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Abstract: Seaweed assemblages include a variety of structuring species providing habitats, food
and shelter for organisms from different trophic levels. Monitoring intertidal seaweed traditionally
involves targeting small areas to collect data on species’ biological traits, which is often labour
intensive and covers only a small area of the rocky reef under study. Given the various applications
for seaweeds and their compounds, there has been an increase in demand for biomass triggered
by the development of new markets. Such biomass demand generates new challenges for biomass
quantification and the definition of future in-take harvesting commercial quotas by regulating
agencies. The use of Unoccupied Aerial Vehicles (UAVs) as a low-cost yet efficient monitoring
solution, combined with new sensors such as multispectral cameras, has been proposed for mapping
intertidal reefs and seaweed in particular. In this study, a new methodology was developed and
validated to quantify intertidal seaweed biomass based on multispectral UAV imagery, which was
made available through an easy-to-use QGIS plugin (named SWUAV_BIO) that automates such
biomass estimation. This tool was applied to a case study where the standing stock of Fucus spp. beds
located at Viana do Castelo rocky shore (northern Portugal) was assessed using UAV multispectral
imagery, providing a reference for future UAV-based ecological studies. Although comparison with
the in situ assessments showed that biomass was underestimated by 36%, the SWUAV_BIO plugin is
a valuable tool, as it provides an expedited (albeit conservative) seaweed standing stock assessment
that can be used to monitor seaweed populations, their changes, and assess the effect of harvesting.
These data can be used for an informed and sustainable management of seaweed resources by the
competent authorities.

Keywords: supervised classification; normalized difference vegetation index; QGIS plugin; accuracy

1. Introduction

Seaweed assemblages are essential to coastal environments as they include a variety of
structuring species providing habitats, food and shelter for organisms from different trophic
levels and supporting complex trophic webs. Seaweeds are also a natural resource for
human use, and an increased demand for biomass has been triggered by the development
of new markets, namely in the food and health sectors. They are presently considered a
healthy food and a rich source of bioactive compounds [1,2] and thus a valuable ingredient
for biomedical, nutraceutical and cosmeceutical products [3,4]. Such biomass demand can
act as an additional pressure om coastal environments, particularly for intertidal areas,
which are easily accessed by foot and, therefore, more susceptible to seaweed harvesting
and trampling.
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Monitoring intertidal seaweed assemblages traditionally involves targeting patchy
areas of the rocky reefs using quadrats, along transects or not, and collecting data on species’
biological traits [5,6]. These methods are labour intensive and cover only a small area of
the rocky reef under study due to time/tide constraints (e.g., see [7,8]). In recent years, the
application of Unoccupied Aerial Vehicles (UAVs) as a low-cost yet efficient monitoring
solution has increased in several contexts. New sensors that can be mounted on UAVs
have been developed, providing new tools for research implementation. Such is the case
with multispectral cameras, which have become widely used in agriculture [9–11] and
viticulture [12,13] to assess crop health and maturation but also crop biomass (e.g., [14]).
Coastal studies have also benefited from such advances, and several UAV-based multispec-
tral methodologies and workflows have been proposed for mapping intertidal reefs [15,16]
and seaweed in particular [17–21]. For kelp, workflows, including the calculation of simple
vegetation indices from RGB imagery, have been developed to classify kelp canopy as a
binary presence/absence layer, and to discriminate these organisms from the surrounding
background (see [22–24]).

However, few studies have been able to remotely estimate the biomass of intertidal
seaweeds (e.g., see [25,26]). The latest study applied multispectral UAV aerial photography
data to evaluate the biomass of seaweed in an intertidal zone that were later processed
through the use of machine learning algorithms [26]. However, most studies that have used
multispectral data to access seaweed biomass were performed on cultivated land-based [27]
or open-sea systems [28] and also on floating algal blooms [29]. Such studies rely on the
calculation of vegetation indexes using the available bands from multispectral sensors. One
of the most used indexes is the Normalized Difference Vegetation Index (NDVI), which
relates to red and near-Infrared (NIR) bands and has proven to successfully map seaweed
biomass at different scales (see [25,30]).

NDVI was initially developed to quantify terrestrial vegetation density and health
from aerial images [31–33]. It utilizes the characteristic increased reflectance in the NIR
region (due to tissular/cellular structures) and decreased reflectance in the red regions of the
electromagnetic spectrum (due to chlorophyll absorption) exhibited by vegetation [34,35].
NDVI ranges from −1 to +1, with values around and below zero indicating relatively low
amounts of vegetation [25]. Seaweeds have diverse morphology, water content, cellular
structures and pigments, presenting chlorophylls as common photosynthetic pigments [36].
Due to the fact that it is related to the chlorophyll content, NDVI can therefore be used as a
proxy for seaweed biomass.

Remote sensing data are normally analysed using specific software packages. Geo-
graphical Information System (GIS) software packages also include modules for remote
sensing data processing and analysis in their raster processing tools. Within the open-
source domain, QGIS, which is a modular software package to which users can contribute
modules designated as plugins, can be used for the analysis of remote sensing data. In
the particular field of image classification, a specific plugin, designated Semi-Automatic
Classification Plugin (SCP), developed by Luca Congedo, has been available since 2012 [37].
It has become very popular for satellite remote sensing image processing, for example, in
forestry [38], but has also been recently used to process UAV multispectral imagery, also
in vegetation analysis, including imagery from coastal areas, such as marshes and dunes
(see [39–41]).

However, to our knowledge, the present study is the first that integrates GIS and
image classification to estimate the biomass of intertidal seaweeds using remotely-sensed
imagery, and there are no macros or plugins within image data processing software that
implement such methodologies for an expedited standing stock assessment that can help
authorities to set harvesting limits and sustainably manage intertidal seaweed resources.

The primary objective of this study was to develop and validate a methodology to
quantify the intertidal seaweed biomass based on multispectral imagery acquired with a
UAV and make it freely available through an easy-to-use QGIS plugin (named SWUAV_BIO
plugin) that automates such biomass estimation. A secondary objective was to apply this
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tool to a case study and determine Fucus spp. total biomass, thus providing a reference for
future UAV-based ecological studies.

The methodology was embedded as a plugin in the QGIS software, making use of the
SCP plugin, which has the advantage of being integrated with several other geoprocessing
tools. The species selected for the study were Ulva spp., Codium spp., Chondrus crispus, Os-
mundea pinnatifida, Fucus spp. and Laminaria ochroleuca, given their conspicuous abundance
in the northwest coast of Portugal and their current or potential commercial use.

2. Materials and Methods

The conception, design, and implementation of the methodology to quantify intertidal
seaweed biomass based on multispectral UAV imagery followed the sequential steps
described in the following sections and summarised below (Figure 1): (1) seaweed species-
based NDVI/biomass relationship parametrization; (2) the integration of the obtained
equations in the SWUAV_BIO plugin to automate the process; (3) plugin methodology
validation comparing (a) in situ biomass of Fucus spp., based on percentage cover field data
with (b) NDVI-based Fucus spp. UAV-imagery biomass assessment (using the SWUAV_BIO
plugin); and (4) a case study with the SWUAV_BIO application in a different context.
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2.1. Seaweed Species-Based NDVI/Biomass Relationship

In order to relate the NDVI (calculated as (RNIR-RRed)/(RNIR+RRed), where R
refers to reflectance) to the biomass of the intertidal seaweed, the relationship between
these variables was assessed based on the reflectance data collected in the field with a
handheld spectrometer (ASD HandHeld 2, Malvern Panalytical, Malvern, UK). In the field,
seaweeds were grouped according to their accessory pigments, which are responsible for
their colour, and reflectance readings were performed in terms of species or genera (for
those species with dubious in situ discrimination). The species studied were Ulva spp. and
Codium spp. (green seaweeds), Chondrus crispus and Osmundea pinnatifida (red seaweeds),
and Laminaria ochroleuca and Fucus spp. (brown seaweeds).

The procedure consisted of the experimental addition and removal of seaweed blades
to and from a 0.023 m2 black surface matching the spectrometer Ground Field of View
(GFOV). The reflectance spectra were collected every 1 nm over 325–1075 nm, and, for
each sample, ten readings were taken and subsequently averaged to create a single spectral
profile. A white reference panel was used before each measurement as a 100% reflectance
standard. The spectrometer was calibrated before the initial measurement and after every
ten readings. The measurements ranged from one single blade to overfilling the GFOV with
seaweed blades, progressively adding several layers following the methodology described
by [42] for seagrass. Seaweed samples were subsequently bagged and transported to
the laboratory to be dried at 60 ◦C for 48 h and weighed to obtain the respective dry
weight (DW). The data from the spectrometer were retrieved and stored using RS3 software
(Malvern Panalytical, Malvern, UK) and then converted to reflectance units using ViewSpec
Pro software (Malvern Panalytical, Malvern, UK). Subsequently, reflectance data were
imported to Excel (Microsoft, Washington, DC, USA) for further analysis. To ensure that
the NDVI readings obtained with the spectrometer were related to those obtained with the
UAV-mounted multispectral camera, the same wavelength ranges for the NIR (840 +/−
20 nm) and Red (668 +/− 5 nm) bands were used for the NDVI calculations. Before
computing the NDVI, an average of the reflectance for each corresponding wavelength
range was calculated.

2.2. Plugin Design

A GIS open-source plugin was developed in QGIS [43], an intuitive and user-friendly
open-source and free GIS software complemented by several algorithms from other external
software, such as the System for Automated Geoscientific Analyses (SAGA), Geographic
Resources Analysis Support System (GRASS) and Geospatial Data Abstraction Library
(GDAL) [44–46]. The new SWUAV_BIO plugin was developed using Python, an open-
source programming language [47], and the Plugin Builder combined with the Qt Designer
framework to create the graphical interface and several libraries, such as PyQt Application
Programming Interface (API) and QGIS API [48,49], to develop the code.

The plugin is composed of five sections: (1) the input section, where the user can
open the input files for the study; (2) the seaweed species section, where the user chooses
the seaweed species to study, considering the three seaweed groups (Red Seaweed, Green
Seaweed and Brown Seaweed); (3) the biomass estimation equations section, where the user
defines the equation to estimate the biomass (using a pre-defined or introduced equation);
(4) the output section, where the user should define the output directories to allocate a
biomass raster and an html page with the statistics about the biomass areas; and (5), the
preview study zone section, where the input information is presented and the user can
define the study zone through a manually drawn polygon.

The SWUAV_BIO plugin (workflow summarised in Figure 2) requires two main inputs:
the classified image (in which one of the classes corresponds to the seaweed, which should
be identified in the Attribute to isolate combo box) and the NDVI map. These input files
have to be previously created with appropriate software such as QGIS (used here) or, for
instance, ArcGIS, ENVI or R.
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Figure 2. SWUAV_BIO plugin summarised workflow.

The equations relating the NDVI to the species’ biomass (developed as described
above) were integrated in the SWUAV_BIO plugin. Since the validation of the equations
was only performed for Fucus spp. (Section 2.3), the validation status (validated or not
validated) is indicated in brackets after the species name in the plugin when selecting the
species to apply a pre-defined equation. The user may (1) use the pre-defined equation,
selecting Use pre-defined equations, or (2) introduce a new equation, selecting Introduce
manually the equation to estimate biomass. The SWUAV_BIO plugin returns two different
outputs: (1) a raster with the biomass (g DWm−2) estimation and (2) an html file with
the statistical values of the biomass raster where the Sum variable (referring to the sum of
cell values), represents the total biomass or standing stock (g DW) for the defined study
area. The plugin is free and open source and available on the GitHub platform (https:
//github.com/swuavproject/swuav_plugin, accessed on 31 October 2021). A tutorial is
also provided in GitHub, to help the users.

2.3. Plugin Validation

The plugin was validated by assessing the biomass from a Fucus spp. bed using
field observations and multispectral UAV surveys of an intertidal area on the NW coast of
Portugal, as described below.

https://github.com/swuavproject/swuav_plugin
https://github.com/swuavproject/swuav_plugin
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2.3.1. Study Area

The study area was located on the rocky shore of Vila Chã (41◦17′43.4′′N, 8◦44′13.2′′W)
in Northern Portugal. This area has a diversified cover with sandy patches and rocky out-
crops, colonized with diverse seaweeds, mussels (Mytilus spp.), barnacles (Chthamalus spp.)
and limpets, among others, (Patella spp.), following the zonation patterns described for
temperate reefs [15]. In the centre of the main rocky outcrop, a relatively sheltered area,
there are some isolated beds of Fucus spp. (brown seaweed) that are exposed during low
tide, which were used for SWUAV_BIO plugin validation.

2.3.2. In Situ Data Collection

The field work took place on 17 December 2020, during low tide, in order to collect
data on the percentage cover of Fucus spp. beds and to perform an RGB and multispectral
UAV flight over those beds. Percentage cover field data were gathered using a sampling
unit (quadrat) of 50 × 50 cm divided into 25 sub-quadrats of 10 × 10 cm (each representing
4% of the total area). Ten georeferenced quadrats were haphazardly placed on the Fucus
spp. beds, and the percentage cover was recorded, as well as the bare substrate. In order to
build a predictive equation for Fucus spp. relating the percentage cover and the biomass,
32 random samples from the same shore, corresponding to a wide range of percentage
cover per sampling unit (5–53%), had been previously collected (on a different day), dried
and weighed in the laboratory, obtaining DW values for different cover percentages. To
assess the fitness of the equation, the R2 and the residuals, ei, were calculated, the latter
being the difference between measured and estimated values. The Root Mean Square Error
(RMSE) was calculated according to expression (1):

RMSE =

√
1
n

n

∑
i

e2
i (1)

In order to assess the quality of the Fucus spp. biomass estimation, the relative
error obtained by dividing the RMSE by the estimated value, was also used, being more
informative than the RMSE alone.

2.3.3. Multispectral UAV Flight

The UAV flight was performed over the Fucus spp. bed and surrounding area. The
UAV (Matrice 210, a DJI quadcopter) was equipped with a MicaSense RedEdge sensor, with
a 1.2 MP resolution, and a Zenmuse X4S sensor that captures information in the visible
spectrum (RGB) with a resolution of 20 MP. The flying height was 30 m, which resulted in
Ground Sampling Distances (GSD) of 2.1 cm and 0.8 cm, respectively, for the multispectral
and RGB data. The along-track overlap between the consecutive images and the side-track
overlap between consecutive flight lines was set to 70%. The multispectral sensor acquires
data with a spectral range that includes blue (475 +/− 10 nm), green (560 +/− 10 nm), red
(668 +/− 5 nm), red-edge (717 +/− 5 nm), and NIR (840 +/− 20 nm) wavelengths. In-flight
irradiance conditions were acquired using a Downwelling Light Sensor (DLS) mounted on
top of the UAV, and images of the calibrated panels with known reflectance (Micasense,
Seattle, WA, USA) were captured before the UAV flight.

Images were processed in Agisoft Mestashape software, which does the photogram-
metric processing of the overlapping images, generates a digital surface model and or-
thorectifies the images. The final product is a mosaic of orthorectified images (individual
image bands for the multispectral and RGB composite for the RGB data), precisely georef-
erenced by means of signalized Ground Control Points (GCP), which were surveyed with a
high-precision Global Navigation Satellite System (GNSS) receiver (Spectra Precision SP60)
in the real-time kinematic mode. The positional accuracy of this method is between 1 and
2 cm of the order of the image GSD. A total of 6 to 12 GCPs were used per orthomosaic.
Residuals provided by the software were used as a measure of the georeferencing quality.
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Additionally, the agreement between the RGB and Multispectral orthoimages allowed for
positional accuracy control.

Prior to the UAV flight, training and independent validation areas were georeferenced
by collecting the central coordinates of each of the 50 × 50 cm quadrat frames described
above with the GNSS receiver. To avoid interference of the quadrats in the image classifi-
cation, a circular buffer with a 0.25 m radius was drawn around each central point (using
QGIS 3.16.9 tools) to delimit training and validation areas for the supervised classification
procedures. The defined classes for the training (n = 7) and validation (n = 3) areas were:
Sand (S); Rock, Barnacles, and Limpets (RBL); Mussels and Rock (MR); and mixture of
seaweeds (AM: Algae Mixed). The QGIS SCP plugin version 7.9.4 Matera [37] was used to
obtain the NDVI raster and to carry out a supervised classification of the intertidal cover
based on this index (producing the files needed to feed the SWUAV_BIO plugin). Of the
three available algorithms—maximum likelihood, spectral angle mapping and minimum
distance—the latter performed best when applied for the supervised classification to our
dataset and was therefore chosen. Indeed, the maximum likelihood method could not
be applied given the small size of training and validation areas, and the spectral angle
mapping algorithm misclassified some of the classes. The minimum distance algorithm
has been applied successfully in other studies with training and validation areas with
sizes similar to those in the present study [50] and also in other contexts [51]. To evaluate
the performance of the classification per class, several metrics were used, relying on the
number of correct/incorrect classifications per class: errors of commission, which result
when pixels associated with a class are incorrectly identified as other classes, representing
false positives; errors of omission, which occur whenever pixels that should have been
identified as belonging to a particular class were simply not recognized as present, repre-
senting false negatives; recall, which is the number of correct classifications for a given class
divided by the row total, including false negatives; and the f1 score, which is the harmonic
mean of precision and recall measures. These metrics were calculated according to the
area-based error matrix provided by the SCP plugin, where each element represents the
estimated area proportion of each class. To provide a general perspective of the quality of
the classification, the overall accuracy and the kappa coefficient were estimated. The overall
accuracy shows the proportion of correct classifications in the total number of samples, and
the kappa coefficient evaluates the performed classification, considering the possibility of
an agreement occurring by chance [15].

Validation of the plugin was performed for Fucus spp. isolated beds, comparing the
estimated in situ total biomass (g DW) for the 10 sampling quadrats with the biomass
estimated for the same area by the SWUAV_BIO plugin. In situ estimation of the total
biomass for the 10 Fucus spp. sampling quadrats was achieved by applying the obtained
predictive equation that relates the percentage cover to the biomass per quadrat and sum-
ming the values obtained for all quadrats. For the application of the SWUAV_BIO plugin,
the classification raster was obtained based on the UAV multispectral NDVI image for the
Region of interest (ROI) for the four classes presented above. Data acquired in situ and
photo interpretation of the RGB orthomosaic confirmed that the Mixed algae class matched
with high precision the location and cover of the targeted Fucus spp. beds. Therefore, the
Mixed algae class in the Vila Chã ROI classified raster, and the corresponding NDVI raster
file, cropped by the polygons delineating the 10 Fucus spp. sampling quadrats represented
Fucus spp. cover and could be used as such. The exact location of the 10 sampling quadrats
on the Fucus spp. beds was defined by drawing a vector layer in QGIS with 10 polygons
through photointerpretation of the RGB raster. The ROI classification raster with the class
Mixed algae, the corresponding ROI NDVI raster file and the Fucus spp. shapefile were
used as plugin input files for the validation.

2.4. Plugin Application—Case Study

For the purpose of testing the SWUAV_BIO plugin in a different context, multispectral
data previously acquired from a different study area were used. This study area was located
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on the rocky shore of Praia Norte (Viana do Castelo: 41◦41.8′N, 8◦51.1′W) in Northern
Portugal, which has a sheltered upper shore with extensive beds of Fucus spp. and the
southernmost population of Ascophyllum nodosum in Europe [7]. Field work and UAV
(Matrice 200) flight took place on 6 June 2020 during low tide, with the definitions of training
(n = 5) and validation (n = 2) areas for the classes of Fucus spp. and Ascophyllum nodosum,
using the methodology described above for the plugin design and validation. Training and
validation areas for Rock and Sand classes were defined in QGIS by the photointerpretation
of the RGB image. Two UAV flights were performed at a 40 m height above the seaweed
beds and surrounding area: the first, with the UAV equipped with a MicaSense RedEdge
sensor (2.7 cm GSD), and the second equipped with a Zenmuse X4S sensor (0.9 cm GSD).
The supervised classification procedures followed the methodology described above for the
data used for the SWUAV_BIO plugin design and validation. The NDVI and the generated
classification raster were the plugin input data for this application.

3. Results
3.1. NDVI−Seaweed Biomass Relationship

The NDVI data from the spectrometer readings were plotted against the dry biomass
per unit area (g DWm−2), and three regression models (Linear, Exponential, and Power)
were tested (Figure 3). The models for integrating the SWUAV_BIO plugin were selected
based on their fit to the data (higher R2 and lower RMSE) (Table 1). For Ulva spp., the
exponential model was chosen because it resulted in a markedly lower RMSE than the
other models, although with a slightly lower R2 than the next-best model. The chosen
model equations were integrated into the SWUAV_BIO plugin.
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Remote Sens. 2023, 15, 3359 9 of 17

Table 1. Tested models and respective fitness for the relationship between NDVI and biomass for
each seaweed species. In bold are the models integrated into the SWUAV_BIO plugin.

Species Model Equation R2 RMSE

Chondrus crispus

Linear y = 338.79 x − 85.673 0.89 17.16

Exponential y = 4.4908 e5.3261 x 0.97 8.84

Power y = 351.36 × 2.2640 0.95 12.88

Osmundea
pinnatifida

Linear y = 233.16 x − 36.700 0.78 23.22

Exponential y = 4.1340 e5.3085 x 0.84 18.87

Power y = 225.08 x1.7403 0.84 21.82

Codium spp.

Linear y = 310.55 x − 33.123 0.95 14.07

Exponential y = 5.6390 e5.9438 x 0.92 29.04

Power y = 397.32 x1.7299 0.98 10.77

Ulva spp.

Linear y = 370.68 x − 90.415 0.70 55.55

Exponential y = 2.7744 e5.7304 x 0.93 28.14

Power y = 291.15 x2.0691 0.95 51.60

Fucus spp.

Linear y = 580.28 x − 114.880 0.84 48.76

Exponential y = 8.8671 e5.2320x 0.95 41.75

Power y = 560.91 x1.9453 0.95 43.86

Laminaria ochroleuca

Linear y = 262.87 x − 61.477 0.90 13.26

Exponential y = 3.5349 e5.4575x 0.97 9.56

Power y = 275.52 x2.1824 0.96 10.80

3.2. Plugin Validation
3.2.1. In Situ Data Collection

A predictive linear equation for Fucus spp. relating the percentage cover and the
dry biomass was obtained using the percentage cover and DW data of the 32 samples
(Section 2.3) (Figure 4).
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Figure 4. Relationship between Fucus spp. in situ percentage cover and dry biomass per sampling
quadrat (n = 32).

An RMSE of 15 g DW 0.25 m−2 was obtained. Relative errors of the estimated
Fucus spp. biomass for percentage cover of 26%, 35% and 51% were about 20%, 15%
and 10%, respectively (Table 2). The relative error of the biomass estimation is smaller for
higher percentage cover values, although for smaller percentage cover values, the actual
individual residuals tend to be smaller.
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Table 2. Relative errors of the estimated Fucus spp. biomass by percentages cover.

Percentage Cover
(%)

Estimated Biomass
(g DW 0.25 m−2)

Relative Error
(%)

26 73 20
35 99 15
51 144 10

3.2.2. Multispectral UAV Flight

The NDVI-based supervised classification for the Vila Chã ROI (Figure 5d) covered a
total area of 11,292 m2, with the Mixed algae class covering 1010 m2.
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Figure 5. Vila Chã Region of Interest (ROI) maps: (a) geographical position (black dot) at Porto district
in Continental Portugal and (b) detail within Vila Chã municipality coast; (c) RGB UAV retrieved
raster (with inset map e); (d) supervised classification for maps with 4 classes (with inset map f);
(e) location of 10 in situ sampling quadrats (red) used for the assessment of Fucus spp. biomass for
the SWUAV_BIO plugin validation; and (f) location of 10 in situ sampling Fucus spp. quadrats (red).

This classification had an overall accuracy of 76.94% and a kappa coefficient of 0.65,
corresponding to a good classification level of agreement [52,53]. The performance of the
classification calculated from the error matrix (Table 3, adapted from [54]) indicated values
ranging from low to high performance per class (Table 4). For Mixed algae, and Mussels
and Rock classes, the recall was lower than precision, indicating the presence of more false
negative values in the classification than false positives, as corroborated by the calculated
omission and commission errors. These resulted in lower f1 scores for both classes. Higher
classification performances were obtained for Rock, Barnacles and Limpets, and Sand
classes with respective higher f1 scores.
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Table 3. Error matrix summarising classifier performance and map accuracy of Vila Chã Region of
Interest (ROI).

Thematic Map Classes

Reference Data Classes

TotalMixed
Algae

Mussels
and Rock

Rock, Barnacles
and Limpets Sand

Mixed algae 0.04 0.03 0.02 0.00 0.09
Mussels and Rock 0.03 0.04 0.04 0.00 0.11

Rock, Barnacles and Limpets 0.05 0.06 0.21 0.00 0.32
Sand 0.00 0.00 0.00 0.48 0.48

Total 0.12 0.13 0.26 0.48 1.00

Table 4. Classification performance of Vila Chã ROI per class.

Classes Omission
Errors

Commission
Errors Precision Recall F1 Score

Mixed algae 0.68 0.55 0.45 0.32 0.37
Mussels and Rock 0.67 0.61 0.39 0.33 0.35

Rock, Barnacles and Limpets 0.21 0.35 0.65 0.79 0.71
Sand 0.00 0.00 1.00 1.00 1.00

For the Mixed algae class, the standard error of the area estimated by the classification
was 67 m2, according to the SCP output, which is an error of about 6.6% considering the
total area of 1010 m2.

From the application of the predictive linear equation (Figure 4) to the 10 georeferenced
sampling quadrats haphazardly placed over the Fucus spp. beds (Figure 5e), a total biomass
of 2307 g DW was estimated. Visual analysis showed high concordance between the
location of Fucus spp. beds belonging to the Mixed algae class, as visualised in the RGB
image (Figure 5e) and the correspondent classification (Figure 5f). A total biomass of
1462 g DW was estimated via the application of the SWUAV_BIO plugin workflow for the
exact same area of the 10 georeferenced sampling quadrats haphazardly placed over the
Fucus spp. beds. This is 36% less compared to the in situ assessment.

3.3. Plugin Application—Case Study

The NDVI-based supervised classification for Praia Norte (Viana do Castelo) ROI
covered a total area of 37,628 m2 (Figure 6c). The classification had an overall accuracy
of 81.2% and a kappa coefficient of 0.65, corresponding to a good classification level of
agreement [52,53]. A visual assessment confirmed that the plugin succeeded in identifying
Fucus spp. patches.

The performance of the classification calculated from the error matrix (Table 5; adapted
from [54]) indicated values ranging from low to high performance per class (Table 6). For
the Fucus spp. class, the precision was lower than the recall, indicating the presence of
more false positive values in the classification than false negatives, as corroborated by
the calculated commission and omission errors, resulting in a lower f1 score. Higher
classification performances were obtained for the Sand and Rock classes with respective
higher f1 scores.
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Table 5. Error matrix summarising classifier performance and map accuracy of Praia Norte (Viana do
Castelo) ROI.

Thematic Map Classes

Reference Data Classes

TotalAscophyllum
nodosum Fucus spp. Sand Rock

Ascophyllum nodosum 0.04 0.03 0.02 0.00 0.09
Fucus spp. 0.03 0.04 0.04 0.00 0.11

Sand 0.05 0.06 0.21 0.00 0.32
Rock 0.00 0.00 0.00 0.48 0.48

Total 0.12 0.13 0.26 0.48 1.00

Table 6. Classification performance of Praia Norte (Viana do Castelo) ROI per class.

Classes Omission
Errors

Commission
Errors Precision Recall F1 Score

Ascophyllum nodosum 0.43 0.42 0.58 0.57 0.58
Fucus spp. 0.39 0.72 0.28 0.61 0.39

Sand 0.00 0.00 1.00 1.00 1.00
Rock 0.16 0.00 1.00 0.84 0.91

The area covered by the Fucus spp. class was 7882 m2, with a total biomass estimated
by the SWUAV_BIO plugin of 12,562,846 g DW (about 12,563 kg DW). The error associated
with the biomass-NDVI model was 41.75 g DW m−2 (ca. 2.6% of the total Fucus spp.
biomass), and the classification standard error for the area estimate of this cover class was
139 m2, according to the SCP output, being about 1.8%.
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4. Discussion

This study combined field surveys and high-resolution multispectral UAV imagery
to develop a new methodology to remotely map and quantify intertidal seaweed biomass
from different groups. Seaweed biomass–NDVI relationships were parameterized and
integrated in a QGIS plugin to allow expedited biomass estimation from multispectral
survey data. The species percentage cover–biomass relationship was used for validation of
the method in terms of Fucus spp. biomass estimation. At Vila Chã, the Fucus spp. biomass
estimated with the proposed method through the SWUAV_BIO plugin was underestimated
by 36% compared to the in situ assessment.

Despite the presence of false negatives in the classification of the whole ROI, indicating
that pixels belonging to the Mixed algae class were attributed to other classes, there was
a high visual concordance between the location of Fucus spp. beds belonging to the
Mixed algae class in the RGB image and the correspondent classification (Figure 5e,f). The
issues associated with false negative and false positive values in the Mixed algae mixed
class could reflect its heterogeneity and lack of pureness. The spectral signatures can be
contaminated due to the low cover of annual seaweeds during less favourable seasons.
During the survey in December, most of the annual seaweeds presented low abundance
and percentage cover, and most of the training and validation areas had abundant substrate
cover. Such was not the case for the Fucus spp. beds that comprehend perennial seaweeds
and, therefore, maintained a high abundance and percentage cover in December. However,
the saturation of the NDVI values when a certain biomass is reached suggests that there
may be a limit to the detection of higher biomass values when a certain thickness of cover
is reached [42,55,56].

Other studies have demonstrated that the spectral reflectance can be influenced by
plant water stress (e.g., [57,58]), and it is possible that dehydration due to emersion during
low tide would also affect the spectral patterns of Fucus spp. and hence influence the
NDVI-based biomass estimation. Additionally, inter and intraspecific seaweed spectral
differences in response to physiological or seasonal changes have also been reported since
reflectance is ruled by physical and physiological parameters that can vary for a species
or even within an individual over space and time [36,59]. Previous authors have reported
a multifaceted relationship between salinity, temperature and pigment concentration for
the brown seaweed Fucus vesiculosus [60]. Specifically, reduced salinity mostly increased
the pigment concentration of F. vesiculosus at normal ambient temperature, whereas el-
evated temperature reversed the effect [60]. Moreover, the same authors reported that
differences in Chlorophyll a and b concentrations resulted in a consistent change of spectral
reflectance for F. vesiculosus. Furthermore, changes in the physiological condition of giant
kelp (Macrocystis pyrifera) canopy, expressed in terms of the reflectance and transmittance of
these kelp fronds, have been used to assess their spectral variability for providing insights
into their ecology and biophysiology using remote sense tools (see [61]). Therefore, it is
expected that intertidal seaweed UAV biomass estimations for the same location will vary
according to the low tide level and emersion interval at the time of the flight, as well as
with seaweed physiological and ontogenic states. In this sense, the total Fucus spp. biomass
assessed for Praia Norte (Viana do Castelo) is likely to also be an underestimation of the
real available biomass.

In opposition to these findings, there were also false positive values in the classification,
indicating that pixels belonging to other classes (Ascophyllum nodosum and Rock classes)
were being classified as Fucus spp. class. Both A. nodosum and Fucus spp. are Fucales,
occurring interspersed at Praia Norte. It is consequently likely that their distinction by
the proposed workflow has limitations. The several steps required to implement the
SWUAV_BIO plugin procedures presented in this study generate residual errors that
will have a cumulative effect, which is reflected in the underestimated Fucus spp. total
biomass values. These errors are related to in situ biomass estimation, the NDVI-to-biomass
estimation and the classification process (e.g., the error of the estimated area for the target
class) and should be considered when interpreting the SWUAV_BIO outputs. Therefore,



Remote Sens. 2023, 15, 3359 14 of 17

despite the fact that supervised classifications for both Vila Chã and Praia Norte presented
general accuracy metrics with good levels of agreement, the inspection of the classification
performance by class, combined with the photointerpretation of the RGB imagery and
knowledge of the terrain, was essential for data interpretation.

The remote estimation of intertidal seaweed biomass presents several challenges. In
rocky shores, that task is particularly difficult due to different sources of noise in the
reflectance spectra, such as sun glint from rock pools surfaces and shade due to microto-
pography and the angle of incident sunlight. Less favourable conditions are found in late
autumn and early winter when the sun elevation is lower and generates large shadow areas
(areas without direct sunlight). Ideally, these areas should be masked and eliminated from
the classification. Previous tests indicated that, at least in periods of higher sun elevation,
the proportion of shadows is relatively small, not having a significant impact. Future work
will consider the delimitation of shadow areas based on the high-resolution 3D model
obtained, photogrammetric processing and the precise time of image acquisition.

Intertidal hydrodynamics also affects biological assemblages. Surf zone hydrody-
namics vary from narrow, more reflective surf zones to wide and more dissipative surf
zones [25]. For instance, in the northwest of Portugal, sheltered shores, such as Praia Norte
(Viana do Castelo) with dissipative surf zones due to gradually sloping bottoms and waves
breaking far from shore [25], allow the recruitment and development of extensive seaweed
assemblages dominated by Fucus spp. and A. nodosum. On more exposed shores, with surf
zones characterized by steeper slopes, considered more reflective, waves break closer to the
shore, and seaweed assemblages are characterized by a mixture of red and green seaweed
occurring more abundantly along a narrow strip at the low shore level. In the latter case,
the described methodology would not be applicable, given the high degree of seaweed
mixture that would make it impossible to discriminate reflectance by taxon.

Nonetheless and although the SWUAV_BIO plugin tends to underestimate biomass
(compared to field data), this plugin is a valuable tool as it provides an expedited means for
seaweed standing stock assessments, which is useful for seaweed population monitoring
and resource management, such as following the seasonal and yearly fluctuations of
seaweed abundance and assessing the effects of harvesting. In this context, the generated
conservative measures, integrated with local knowledge of seaweed abundances, are
advantageous as they promote the cautious management of these resources.

Additionally, the development of such a plugin in open-source GIS software provides
several benefits. The software is open-source and free, making the code available to any
user/developer to modify and adapt it to other specific needs. It provides components or
tools that can be used in other contexts and areas, having the NDVI and classification maps
as baselines, with the possibility to integrate new equations for the biomass/NDVI relation-
ship of other species. For studies conducted during different seasons of the year, particular
attention should be given to the potential effects of the phenology of the seaweeds under
study. It is recommended that in situ biomass estimations and NDVI to biomass estima-
tions encompass changes such as reproductive status and senescence. One of the main
advantages of the plugin is the low computer processing power required, which allows
the plugin to be easily operated in different computer environments, replacing manual
procedures that would require time to process. Furthermore, there are no limitations to
the dissemination of this tool in terms of licenses, and it includes support documentation
to assist the user (the SWUAV_BIO plugin contains a tutorial explaining the plugin and
its use).

5. Conclusions

In this work, a methodology was developed and validated to quantify intertidal
seaweed biomass based on multispectral imagery acquired with a UAV that was made freely
available through an easy-to-use QGIS plugin. The SWUAV_BIO plugin is able to assess
with considerable accuracy the biomass of intertidal seaweed beds using multispectral
data collected by a UAV. The plugin includes equations for Fucus spp. (validated in this
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study) and other seaweeds (requiring additional validation), leaving room for further
investigation, with validation and application studies directed to other seaweed species or
groups. SWUAV_BIO can therefore be a valuable tool to map and quantify the biomass
of intertidal seaweeds, as well as an incentive for the development of new research on
monospecific seaweed beds and further research on seaweed biomass estimation. By
providing increased knowledge on coastal habitats, its application will contribute to the
sustainable management and conservation of marine ecosystems, as well as the sustainable
use of wild seaweeds.
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