical forest areas of southwest China and the Amazonia
rainforest. Additionally, there is an increasing trend in studying eucalypts in Australia,
as some of these species, despite being considered drought-tolerant, are facing water
availability limits in their natural habitats. In particular, advancements in satellite remote
sensing technology have enabled studies to be conducted over vast territories that span
multiple continents and encompass diverse forest ecosystems [120–123].

Satellite imagery has been preferred for water stress monitoring in forests (Figure 6).
The main reason for this is that this imagery provides a wide coverage area, allowing for
monitoring of large forested regions. This is especially beneficial for monitoring water stress
in forests, which can occur at various scales, from individual trees to entire watersheds.
Satellite imagery also provides timely and regular multispectral data that allow monitoring
changes in water stress over time. Similarly, other parameters such as harvesting patterns
or disturbances can be determined.

All digital information can be stored in databases, enabling users to study past phe-
nomena and continuously monitor their evolution over extended periods. This long-term
storage of satellite imagery data allows for historical analysis, facilitating the examination
of past trends and changes in various environmental phenomena, including water stress
in forests. By maintaining a historical archive of satellite imagery, researchers and forest
managers can gain insights into the long-term dynamics of water stress in forests and track
changes over time.

Regarding the types of spectral data used (Figure 7), the most preferred is reflectance
in the visible and near-infrared bands. These bands are highly effective in capturing the
distribution and condition of vegetation, primarily through widely used vegetation indices
such as NDVI and EVI (enhanced vegetation index). Additionally, SWIR data are crucial as
it can provide valuable information about the presence of liquid water in the forest canopy,
which is directly related to water stress. Furthermore, thermal infrared data are increasingly
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being used, as it can detect abnormal increases in the temperature of water-stressed forest
canopies caused by reduced cooling efficiency of plants through transpiration. There are a
number of new applications based on the spectral space relations derived from the land
surface temperature–vegetation index (LST-VI) combination [29,38,124,125].
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3.2. Change in Applications over Time

Earliest applications of remote sensing for forest water stress management appeared
in the middle of the 1980s. These included studies by Korner [126] who used a thermal
scanner to detect water stress symptoms in leaves, and Spencer [127] who applied large-
scale 70 mm colour and black-and-white aerial photography to detect dieback in drought-
stressed radiata pine. Spencer [127] emphasised the superior performance of colour photos
as compared to black-and-white and field survey data. The use of satellite remote sensing
to monitor forest–water interactions in water-limited sites was mentioned in the study
by Running and Nemani [128], in which correlations between NDVI calculated from the
Advanced Very High Resolution Radiometer (AVHRR) sensor and both photosynthesis
(PSN) and transpiration (TRN) were examined. The result showed a correlation between
weekly NDVI and PSN of up to R2 = 0.64 on sites with substantial seasonal water stress.
Correlations of weekly NDVI with TRN followed the same pattern as PSN, but they were
slightly lower.

The effectiveness of aircraft-based remote sensing at the landscape scale was confirmed
by Pierce et al. [129] for early-morning water stress detection in conifer forests in Germany
using a wide range of bands. However, this study, in line with Hunt and Rock [101] and
Cohen [130], stated that spectral reflectance from satellite imagery was not good enough
to accurately detect water stress in forests, despite the established correlation between
reflectance and water stress in plants [101,129]. Riggs and Running [131] also saw that water
stress in conifer canopies might not be routinely detectable at an operational landscape
scale due to the requirement of extensive ground data at times of aircraft operation.

However, Kalluri and Doraiswamy [132] advanced the field of research by calculating
CWSI using a combination of Landsat and ground-based data in four separate districts in
Iowa, USA. It was possible to determine the frequency, severity, and length of water stress
using the temporal patterns of CWSI. The advantage of this technique was the possibility of
application over large areas. This approach was supported by Vidal and Devauxros [133]
with the Landsat-derived water deficit index (WDI).
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Numerous new methods and applications of remote sensing techniques were intro-
duced in the 1990s due to the outstanding development of many scientific disciplines and
technologies, especially new sensors, and spectrometers with the capability to capture
spectral reflectance in narrower bands. In the middle of the 1990s, a new technique was
introduced by Gunther et al. [134] and Valentini et al. [135]. This involved the assessment of
water stress by airborne laser-induced fluorescence of Quercus pubescens differentiating the
ratio F685/F730 as a signal of stressed plants versus non-stressed plants. The effectiveness
of this technique has been confirmed by many studies; however, it is still limited at a
spatial scale to small clusters of trees and may only be applicable for ground-truth control
measurements [134–137].

With the development of satellite imagery, there was a major trend in the late 1990s
toward using AVHRR data to calculate vegetation indices (i.e., NDVI, LAI, WDI, and
CWSI) as indicators of water stress [138–141], in which NDVI was the most popular index
for applications, appearing in 75% of publications. In this period, vegetation water stress
assessments preferred using simultaneous reflectance in the VIS, NIR, and TIR wavelengths,
as available with the NOAA-AVHRR sensor [142] due to the advantages of its high temporal
resolution (four images per day captured by two satellites) and multispectral bands (VIS,
NIR, MIR, and TIR). The first use of PRI was in 1997 for stress detection in evergreen
Mediterranean trees, including Quercus ilex and Phillyrea latifolia, [143] along with the
introduction of the water index (WI) [144]. This opened a new direction in detecting
stresses in plants in general.

The first decade of the 21st century presented breakthrough technology in spaceborne
hyperspectral imagery with the launch of the Earth Observing-1 (EO-1) satellite in 2000,
this carrying the Hyperion sensor. Spectroscopic data from this source were utilised to
examine the dynamics of tropical rainforests and successfully detect drought stress in
tropical forests, as well as monitoring forest physiology and carbon sequestration [145].
Although the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), another source of
high-quality hyperspectral images of the Earth surface, had its debut in 1993, this imagery
was unable to be applied to water stress monitoring due to low temporal resolution and
costly expense [146].

In 2003, Europe experienced one of its warmest and driest summers, a precursor to
future events affecting forest health due to climate change [147]. This event was a good
opportunity for researchers to examine the condition and effects of drought stress and to
develop new methods to assess, monitor, and predict similar events. Gobron et al. [147]
assessed water stress areas over large areas of Eastern Europe using data from the Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) in association with the Medium Resolution
Imaging Spectrometer (MERIS) sensor attached to the ENVISAT platform of the European
Space Agency. Comparison with healthy vegetation in the year 2004 revealed the dramatic
impact of the extreme drought on a variety of forest cover. Many other forest water stress
studies have since been undertaken elsewhere in Europe using remotely sensed data from
both spaceborne and airborne sources [72,148–151].

In addition to general vegetation indices such as NDVI, a wide range of new vegeta-
tion indices for water content assessment, such as NDWI [80], have been developed and
validated for further applications in terms of forestry [152]. In the late 2000s, NDWI was
one of the most preferred spectral indices for water stress monitoring in not only forestry
but also in agriculture [153–155].

Eitel et al. [59] analysed the relationships between the actual water measurements
of Populus spp. with NDWI, maximum difference water index (MDWI), the red-edge
inflection point (REIP), and the water index (WI). The authors suggested that these indices
exhibited significant relationships to high-severity water stress in poplar forests. However,
the indices exhibited a lack of sensitivity in detecting low and moderate water stress
levels in poplar in spite of the success in using SWIR-incorporating indices to detect water
stress in other species. In another study, Jiang et al. [155] suggested using the shortwave
infrared water stress index (SIWSI) with MODIS data instead of NDWI. Further study by
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Jang et al. [79] integrated NDVI and NDWI to develop the new normalised moisture index
(NMI). This study also presented a negative correlation between NMI and canopy surface
temperature as an indicator of water stress. Satellite-based PRI was first used in forestry
when Goerner et al. [156] tracked seasonal drought effects on a Mediterranean Quercus
ilex forest using MODIS data. For this forest type, the drought-induced reduction in gross
primary productivity estimated by PRI achieved higher accuracy as compared with the
traditional MODIS-GPP algorithm [156]. This was supported by two other studies [157,158].

During the 2010s, there was a notable advancement in all methods employed for
monitoring forest water stress. This progress was characterised by an expanded appli-
cability to various forest types and the integration of existing remote sensing indices to
create novel ones that exhibited enhanced sensitivity to stress conditions. For example,
Ishimura et al. [159] used the improved temperature vegetation dryness index (iTVDI)
to observe Japanese beech forest decline caused by air pollution and water deficits, and
established that the improved index could detect tree collapses more accurately than the
traditional NDVI and the former TVDI. The most popular applications involved map-
ping water stress by calculating basic vegetation indices, such as NDVI and EVI, from
satellite-based data, especially MODIS and Landsat [40,160–162].

With the operation of the Greenhouse Gases Observing Satellite (GOSAT) in 2009,
which provides sun-induced chlorophyll fluorescence data, the physiological and bio-
chemical processes of forest trees can be evaluated from space instead of using handheld
fluorometers. Lee et al. [163] used these data to model forest productivity under the impacts
of water stress in Amazonia evergreen forests. They found that the variance in observed
monthly mid-day fluorescence from GOSAT was a consequence of water stress.

The rapid development of unmanned aerial vehicles (UAV) and recognition of their
potential resulted from upgraded battery duration for longer flight. As a result, many
studies have explored using this platform with an appropriate sensor to measure water
stress in forests [164–167]. For example, Gomez-Candon et al. [168] used UAV remotely
sensed thermal images in combination with VIS and NIR data to assess water stress at
the tree scale. The findings demonstrated a strong correlation between calibrated thermal
images and ground-truth data. In comparison to healthy trees, those under water stress
had significantly higher canopy temperatures.

A new application of radar remote sensing was developed by Steele-Dunne et al. [169].
By examining scatterometer data captured from a cluster of trees, the authors indicated
that the difference in C-band wind scatterometer measurements between descending and
ascending passes of the European Remote Sensing (ERS) satellite corresponded to the onset
of vegetation water stress. Following the same approach, Konings et al. [170] determined
the water stress status in the humid tropical forests of Central Africa at basin scale using
radar backscatter from QuikSCAT (2001–2009) and RapidScat (2014–2016) at 0.25◦ grid-cell
resolution. The findings revealed that diurnal variations in RapidScat backscatter effectively
showcased the occurrence of widespread mid-day stomatal closure in the studied forests.
The results clearly indicate that microwave and radar technology hold significant potential
for monitoring water stress in forests. Notably, active remote sensing systems, which
have already been proven effective in agricultural drought monitoring, were extensively
reviewed by Vreugdenhil et al. [171]. The advancements and challenges associated with
these technologies in the agricultural sector highlight their promising prospects for similar
applications in forestry. However, it is worth mentioning that there are a limited number
of published studies exploring their utilization in forest ecosystems. Nonetheless, the
accomplishments witnessed in agriculture bolster the viability of employing these methods
for water stress monitoring in forests in the near future.

Modelling the impacts of water stress on forest ecosystems was a new research di-
rection restated during the decade. Sun et al. [172] tested the water supply stress index
(WaSSI), a monthly water–carbon balance model, for potential application in addressing the
influences of water stress on natural ecosystem services in the US. The authors suggested
that the WaSSI model was successful in simulating long-term water–carbon balances in
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forests at a watershed scale. In the same year, Brouwers et al. [161] used Landsat data
for water stress mapping in an evergreen eucalypt forest under a Mediterranean-type cli-
mate. This study also produced a damage probability model from a set of topography and
climate-related factors in association with the probability of drought/heat stress within the
forest. The application can be easily adapted to other regions to support forest management
to mitigate water stress damage.

In the late 2010s, there was an increase in the number of applications monitoring water
stress by the canopy water content (CWC) measurements from airborne
imagery [173–175]. These studies measured CWC in conifer forests at landscape scale
in association with leaf-level physiology measurements and crown-level foliage dieback
surveys. The results proved that CWC or change in CWC were useful for water stress
detection by revealing patterns of potential foliage damage and canopy collapse in conifers.
However, the necessity for aircraft equipped with high-quality hyperspectral sensors
presents a significant challenge for the widespread adoption of this method.

In recent years, determining the response of forest trees and ecosystems to water
deficit, droughts, and heat waves, and changes in water–forest interactions, have been a
focus of research as solutions to manage an increasingly warmer and drier environment
are sought. In such studies, remote sensing techniques have been effective because of their
applicability at landscape scale [29,176,177]. In addition, the 2018 drought event in Europe,
which was climatically more severe and had more serious impacts on forest ecosystems
than the 2003 drought, has raised more awareness by forest managers and researchers
regarding forest water stress, and it also precipitated studies in regard to the response of
forests to drought and the effects of water stress on large-scale forest health [178,179].

In addition, new spectral indices have been developed for forest water stress assess-
ment based on indices previously applied to agricultural crops. Avetisyan [180] intro-
duced the plant senescence reflectance index (PSRI2) comprising two red-edge bands
(705 and 783 nm) and the green peak band (560 nm) from the Sentinel-2 satellite. This
index was tested in broadleaf forests, coniferous and mixed forests, and transitional wood-
lands/shrubs, whereas the original PSRI was used for field crops and fruit trees [181]. An-
other study by Masiello et al. [182] utilised hyperspectral data from Infrared Atmospheric
Sounder Interferometer (IASI) mounted on European Space Agency’s MetOp satellites to
develop the IASI water deficit index (IASI-WDI) to monitor water stress in Mediterranean
forests in Italy. The study also produced a time series of the index that indicated the
atmospheric background conditions associated with any meteorological drought causing
stress in the forest. The most recent index is the temperature vegetation water stress index
(TVWSI) developed by Joshi et al. [38], which comprises three indicators associated with
plant water stress: canopy temperature through LST, canopy water content through the
surface water content index (SWCI), and canopy fractional cover through NDVI.

A new application of remote sensing in monitoring water stress in urban forestry
was provided by Fuentes et al. [183]. The study captured images by an integrated visible
and infrared thermal camera to calculate effective leaf area index (LAIe) and the newly
introduced tree water stress index (TWSI) derived from CWSI [87]. The relationships
between TWSI and LAIs were mapped to highlight water-stressed tree locations among
healthy urban green infrastructure. Furthermore, Ma et al. [110] monitored forest water
stress using satellite solar-induced chlorophyll fluorescence (SIF) data, canopy fluorescence
yield (SIFyield) data, and multisource remote sensing indices, including vegetation indices
(NDVI, EVI), leaf area index (LAI), and fraction of absorbed photosynthetically active
radiation (fPAR). Results from a performance analysis showed that SIFyield achieved a
higher sensitivity to water stress, giving an earlier response to water deficit in forests than
other indicators, and with an abnormal change higher by at least 10%. Recent studies
also confirmed the potential of SIF in association with the standardised precipitation
evapotranspiration index (SPEI) in forest water stress detection [177,184,185].
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3.3. Overall Findings

Forest water stress management has been gaining greater interest in the context of
climate change and increase in both frequency and severity of drought globally. With a
rapidly growing number of publications each year, the most popular applications involve
large-scale satellite-based data, especially reflectance at visible and infrared wavelengths, to
observe water stress symptoms and damage to ecosystems, and to monitor the recovery of
forests after stress. The use of UAV-based imagery and new types of remotely sensed data,
such as satellite-based solar-induced chlorophyll fluorescence and hyperspectral images, is
trending with the overall development of global science and technology. Furthermore, there
is a continued need to enhance the analysis of canopy spectral reflectance using vegetation
indices in order to effectively describe the water status in forests. The introduction of
new indices with higher sensitivity in conjunction with higher-quality data as well as
improvements and integration of existing indications are promising avenues for research.

Indeed, a wide range of VIs has been tried on forest water stress monitoring, as
shown in Table 1. However, the wide distribution of water stresses across forested areas
necessitates the use of remote sensing data with extensive coverage for effective analysis
and monitoring. As a result, studies have primarily prioritised the use of satellite remote
sensing data, which provides extensive coverage through broad image scenes. A significant
limitation arises from the low resolution of these data, rendering it impossible to calculate
vegetation indices with narrow wavebands, such as pigment vegetation indices. Similarly,
water vegetation indices utilizing basic waveforms, such as NDWI or SIWSI, yield unsatis-
factory results when applied to forest objects [154,186,187]. The current development of
these indicators predominantly revolves around testing increasingly narrower wavelengths,
which unfortunately are incompatible with satellite remote sensing data [80,85,86] at this
time. Consequently, widespread usage remains concentrated on a few simple indices,
notably NDVI and EVI [187–190]. Although these indices effectively assess damage to
forest resources caused by water stress, they do not effectively facilitate early detection and
continuous monitoring of water stress progression.

Recently, there has been a growing trend in employing temperature vegetation in-
dices [191–193]. These indices derive their strength from the combined analysis of spectral
reflectance, indicating the presence of vegetation stress even before visible damage occurs,
and the variation in temperature conditions within the canopy. The temperature fluctuation
serves as an indicator of the forest’s cooling system efficiency, which diminishes in the
absence of water [38]. This information is valuable for monitoring purposes. Notably, the
application of temperature vegetation indices has produced significant and meaningful
results. Looking ahead, the potential for temperature vegetation indices is poised to ex-
pand further, especially with the integration of thermal infrared sensors into UAVs. This
advancement holds promise for enhancing the effectiveness of monitoring water stress
in forests.

4. Integration of Remote Sensing of Water Stress with Other Spatial Datasets for
Forest Management

Published studies have indicated that various environmental factors influence water
stress in forests, including climatic conditions, soil and vegetation cover, hydrology, and
topography [194–196]. Climate and weather features play a crucial role in the development
of water stress in forests, as do features of the forests themselves, such as overall leaf area
and the species involved.

Factors such as temperature, precipitation, humidity, and evapotranspiration can
impact the overall water balance and thus availability of water in forests. With climate
change, extended periods of high temperatures or drought can increase water stress in
forests by reducing water availability and increasing water demand by vegetation.

Soil characteristics, such as soil texture, structure, and depth in particular, can also
affect water stress in forests. Soil with low water holding capacity or poor drainage may
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limit the availability of water for plant uptake, leading to water stress. Soil properties also
influence the rate of water infiltration, which can affect water availability for tree roots.

The type, density, and health of vegetation in forests can also influence water stress.
Dense vegetation can compete for limited water resources, potentially leading to water
stress in individual trees or stands. Additionally, the type of vegetation, such as species com-
position and physiological traits, can affect water-use efficiency and tolerance to drought.
In addition, topographic variables, including slope, aspect, and elevation, have impacts on
water stress in many ways.

Slope directly contributes to hydrological processes, such as runoff, groundwater
recharge and discharge, and streamflow, which influence how water is spread within the
ecosystem, and thus determine which areas have less water availability than others. In the
northern hemisphere, south- or west-facing aspects may experience higher water stress
due to increased solar radiation and evapotranspiration rates, while north-facing slopes
may retain more moisture. Elevation can also affect temperature and precipitation patterns
by forming microclimate conditions.

The strong development of GIS and computer science makes it easier than ever to
represent those environmental factors in the form of spatial data sets. Simulation of
environmental factors constituting forest water stress in a GIS is ideal for performing spatial
analyses to consider the risk of this phenomenon occurring. Clearly, besides assessing water
stress patterns and damage, forecasting the risk of this phenomenon is very important.
Precise prediction and early detection are the basis for successful interventions to minimise
damage to the ecosystems, which is the main goal that sustainable forest management
aims at. Until now, there have been limited studies that have developed such forecasting
models. Commonly used models are only general drought forecasting models that rely
on meteorological models and water balance calculations at the watershed scale, without
considering the response of vegetation or the distribution of different levels of stress in the
ecosystem [197–200].

Different from agricultural crops, forests with water stress cannot be supported by
irrigation and they depend solely on natural water sources, such as precipitation and soil
water reserves. As climate change tends to reduce the amount of water input to natural
ecosystems, interventions should aim at reducing water consumption by ecosystems.
Ecological thinning and prescribed burning have been considered as the most feasible
solutions which help reduce competition for water among trees and alleviate water stress in
forests [117]. However, implementing such silvicultural interventions requires significant
resources in terms of time and labour, making it challenging to carry out on a large scale
across the entire forest. This underscores the importance of developing models that can
predict and detect water stress early, allowing for proactive management actions to be taken
in a targeted and efficient manner. The initial modelling results of Brouwers et al. [161] and
Avetisyan et al. [201] are examples for this promising direction of research.

5. Conclusions

As global temperatures rise and precipitation decreases, the likelihood of water stress
occurring in forest ecosystems is increasing. This review indicates that traditional methods
for determining water stress are less applicable for large forest areas, which has led to the
growing use of remote sensing technology, particularly satellite images, over the past two
decades to overcome the issue of spatial scale. Nevertheless, traditional ground-based
methods remain invaluable for validating the accuracy of remote-sensed measurements
and for the validation and calibration of models derived from remote sensing. One of the
most popular remote sensing applications is the use of visible and near-infrared spectrum
bands in satellite remote sensing images, along with basic vegetation indicators, to monitor
changes in vegetation and assess the effects of water stress. The advancement of remote
sensing methods, utilizing more flexible platform and higher-resolution spectral data, has
established the way for the emergence of new remote sensing indices that exhibit greater
sensitivity to water stress. UAVs and data from solar-induced chlorophyll fluorescence and
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hyperspectral images hold promise for increased use in future applications. However, it
remains challenging to replace the widespread use of popular satellite images like MODIS,
Landsat, and Sentinel-2 due to their popularity, accessibility, and historical records. In the
near future, it will be important to combine the results of studies on the response of forests
to water stress with environmental factor datasets, to assess the likelihood of water stress
occurring in forest ecosystems in the context of climate change. These applications are
crucial for providing interventions to manage forest resources in a sustainable manner.
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124. Przeździecki, K.; Zawadzki, J.J.; Urbaniak, M.; Ziemblińska, K.; Miatkowski, Z. Using temporal variability of land surface
temperature and normalized vegetation index to estimate soil moisture condition on forest areas by means of remote sensing.
Ecol. Indic. 2023, 148, 110088. [CrossRef]

125. Ghasempour, R.; Aalami, M.T.; Kirca, V.S.O.; Roushangar, K. Remote sensing-based drought severity modeling and mapping
using multiscale intelligence methods. Stoch. Environ. Res. Risk Assess. 2023, 37, 889–902. [CrossRef]

126. Korner, C. Humidity responses in forest trees: Precautions in thermal scanning surveys. Arch. Meteorol. Geophys. Bioclimatol. B
1985, 36, 83–96. [CrossRef]

127. Spencer, R.D. Large-scale aerial photo comparison for detecting pine dieback. Aust. For. 1985, 48, 102–108. [CrossRef]
128. Running, S.W.; Nemani, R.R. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and

transpiration of forests in different climates. Remote Sens. Environ. 1988, 24, 347–367. [CrossRef]
129. Pierce, L.L.; Running, S.W.; Riggs, G.A. Remote detection of canopy water stress in coniferous forests using the NS001 thematic

mapper simulator and the thermal infrared multispectral scanner. PE&RS Photogramm. Eng. Remote Sens. 1990, 56, 579–586.
130. Cohen, W.B. Temporal versus spatial variation in leaf reflectance under changing water stress conditions. Int. J. Remote Sens. 1991,

12, 1865–1876. [CrossRef]
131. Riggs, G.A.; Running, S.W. Detection Of Canopy Water-Stress In Conifers Using The Airborne Imaging Spectrometer. Remote

Sens. Environ. 1991, 35, 51–68. [CrossRef]
132. Kalluri, S.N.V.; Doraiswamy, P. Modeling transpiration and water stress in vegetation from satellite and ground measurements.

In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium (IGARSS 95), Florence, Italy, 10–14 July
1995; pp. 1483–1487.

133. Vidal, A.; Devauxros, C. Evaluating Forest-Fire Hazard With A Landsat Tm Derived Water-Stress Index. Agric. For. Meteorol.
1995, 77, 207–224. [CrossRef]

134. Gunther, K.P.; Dahn, H.G.; Ludeker, W. Remote-Sensing Vegetation Status By Laser-Induced Fluorescence. Remote Sens. Environ.
1994, 47, 10–17. [CrossRef]

135. Valentini, R.; Cecchi, G.; Mazzinghi, P.; Mugnozza, G.S.; Agati, G.; Bazzani, M.; Deangelis, P.; Fusi, F.; Matteucci, G.; Raimondi,
V. Remote-sensing of chlorophyll-a fluorescence of vegetation canopies.2. Physiological significance of fluorescence signal in
response to environmental stresses. Remote Sens. Environ. 1994, 47, 29–35. [CrossRef]

136. Buschmann, C.; Schweiger, J.; Lichtenthaler, H.K.; Richter, P. Application of the Karlsruhe CCD-OMA LIDAR-fluorosensor in
stress detection of plants. J. Plant Physiol. 1996, 148, 548–554. [CrossRef]

https://doi.org/10.3390/rs15040879
https://doi.org/10.1016/j.measurement.2021.110327
https://doi.org/10.3390/photonics8120582
https://doi.org/10.1093/jexbot/51.345.659
https://www.ncbi.nlm.nih.gov/pubmed/10938857
https://doi.org/10.1016/j.agwat.2022.107575
https://www.dbca.wa.gov.au/sites/default/files/2022-10/Independent%20Silviculture%20Review%20Panel%20Report%20May%202022.pdf
https://www.dbca.wa.gov.au/sites/default/files/2022-10/Independent%20Silviculture%20Review%20Panel%20Report%20May%202022.pdf
https://doi.org/10.1016/j.foreco.2020.118266
https://doi.org/10.1016/j.jhydrol.2019.03.005
https://doi.org/10.1002/rse2.252
https://doi.org/10.1088/1748-9326/ac8608
https://doi.org/10.1016/j.rse.2020.112233
https://doi.org/10.1016/j.ecolind.2021.108349
https://doi.org/10.1016/j.ecolind.2023.110088
https://doi.org/10.1007/s00477-022-02324-w
https://doi.org/10.1007/BF02269459
https://doi.org/10.1080/00049158.1985.10674430
https://doi.org/10.1016/0034-4257(88)90034-X
https://doi.org/10.1080/01431169108955215
https://doi.org/10.1016/0034-4257(91)90065-E
https://doi.org/10.1016/0168-1923(95)02262-V
https://doi.org/10.1016/0034-4257(94)90122-8
https://doi.org/10.1016/0034-4257(94)90124-4
https://doi.org/10.1016/S0176-1617(96)80074-5


Remote Sens. 2023, 15, 3360 23 of 25

137. Lichtenthaler, H.K.; Subhash, N.; Wenzel, O.; Miehe, J.A.; IEEE. Laser-induced imaging of blue/red and blue/far-red fluorescence
ratios, F440/F690 and F440/F740, as a means of early stress detection in plants. In Proceedings of the 1997 International
Geoscience and Remote Sensing Symposium (IGARSS 97) on Remote Sensing—A Scientific Vision for Sustainable Development,
Singapore, 3–8 August 1997; pp. 1799–1801.

138. Illera, P.; Delgado, J.A.; Unzueta, A.F.; Manso, A.A.F. Integration of NOAA-AVHRR and meteorological data in a GIS—Application
for vegetation monitoring in Castilla y Leon, Spain. In Proceedings of the 19th EARSeL Symposium on Remote Sensing in the
21st Century, Valladolid, Spain, 31 May–2 June 1999; pp. 47–54.

139. Illera, P.; Fernandez, A.; Calle, A. Operational forest fire danger indices derived from NOAA images. In Remote Sensing’96:
Integrated Applications for Risk Assessment and Disaster Prevention for the Mediterranean: Proceedings of the 16th EARSel Symposium
on Integrated Applications for Risk Assessment and Disaster Prevention for the Mediterranean, Malta, 20–23 May 1996; A A Balkema
Publishers: London, UK, 1997; pp. 319–325.

140. Illera, P.; Fernandez, A.; Delgado, J.A. Temporal evolution of the NDVI as an indicator of forest fire danger. Int. J. Remote Sens.
1996, 17, 1093–1105. [CrossRef]

141. Karlikowski, T.; Dabrowska-Zieliska, K.; Zawila-Niedzwiecki, T.; Gruszczynska, M.; Santorski, Z.; Sakowska, H.; Janowska, M.
The use of NOAA-AVHRR images for forest fire risk assessment. Pr. Inst. Badaw. Lesn. 1997, 72, 72.

142. Deshayes, M.; Guyon, D.; Jeanjean, H.; Stach, N.; Jolly, A.; Hagolle, O. The contribution of remote sensing to the assessment of
drought effects in forest ecosystems. Ann. For. Sci. 2006, 63, 579–595. [CrossRef]

143. Penuelas, J.; Llusia, J.; Pinol, J.; Filella, I. Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency
assessment in Mediterranean trees. Int. J. Remote Sens. 1997, 18, 2863–2868. [CrossRef]

144. Penuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970).
Int. J. Remote Sens. 1997, 18, 2869–2875. [CrossRef]

145. Asner, G.P.; Nepstad, D.; Cardinot, G.; Ray, D. Drought stress and carbon uptake in an Amazon forest measured with spaceborne
imaging spectroscopy. Proc. Natl. Acad. Sci. USA 2004, 101, 6039–6044. [CrossRef]

146. Harding, L.W.; Miller, W.D.; Swift, R.N.; Wright, C.W. Aircraft Remote Sensing. In Encyclopedia of Ocean Sciences, 2nd ed.;
Academic Press: Cambridge, MA, USA, 2001; pp. 138–146.

147. Gobron, N.; Pinty, B.; Mélin, F.; Taberner, M.; Verstraete, M.M.; Belward, A.; Lavergne, T.; Widlowski, L. The state of vegetation in
Europe following the 2003 drought. Int. J. Remote Sens. 2005, 26, 2013–2020. [CrossRef]

148. Gonzalez-Alonso, F.; Merino-de-Miguel, S.; Cuevas, J.M.; Roldan-Zamarron, A.; Garcia-Gigorro, S.; Calle, A.; Casanova, J.L.;
Romo, A. Previous Drought Conditions and Losses Produced at the Valencia de Alcantara Forest Fire in August 2003. In New
strategies for European Remote Sensing, Proceedings of the 24th Symposium of the European Association of Remote Sensing Laboratories,
Dubrovnik, Croatia, 25–27 May 2004; Millpress Science: Rotterdam, The Netherlands, 2005; pp. 95–99.

149. Leblon, B. Monitoring forest fire danger with remote sensing. Nat. Hazards 2005, 35, 343–359. [CrossRef]
150. Reichstein, M.; Ciais, P.; Papale, D.; Valentini, R.; Running, S.; Viovy, N.; Cramer, W.; Granier, A.; Ogee, J.; Allard, V.; et al.

Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower,
remote sensing and modelling analysis. Glob. Change Biol. 2007, 13, 634–651. [CrossRef]

151. Gouveia, C.; Trigo, R.M.; DaCamara, C.C. Drought and vegetation stress monitoring in Portugal using satellite data. Nat. Hazards
Earth Syst. Sci. 2009, 9, 185–195. [CrossRef]

152. Wang, C.; Lu, Z.; Haithcoat, T.L. Using Landsat images to detect oak decline in the Mark Twain National Forest, Ozark Highlands.
For. Ecol. Manag. 2007, 240, 70–78. [CrossRef]

153. Lu, X.; Zhuang, Q. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United
States using MODIS and AmeriFlux data. Remote Sens. Environ. 2010, 114, 1924–1939. [CrossRef]

154. Wang, L.; Luo, Y.Q.; Huang, H.G.; Shi, J.; Keliövaara, K.; Teng, W.X.; Qi, G.X. Reflectance features of water stressed Larix gmelinii
needles. For. Stud. China 2009, 11, 28–33. [CrossRef]

155. Jiang, Z.; Li, L.; Ustin, S.L. Estimation of canopy water content with MODIS spectral index. In Proceedings of the SPIE—The
International Society for Optical Engineering, San Diego, CA, USA, 3–4 August 2009.

156. Goerner, A.; Reichstein, M.; Rambal, S. Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based
PRI in a Mediterranean forest. Remote Sens. Environ. 2009, 113, 1101–1111. [CrossRef]

157. Moreno, A.; Maselli, F.; Gilabert, M.A.; Chiesi, M.; Martinez, B.; Seufert, G. Assessment of MODIS imagery to track light-use
efficiency in a water-limited Mediterranean pine forest. Remote Sens. Environ. 2012, 123, 359–367. [CrossRef]

158. Gilabert, M.A.; Moreno, A.; Maselli, F.; Chiesi, M.; Martinez, B.; Seufert, G.; Melia, J. Tracking Seasonal Drought Effects On
Ecosystem Light Use Efficiency In A Mediterranean Forest Using Climatic And Remote Sensing Data. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 1147–1150.

159. Ishimura, A.; Shimizu, Y.; Rahimzadeh-Bajgiran, P.; Omasa, K. Remote sensing of Japanese beech forest decline using an improved
Temperature Vegetation Dryness Index (iTVDI). IForest 2011, 4, 195–199. [CrossRef]

160. Byer, S.; Jin, Y. Detecting Drought-Induced Tree Mortality in Sierra Nevada Forests with Time Series of Satellite Data. Remote Sens.
2017, 9, 929. [CrossRef]

161. Brouwers, N.C.; van Dongen, R.; Matusick, G.; Coops, N.C.; Strelein, G.; Hardy, G. Inferring drought and heat sensitivity across a
Mediterranean forest region in southwest Western Australia: A comparison of approaches. Forestry 2015, 88, 454–464. [CrossRef]

https://doi.org/10.1080/01431169608949072
https://doi.org/10.1051/forest:2006045
https://doi.org/10.1080/014311697217387
https://doi.org/10.1080/014311697217396
https://doi.org/10.1073/pnas.0400168101
https://doi.org/10.1080/01431160412331330293
https://doi.org/10.1007/s11069-004-1796-3
https://doi.org/10.1111/j.1365-2486.2006.01224.x
https://doi.org/10.5194/nhess-9-185-2009
https://doi.org/10.1016/j.foreco.2006.12.007
https://doi.org/10.1016/j.rse.2010.04.001
https://doi.org/10.1007/s11632-009-0012-7
https://doi.org/10.1016/j.rse.2009.02.001
https://doi.org/10.1016/j.rse.2012.04.003
https://doi.org/10.3832/ifor0592-004
https://doi.org/10.3390/rs9090929
https://doi.org/10.1093/forestry/cpv014


Remote Sens. 2023, 15, 3360 24 of 25

162. Luo, H.; Zhou, T.; Wu, H.; Zhao, X.; Wang, Q.; Gao, S.; Li, Z. Contrasting Responses of Planted and Natural Forests to Drought
Intensity in Yunnan, China. Remote Sens. 2016, 8, 635. [CrossRef]

163. Lee, J.E.; Frankenberg, C.; Tol, C.v.d.; Berry, J.A.; Guanter, L.; Boyce, C.K.; Fisher, J.B.; Morrow, E.; Worden, J.R.; Asefi, S.; et al.
Forest productivity and water stress in Amazonia: Observations from GOSAT chlorophyll fluorescence. Proc. R. Soc. B Biol. Sci.
2013, 280, 20130171. [CrossRef]

164. Stone, C.; Penman, T.; Turner, R. Managing drought-induced mortality in Pinus radiata plantations under climate change
conditions: A local approach using digital camera data. For. Ecol. Manag. 2012, 265, 94–101. [CrossRef]

165. Buddenbaum, H.; Hientgen, J.; Dotzler, S.; Werner, W.; Hill, J. A BiomeBGC-based evaluation of dryness stress of central
European forests. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 345–351. Available online: https:
//isprs-archives.copernicus.org/articles/XL-7-W3/345/2015/ (accessed on 18 November 2022). [CrossRef]

166. Su, B.; Xue, J.; Xie, C.; Fang, Y.; Song, Y.; Fuentes, S. Digital surface model applied to unmanned aerial vehicle based pho-
togrammetry to assess potential biotic or abiotic effects on grapevine canopies. Int. J. Agric. Biol. Eng. 2016, 9, 119–130.
[CrossRef]

167. Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza, G.S.; Harfouche, A. UAV-Based Thermal Imaging for High-Throughput
Field Phenotyping of Black Poplar Response to Drought. Front. Plant Sci. 2017, 8, 1681. [CrossRef]

168. Gomez-Candon, D.; Virlet, N.; Labbe, S.; Jolivot, A.; Regnard, J.L. Field phenotyping of water stress at tree scale by UAV-sensed
imagery: New insights for thermal acquisition and calibration. Precis. Agric. 2016, 17, 786–800. [CrossRef]

169. Steele-Dunne, S.C.; Friesen, J.; van de Giesen, N. Using Diurnal Variation in Backscatter to Detect Vegetation Water Stress. Ieee
Trans. Geosci. Remote Sens. 2012, 50, 2618–2629. [CrossRef]

170. Konings, A.G.; Yu, Y.; Xu, L.; Yang, Y.; Schimel, D.S.; Saatchi, S.S. Active microwave observations of diurnal and seasonal
variations of canopy water content across the humid African tropical forests. Geophys. Res. Lett. 2017, 44, 2290–2299. [CrossRef]

171. Vreugdenhil, M.; Greimeister-Pfeil, I.; Preimesberger, W.; Camici, S.; Dorigo, W.; Enenkel, M.; van der Schalie, R.; Steele-Dunne, S.;
Wagner, W. Microwave remote sensing for agricultural drought monitoring: Recent developments and challenges. Front. Water
2022, 4. Available online: https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2022.1045451/full (accessed on 18
November 2022). [CrossRef]

172. Sun, S.; Sun, G.; Caldwell, P.; McNulty, S.G.; Cohen, E.; Xiao, J.; Zhang, Y. Drought impacts on ecosystem functions of the U.S.
National Forests and Grasslands: Part I evaluation of a water and carbon balance model. For. Ecol. Manag. 2015, 353, 260–268.
[CrossRef]

173. Nydick, K.R.; Stephenson, N.L.; Ambrose, A.R.; Asner, G.P.; Baxter, W.L.; Das, A.J.; Dawson, T.; Martin, R.E.; Paz-Kagan, T. Leaf
to landscape responses of giant sequoia to hotter drought: An introduction and synthesis for the special section. For. Ecol. Manag.
2018, 419, 249–256. [CrossRef]

174. Martin, R.E.; Asner, G.P.; Francis, E.; Ambrose, A.; Baxter, W.; Das, A.J.; Vaughn, N.R.; Paz-Kagan, T.; Dawson, T.; Nydick, K.; et al.
Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought. For. Ecol. Manag.
2018, 419, 279–290. [CrossRef]

175. Paz-Kagan, T.; Asner, G.P. Drivers of woody canopy water content responses to drought in a Mediterranean-type ecosystem. Ecol.
Appl. 2017, 27, 2220–2233. [CrossRef]

176. Miranda, A.; Lara, A.; Altamirano, A.; Di Bella, C.; González, M.E.; Julio Camarero, J. Forest browning trends in response to
drought in a highly threatened mediterranean landscape of South America. Ecol. Indic. 2020, 115, 106401. [CrossRef]

177. Qi, Y.; Zeng, Z.C. Weak Response of Vegetation Photosynthesis to Meteorological Droughts in Southwest China: Insights from
Gome-2 Solar-Induced Fluorescence. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS),
Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4995–4998.

178. Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al.
A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45,
86–103. [CrossRef]

179. Sturm, J.; Santos, M.J.; Schmid, B.; Damm, A. Satellite data reveal differential responses of Swiss forests to unprecedented 2018
drought. Glob. Change Biol. 2022, 28, 2956–2978. [CrossRef] [PubMed]

180. Avetisyan, D. A satellite-based modified plant senescence reflectance index for green-water drought monitoring. In Proceedings
of the SPIE—The International Society for Optical Engineering, Online, 13–17 September 2021.

181. Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf
senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [CrossRef]

182. Masiello, G.; Ripullone, F.; De Feis, I.; Rita, A.; Saulino, L.; Pasquariello, P.; Cersosimo, A.; Venafra, S.; Serio, C. The IASI Water
Deficit Index to Monitor Vegetation Stress and Early Drying in Summer Heatwaves: An Application to Southern Italy. Land 2022,
11, 1366. [CrossRef]

183. Fuentes, S.; Tongson, E.; Viejo, C.G. Urban green infrastructure monitoring using remote sensing from integrated visible and
thermal infrared cameras mounted on a moving vehicle. Sensors 2021, 21, 295. [CrossRef]

184. Zeng, Y.; Chen, M.; Hao, D.; Damm, A.; Badgley, G.; Rascher, U.; Johnson, J.E.; Dechant, B.; Siegmann, B.; Ryu, Y.; et al. Combining
near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sens.
Environ. 2022, 270, 112856. [CrossRef]

https://doi.org/10.3390/rs8080635
https://doi.org/10.1098/rspb.2013.0171
https://doi.org/10.1016/j.foreco.2011.10.008
https://isprs-archives.copernicus.org/articles/XL-7-W3/345/2015/
https://isprs-archives.copernicus.org/articles/XL-7-W3/345/2015/
https://doi.org/10.5194/isprsarchives-XL-7-W3-345-2015
https://doi.org/10.3965/j.ijabe.20160906.2908
https://doi.org/10.3389/fpls.2017.01681
https://doi.org/10.1007/s11119-016-9449-6
https://doi.org/10.1109/TGRS.2012.2194156
https://doi.org/10.1002/2016GL072388
https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2022.1045451/full
https://doi.org/10.3389/frwa.2022.1045451
https://doi.org/10.1016/j.foreco.2015.03.054
https://doi.org/10.1016/j.foreco.2018.03.028
https://doi.org/10.1016/j.foreco.2017.12.002
https://doi.org/10.1002/eap.1603
https://doi.org/10.1016/j.ecolind.2020.106401
https://doi.org/10.1016/j.baae.2020.04.003
https://doi.org/10.1111/gcb.16136
https://www.ncbi.nlm.nih.gov/pubmed/35182091
https://doi.org/10.1034/j.1399-3054.1999.106119.x
https://doi.org/10.3390/land11081366
https://doi.org/10.3390/s21010295
https://doi.org/10.1016/j.rse.2021.112856


Remote Sens. 2023, 15, 3360 25 of 25

185. Cao, Y.X.; Huang, Z.; Xu, X.J.; Chen, S.; Wang, Z.; Feng, H.; Yu, Q.; He, J.Q. Responses of solar-induced chlorophyll fluorescence
to meteorological drought across the Loess Plateau, China. Chin. J. Appl. Ecol. 2022, 33, 457–466. [CrossRef]

186. Dotzler, S.; Hill, J.; Buddenbaum, H.; Stoffels, J. The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress
Phenomena in Deciduous Forest Communities. Remote Sens. 2015, 7, 14227–14258. [CrossRef]

187. Moreno, A.; Maselli, F.; Chiesi, M.; Genesio, L.; Vaccari, F.; Seufert, G.; Gilabert, M.A. Monitoring water stress in Mediterranean
semi-natural vegetation with satellite and meteorological data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 246–255. [CrossRef]

188. Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying drought phenomena in the Continental United States in 2011 and
2012 using various drought indices. Remote Sens. Environ. 2017, 190, 96–106. [CrossRef]

189. Vacchiano, G.; Garbarino, M.; Mondino, E.B.; Motta, R. Evidences of drought stress as a predisposing factor to Scots pine decline
in Valle d’Aosta (Italy). Eur. J. For. Res. 2012, 131, 989–1000. [CrossRef]

190. Chakraborty, T.; Sarkar, S.K.; Morshed, M.M. Big data and remote sensing for multi-decadal drought impact assessment on
Shorea robusta. Theor. Appl. Climatol. 2022, 148, 1587–1602. [CrossRef]

191. Ciezkowski, W.; Szporak-Wasilewska, S.; Kleniewska, M.; Jozwiak, J.; Gnatowski, T.; Dabrowski, P.; Goraj, M.; Szatylowicz, J.;
Ignar, S.; Chormanski, J. Remotely Sensed Land Surface Temperature-Based Water Stress Index for Wetland Habitats. Remote Sens.
2020, 12, 631. [CrossRef]

192. Drake, P.L.; Callow, N.J.; Leopold, M.; Pires, R.N.; Veneklaas, E.J. Thermal imagery of woodland tree canopies provides new
insights into drought-induced tree mortality. Sci. Total. Environ. 2022, 834, 155395. [CrossRef]

193. Farhani, N.; Carreau, J.; Kassouk, Z.; Le Page, M.; Lili Chabaane, Z.; Boulet, G. Analysis of Multispectral Drought Indices in
Central Tunisia. Remote Sens. 2022, 14, 1813. [CrossRef]

194. Springgay, E.; Ramirez, S.C.; Janzen, S.; Brito, V.V. The Forest–Water Nexus: An International Perspective. Forests 2019, 10, 915.
[CrossRef]

195. Harper, R.; Smettem, K.R.J.; Ruprecht, J.K.; Dell, B.; Liu, N. Forest-water interactions in the changing environment of south-western
Australia. Ann. For. Sci. 2019, 76, 95. [CrossRef]

196. Thammanu, S.; Marod, D.; Han, H.; Narayan Bhusal, L.A.; Ketdee, P.; Gaewsingha, N.; Lee, S. The influence of environmental
factors on species composition and distribution in a community forest in Northern Thailand. J. For. Res. 2021, 32, 649–662.
[CrossRef]

197. Wu, Z.; Yin, H.; He, H.; Li, Y. Dynamic-LSTM hybrid models to improve seasonal drought predictions over China. J. Hydrol. 2022,
615, 128706. [CrossRef]

198. Feng, P.; Wang, B.; Luo, J.-J.; Liu, D.L.; Waters, C.; Ji, F.; Ruan, H.; Xiao, D.; Shi, L.; Yu, Q. Using large-scale climate drivers
to forecast meteorological drought condition in growing season across the Australian wheatbelt. Sci. Total. Environ. 2020,
724, 138162. [CrossRef]

199. Valeriano, C.; Gazol, A.; Colangelo, M.; González de Andrés, E.; Camarero, J.J. Modeling Climate Impacts on Tree Growth to
Assess Tree Vulnerability to Drought During Forest Dieback. Front. Plant Sci. 2021, 12. Available online: https://www.frontiersin.
org/articles/10.3389/fpls.2021.672855/full (accessed on 18 November 2022). [CrossRef]

200. Uddin, J.; Li, Y.; Sattar, A.; Mistry, S. Climatic water balance forecasting with machine learning and deep learning models over
Bangladesh. Int. J. Climatol. 2022, 42, 10083–10106. [CrossRef]

201. Avetisyan, D.; Borisova, D.; Velizarova, E. Integrated Evaluation of Vegetation Drought Stress through Satellite Remote Sensing.
Forests 2021, 12, 974. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.13287/j.1001-9332.202202.011
https://doi.org/10.3390/rs71014227
https://doi.org/10.1016/j.jag.2013.08.003
https://doi.org/10.1016/j.rse.2016.12.010
https://doi.org/10.1007/s10342-011-0570-9
https://doi.org/10.1007/s00704-022-04019-2
https://doi.org/10.3390/rs12040631
https://doi.org/10.1016/j.scitotenv.2022.155395
https://doi.org/10.3390/rs14081813
https://doi.org/10.3390/f10100915
https://doi.org/10.1007/s13595-019-0880-5
https://doi.org/10.1007/s11676-020-01239-y
https://doi.org/10.1016/j.jhydrol.2022.128706
https://doi.org/10.1016/j.scitotenv.2020.138162
https://www.frontiersin.org/articles/10.3389/fpls.2021.672855/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.672855/full
https://doi.org/10.3389/fpls.2021.672855
https://doi.org/10.1002/joc.7885
https://doi.org/10.3390/f12080974

	Introduction 
	Remote Sensing for Detection of Plant Water Stress 
	General Principles 
	Vegetation Indices 
	Spectral Characteristics of Leaf Chlorophyll Content 
	Spectral Characteristics of Leaf Water Content 
	Spectral Characteristics of Canopy Temperature 
	Spectral Characteristics of Plant Photosynthetic Efficiency 

	Remote Sensing Application for Water Stress Management in Forestry 
	Overall Trend of Remote Sensing Applications for Forest Water Stress Assessment 
	Change in Applications over Time 
	Overall Findings 

	Integration of Remote Sensing of Water Stress with Other Spatial Datasets for Forest Management 
	Conclusions 
	References

