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Abstract: As part of China’s Tianwen-1 Mars mission, the Mars Surface Composition Detector
(MarSCoDe) instrument on the Zhurong rover adopts laser-induced breakdown spectroscopy (LIBS)
to perform chemical component detection of the materials on the Martian surface. However, it has
always been a challenging issue to achieve high accuracy in LIBS quantification. This study investi-
gated the effect of chemometrics and spectral data preprocessing approaches on LIBS quantification
accuracy based on different chemometrics algorithms and diverse preprocessing methods. A total of
2340 LIBS spectra were collected from 39 kinds of geochemical samples by a laboratory duplicate
model of the MarSCoDe instrument. The samples and the MarSCoDe laboratory model were placed
in a simulated Martian atmosphere environment based on equipment called the Mars-Simulated
Detection Environment Experiment Platform (MarSDEEP). To quantify the concentration of MgO
in the samples, we employed two common LIBS chemometrics; i.e., partial least squares (PLS) and
a back-propagation neural network (BPNN). Meanwhile, in addition to necessary routine prepro-
cessing such as dark subtraction, we used five specific preprocessing approaches, namely intensity
normalization, baseline removal, Mg-peak wavelength correction, Mg-peak feature engineering, and
concentration range reduction. The results indicated that the performance of the BPNN was better
than that of the PLS and that the preprocessing of Mg-peak wavelength correction had the most
prominent effect to improve the quantification accuracy. The results of this study are expected to
provide inspiration for the processing and analysis of the in situ LIBS data acquired by MarSCoDe
on Mars.

Keywords: Tianwen-1 Mars mission; MarSCoDe; laser-induced breakdown spectroscopy (LIBS);
chemometrics; spectral data preprocessing

1. Introduction

During China’s first Mars exploration mission, namely the Tianwen-1 mission, the
Tianwen-1 lander successfully landed on the Utopia Plain of Mars (25.06◦N, 109.92◦E) in
May 2021, and the Zhurong rover begun scientific investigations around the landing site
thereafter [1]. There are six major scientific loads on the Zhurong rover aiming to analyze the
topography and geological structure, the soil structure (profile) and water ice, the surface
elements, minerals, rock types, the atmospheric physical characteristics, and the surface
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environment of Mars. As one of the primary payloads, the Mars Surface Composition
Detector (MarSCoDe) can detect the chemical composition of the Martian substances using
laser-induced breakdown spectroscopy (LIBS), short-wave infrared spectroscopy (SWIR),
and micro-imaging [2]. The LIBS technique is used to identify the types of rocks and soils
on Martian surface and quantify the element concentration of those materials [3].

LIBS is an atomic emission spectroscopy technology [4]. The surface of a sample
is ablated, melted, and vaporized by focusing a high-energy laser pulse on the target,
then a plasma formed on the surface due to a large number of material atoms is ionized.
The advantage of LIBS is that it can analyze various substances in solid, liquid, gas, and
colloidal states [5]. It is able to perform rapid detection of samples without special sample
pretreatment, so LIBS has been widely used.

LIBS has become an excellent tool for planetary detection due to the ability of remote
detection. The special surface environment of Mars is very different from that of Earth, and
LIBS can remove dust from the rock surface and has a wide detection range of elements,
making it a technology with great advantages in deep space exploration [6]. At present,
many LIBS devices have been equipped on the payloads of Mars exploration missions such
as the Curiosity rover and the Perseverance rover launched by the National Aeronautics
and Space Administration (NASA) [7,8] and the Zhurong rover of China.

LIBS devices have made some achievements in the field of deep space exploration
at present. LIBS cooperates with an alpha particle X-ray spectrometer (APXS) on Curios-
ity to measure elemental abundances. They provide supplementary data by revealing
the composition of rocks and components that can be directly related to texture charac-
teristics [9]. Using the remote chemical analysis capability of LIBS, which is especially
sensitive to various elements (including hydrogen), can help us reveal the formation time
of clay minerals [10]. The LIBS device on Perseverance assists other devices to analyze the
compositionally and density stratified igneous rock terrain of the Jezero crater, helping
to deduce the formation process of the crater [11]. Combined with the LIBS and SWIR
spectral analysis of MarSCoDe, the composition and mineralogy of the Vastitas Borealis
Formation at the landing site of Tianwen-1 were studied, providing basic facts and further
constraints regarding the genesis of the Vastitas Borealis Formation. The research results
largely supported the hypotheses of a frozen ocean and sublimation [12].

The spectrum signal intensity obtained by LIBS is related to the element content, so the
spectrum intensity can be used for the quantitative analysis of elements. Different kinds of
matrix effects [13], the self-absorption effect [14], equipment performance, fluctuations in
experimental conditions and other factors [15], and the broadening mechanism of spectrum
lines will make LIBS spectra unstable. The wavelength position of the element characteristic
spectrum lines will shift and the spectrum line intensity will also change, which makes the
quantitative analysis of LIBS spectra difficult.

In traditional LIBS quantitative analysis, researchers usually adopt classical statisti-
cal methods such as partial least squares (PLS) [16] and principal component regression
(PCR) [17]. The results yielded by these methods have good stability and strong inter-
pretability but are generally not accurate enough due to their inherent nature of linearity.
With the development of machine learning in the past decades, machine learning/deep
learning-based methods have been widely employed in LIBS quantification studies and
demonstrated their superiority over traditional methods in terms of accuracy [18,19].

The SuperCam team used ordinary least squares (OLS), random forest (RF), PLS,
ridge regression (Ridge), elastic net (ENet), and other methods in the quantitative analysis
of elements [20]. The final analysis method was selected according to the quantitative
analysis accuracy of the element under different methods. The SuperCam team improved
the accuracy of quantification by trying different methods. All spectra were pretreated
under the same methods. Patrick et al. used the data obtained by ChemCam for the
quantitative analysis of the Mn element. They found that a multivariable model, which
greatly improved the accuracy compared with the single-variable model, could distinguish
small changes in MnO [21]. Except in the field of deep space exploration, machine learning
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has also been applied to the quantitative analysis of LIBS. Zhang et al. used random forest
regression (RFR) to quantify multiple elements in steel and obtained better prediction
results than PLS and support vector machines (SVMs), which confirmed a good potential
of RFR combined with LIBS [22].

Generally speaking, a LIBS spectral profile depends highly on atmospheric environ-
ment parameters such as gas composition, pressure, temperature, and so on. The atmo-
spheric parameters of Mars are quite different from those of the Earth, so LIBS data obtained
in an ordinary laboratory environment might not be able to assist well in analyzing the LIBS
spectra collected on Mars due to their considerable spectral profile differences. The Chem-
Cam team has developed a laboratory that can simulate the atmospheric environment of
Mars. They can use the ChemCam laboratory model to collect LIBS spectra in the laboratory,
which makes better use of the data collected by ChemCam on Mars [23]. A large planetary
simulation chamber called Andromeda has also been built at the Arkansas–Oklahoma
Center for Space and Planetary Science [24].

The existing planetary simulation facilities mentioned above can only place the sam-
ples in a vacuum environment while the detection instruments are still in the normal air
environment, which cannot completely simulate the working environment of the instru-
ments on Mars. The signal must be received by the detector through a specific transmission
window, which can easily cause distortions of the signal. In order to make better use of the
data collected on Mars, we employed a specially built LIBS experimental facility, namely
the Mars-Simulated Detection Environment Experiment Platform (MarSDEEP), which is
able to simulate the Martian atmospheric environment. In addition to MarSDEEP, we also
have a MarSCoDe laboratory model that is a duplicate of the MarSCoDe flight model on the
Zhurong rover, and the technical parameters of the two instruments are almost identical.
In addition to the simulation of atmospheric pressure, gas composition, and temperature,
we can use the advantages of the large size of the experimental platform to place samples
and instruments in the vacuum chamber [25], hence we can simulate the filed detection of
MarSCoDe on Mars to the maximum extent.

Based on the LIBS spectra collected in the Mars-simulated environment, we carried
out a quantitative analysis in this study using two chemometrics; i.e., PLS and a back-
propagation neural network (BPNN), which are representative of classical methods and
machine learning methods, respectively. In addition to comparing the analytical chemo-
metrics, we also used five specific spectral preprocessing approaches and investigated their
effects on the quantification accuracy. In Section 2, the details of the LIBS experiments and
spectral data processing methods are presented. The results of the quantitative analysis are
then stated and discussed in Section 3. Finally, the conclusions are provided in Section 4.

2. Experimental Methods
2.1. Experimental Setup

In this study, all the LIBS spectra were acquired by the MarSCoDe laboratory model,
and both the instrument and the target samples were placed in the Mars-like atmospheric
environment simulated by MarSDEEP. The schematic diagram of MarSDEEP and the
operating principle of MarSCoDe are shown in Figure 1. The experimental platform had a
three-segment structure consisting of an approximate spherical part and two cylindrical
parts. The experimental platform comprised an instrument cabin (or called a vacuum jar),
a sample cabin, a sample import chamber, and a 3D vacuum stage. In the experiment, the
MarSCoDe laboratory model was placed in the instrument cabin, and the samples were
placed on the sample stage in the sample cabin. Inside the sample cabin, there was a track
along which the sample stage could move in the cabin, hence enabling the LIBS detection
distance to vary from 1.6 to 7 m.
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Figure 1. The operating principle of the LIBS system of MarSCoDe (a) and the schematic diagram of
MarSDEEP (b). The relevant parameters of the simulated Martian atmospheric environment in the
vacuum cabin are marked, and the positions of the MarSCoDe instrument and the detection samples
inside MarSDEEP are indicated.

With a vacuum pumping system, a temperature control system, an atmospheric
simulation system, a measurement and control system, and other auxiliary equipment, it
could simulate the pressure, temperature, and gas composition of Mars. All the cabins
were connected, so the instruments and samples were in the same environment.

MarSDEEP had two identical pump sets at either end of the cabin. One set of vacuum
pump included an oilless dry pump (HANBELL PS-160, Shanghai, China), a magnetic
suspension molecular pump (SHIMADZU TMP 1003LM, Kyoto, Japan), and a cryogenic
pump (ULVAC CRUYO-U20PN, Kanagawa Prefecture, Japan); the limit vacuum degree
achievable in the cabin could reach 10−5 Pa level.

The temperature control system was composed of a heating system and a liquid
nitrogen cooling system that were distributed between the heat sink and the inner wall of
the cabin. This design ensured that the samples and instrument were heated or cooled at
the same time so that their temperatures were consistent. Several temperature-monitoring
probes were installed at different positions in the instrument cabin and sample cabin that
could monitor and intelligently adjust the temperature inside the cabin. The temperature
could vary from −190 ◦C to +180 ◦C under good control.

The atmospheric simulation system included a gas filling and mixing unit and a
quadrupole mass spectrometer so it could fill different gases in proportion to simulate the
Mars atmospheric environment. The quadrupole mass spectrometer could monitor the
composition and proportion of gases in the cabin in real time.



Remote Sens. 2023, 15, 3311 5 of 26

The detection distance selected for this experiment was 2 m; the pressure of the
simulated Mars environment was 876 Pa; the temperature was −16 ◦C; and the filling gas
was composed of 95.73% CO2, 2.67% N2, and 1.6% Ar (volume percentage). After many
attempts, the experimental platform could well simulate the experimental environment of
LIBS instrument in situ exploration on Mars.

In order to achieve high-degree simulation of the in situ exploration on Mars, the LIBS
instrument used in the laboratory was almost identical to the technical specifications of
MarSCoDe. All spectra were collected in a simulated Mars environment. In Figure 1, it
can be seen that MarSCoDe pointed the laser at the target and received the emitted light
from the sample through a 2D pointing mirror. For high-wavelength resolution for the
entire spectral range, MarSCoDe adopted a three-channel spectrometer system. The main
parameters of the MarSCoDe instrument are listed in Table 1. The LIBS excitation laser had
a wavelength of 1064 nm, a pulse width of 4 ns, and a pulse energy of 9 mJ. The band ranges
of the three spectral channels were 240–340 nm, 340–540 nm, and 540–850 nm, respectively.
Each channel had 1800 pixels, and hence an entire LIBS spectrum consisted of 5400 pixel
data points. The wavelength difference corresponding to two adjacent pixels in one channel
was defined as the spectral sampling interval (SSI), which was considered constant within
each channel.

Table 1. Main parameters of MarSCoDe.

Parameter Value

Stand-off distance 1.6–7.0 m
Laser type Nd:YAG

Pulse width 4 ns
Pulse energy 9 mJ

Pulse repetition rate 1–3 Hz
Laser wavelength 1064 nm

Entire spectral range 240–850 nm

SSI of each channel
0.1 nm at 240–340 nm
0.2 nm at 340–540 nm
0.3 nm at 540–850 nm

2.2. Sample Preparation and Spectra Collection

A total of 39 geochemical samples were employed in this LIBS experiment, including
35 national reference material samples and 4 self-made samples. To investigate the effect
of the chemometrics, we selected MgO as the component for quantitative analysis since
it is a metal oxide commonly existed in Martian materials. Indeed, besides MgO, some
other oxides such as FeOT, SiO2, etc., are also common in Martian materials. However, it
was hoped that the selected component could be contained in as many target samples as
possible in our experiment so that the total dataset for the chemometrics could be large. For
the 39 samples herein, the MgO component existed in every sample, and the concentration
was not too low (>0.05%). Other oxides such as FeOT and SiO2 only existed in a portion
of the samples or had too low of a concentration. If those components were chosen, the
number of samples in the dataset would be reduced and hence the performance of the
chemometrics might degrade. Moreover, since Mg is a highly active metal, the characteristic
peaks of Mg usually had a high signal-to-noise ratio in our LIBS spectra, and this fact was
important for the subsequent specific spectral preprocessing. Considering the above two
main factors, we finally selected MgO to examine the quantification accuracy of our LIBS
chemometrics in this work.

The initial state of the samples was a uniform powder. For each sample, 3 g of powder
was weighed and pressed at 30 MPa for 90 s, yielding a tablet with a diameter of 40 mm
and a thickness of 6 mm. As a matter of fact, the calibration targets on the MarSCoDe
instrument were sintered powder samples instead of pressed powder ones. This also
was true for the SuperCam calibration targets. The MarSCoDe team and the SuperCam
team adopt sintered samples as calibration targets because sintered samples have higher
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solidity than pressed ones and they can better withstand the mechanical vibrations and
impacts during launch and landing processes. For laboratory experiments, however, the
requirement for the sample solidity is not that high. So, pressing was adopted rather than
sintering in this study because pressing is simpler and free of high temperature procedures.
In fact, in the laboratory experiments of the SuperCam team, most of the targets were
also pressed powder samples, and only those targets with identical composition to the
SuperCam calibration targets were sintered samples.

Some of the pressed samples and the sample stage used in the experiment are shown
in Figure 2.
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Figure 2. Images of some samples employed in the experiment: (a) some target samples (in the
form of pressed tablets), including soft clay (GBW03115), yellow-red soil (GBW07405(GSS-5)), lead
ore type-I (GBW07235), stream sediment type-VII (GBW07311(GSD-11)), stream sediment type-I
(GBW07309(GSD-9)), and latosol (GBW07407(GSS-7)); (b) the sample stage (with 16 sample holders)
that could move along on the track inside the sample cabin.

The MgO component concentration distribution of all the 39 samples is listed in Table 2.
Every concentration value is expressed in terms of weight percentage (for simplicity, we
just use “%” instead of “wt.%” in this text).

Each sample was irradiated by 60 laser pulses in the simulated Mars environment, and
hence 60 LIBS spectra were collected. Immediately after the LIBS spectra acquirement for
each sample, three non-laser spectra were collected. These non-laser spectra were utilized
to calculate the dark background for the subsequent spectral preprocessing. During the
experiment, the sample stage rotated at a small angle at a time to realize the alternation of
samples, as demonstrated in Figure 2b. There were 16 sample positions on the stage, but
no more than 15 target samples were placed at a time because there was always a position
reserved for a specially made Ti-alloy sample. The spectra of this special Ti sample would
play a key role in wavelength drift correction (see Section 2.3.2). In total, 2340 LIBS spectra
were acquired from the 39 target samples.

Before being analyzed using chemometrics, the LIBS spectra underwent a series of
spectral preprocessing steps, as elucidated in the next section.
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Table 2. The information on the 39 target samples used in our LIBS experiment. Sample Nos. 1 to 4
were self-made samples offered by Shanghai Jiao Tong University. Sample Nos. 5 to 39 were national
reference materials, and the reference IDs are displayed in the table. The MgO content value for each
sample is expressed in weight percentage (in unit of %).

No. Material Reference ID MgO Content

1 Andesite NA 0.43
2 Rhyodacite NA 0.057
3 Trachyte NA 2.96
4 Olivine basalt NA 10.05
5 Andesite GBW07104(GSR-2) 1.72
6 Basalt variant type-I GBW07105(GSR-3) 7.77
7 Kaolin GBW03121a 0.069
8 Soft clay GBW03115 0.3
9 Copper rich ore GBW07164(GSO-3) 2.33
10 Lead ore type-I GBW07235 1.62
11 Carbonate rock GBW07127 6.76
12 Dolomite GBW07217a 20.37
13 Yellow-red soil GBW07405(GSS-5) 0.61
14 Latosol GBW07407(GSS-7) 0.26
15 Stream sediment type-I GBW07309(GSD-9) 2.39
16 Stream sediment type-VII GBW07311(GSD-11) 0.62
17 Granitic gneiss GBW07121(GSR-14) 1.63
18 Clay GBW03101a 0.46
19 Shale type-I GBW03104 0.67
20 Argillaceous limestone GBW07108(GSR-6) 5.19
21 Polymetallic ore GBW07163(GSO-2) 1.39
22 Floodplain sediment GBW07390(GSS-34) 2.66
23 Shale type-II GBW07107(GSR-5) 2.01
24 Nickel ore GBW07146 14.56
25 Polymetallic lean ore GBW07162(GSO-1) 1.55
26 Lead ore type-II GBW07236 2.06
27 Molybdenum ore GBW07239 1.83
28 Stream sediment type-III GBW07305a(GSD5a) 1.29
29 Stream sediment type-IV GBW07307a(GSD7a) 2.5
30 Stream sediment type-V GBW07308a(GSD8a) 0.47
31 Saline-alkali soil type-I GBW07447(GSS-18) 2.58
32 Sierozem GBW07450(GSS-21) 2.04
33 Quartz sandstone GBW07106(GSR-4) 0.082
34 Saline-alkali soil type-II GBW07449(GSS-20) 2.98
35 Stream sediment type-II GBW07377(GSD-26) 1.73
36 Lead–zinc rich ore GBW07165(GSO-4) 0.59
37 Granite GBW07103(GSR-1) 0.42
38 Siliceous sandstone GBW03112 0.066
39 Stream sediment type-VI GBW07310(GSD10) 0.12

2.3. Data Preprocessing

In this study, spectral preprocessing was divided into two types; i.e., preliminary
preprocessing and additional specific preprocessing. The preliminary preprocessing steps
included dark subtraction, wavelength calibration and drift correction, and ineffective pixel
screening and channel splicing, as described in Sections 2.3.1–2.3.3. The spectra after the
preliminary preprocessing are called original spectra in this paper.

Based on the original spectra, five different specific preprocessing approaches were
used to investigate the effect of preprocessing. The five specific preprocessing were inten-
sity normalization, baseline removal, Mg-peak wavelength correction, Mg-peak feature
engineering, and concentration range reduction, as described in Sections 2.3.4–2.3.8. Note
that the five additional preprocessing schemes were generally independent of each other.
In other words, they were “parallel” rather than “cascaded”, and we only implemented
one of them at a time on the basis of the original spectra.
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2.3.1. Dark Subtraction

In the process of collecting spectral information, the electronic components of CCD
have a dark current and stray light may be introduced into the optical system, yielding
the dark background of the spectra. The real signal of one spectrum (DN value) can be
represented by Equation (1):

DNs(p) = DNR(p)− DNB(p) (1)

where p indicates the pixel number, DNs(p) indicates the effective signal, DNR(p) indicates
the raw response, and DNB(p) indicates the dark background. In this work, the dark
background of each sample was the average of the three non-laser spectra collected after
the acquirement of 60 LIBS spectra.

2.3.2. Wavelength Calibration and Drift Correction

A raw LIBS spectrum consists of 5400 data points displaying the relationship be-
tween pixel number and signal intensity. In order to obtain the relationship between
the wavelength and signal intensity, one needs to carry out wavelength calibration to
establish a model describing the correspondence between the pixel number and real wave-
length. For the wavelength calibration, four standard light sources were used, including a
mercury-argon lamp, a zinc lamp, a cadmium lamp, and a neon lamp. More details about
wavelength-calibration procedures can be found in [2]. After acquiring the wavelength
information, one can identify the chemical elements from the spectra based on the atomic
database provided by National Institute of Standards and Technology (NIST) [26].

The wavelength calibration was implemented in a normal atmospheric environment,
while the LIBS spectra were collected in a Mars-simulated environment, hence yielding
a possible wavelength drift mainly due to the temperature difference. Therefore, an
additional wavelength drift correction was carried out [27].

The key procedure of the wavelength drift correction was the determination of the
drift amount ∆p (here, p indicates that the drift amount is calculated in the unit of pixels).
A basic assumption herein was that the ∆p for each pixel within each spectral channel was
identical, while the ∆p of the three spectral channels could be different. The procedures are
briefly described in the following:

1. We took the data of the Ti element from the NIST database and determined the
wavelength point values within the 220–880 nm range where prominent characteristic
peaks of Ti existed. These values constituted a wavelength value series (WVS). The
WVS of the NIST database is defined as the standard WVS here.

2. There was a LIBS spectrum of the specially made Ti-alloy sample (mentioned in
Section 2.2) acquired in our previous experiment that was collected by the MarSCoDe
laboratory model in a Mars-simulated environment. This spectrum is called the refer-
ence spectrum here. We determined the wavelength point values where prominent
characteristic peaks of Ti existed in the reference spectrum. For the three spectral
channels, 61, 44, and 6 points were chosen, respectively. In the following, we took
Channel 1 as the example to demonstrate the calculation of ∆p. The WVS of Channel 1
is defined as the reference WVS-C1 (containing 61 points).

3. We selected 61 points within the 240–340 nm range from the standard WVS; these
points are called the standard WVS-C1. Note that the chosen 61 wavelength values
should be approximately the same as the reference WVS-C1. The drift amount between
the standard WVS-C1 and the reference WVS-C1 (both containing 61 points) was
defined as ∆p1, where ∆p1 should be within a certain range; e.g., 7–8 pixels for
Channel 1.

4. We calculated the root mean square error (RMSE) between the reference WVS-C1 and
the standard WVS-C1, set a certain shift range, and shifted the reference WVS-C1 with
a step of 0.01 pixel within the specified range (note that wavelength values could be
transformed into pixel number values via the obtained wavelength calibration model).
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After each shift, an updated reference WVS-C1 was generated. For each shifting step,
we calculated the RMSE and recorded it. After completing the shift, we determined
the minimum RMSE and the corresponding shift value. This shift value was regarded
as the optimal drift amount ∆p1 for Channel 1.

5. For an arbitrary target sample in the current experiment, the drift amount of its
spectrum was considered to be identical to that of the spectrum collected on the
Ti-alloy sample in the same collection batch (the Ti-alloy sample was always on the
stage in all collection batches, as described in Section 2.2).

6. We selected 61 points within the 240–340 nm range from the Ti-alloy spectrum in the
correct batch in the current experiment, and these points were called the arbitrary
WVS-C1. The drift amount between the arbitrary WVS-C1 and the reference WVS-C1
(both containing 61 points) was defined as ∆p2, where ∆p2 should be less than a
certain threshold.

7. We calculated the RMSE between the arbitrary WVS-C1 and the reference WVS-C1,
set a certain shift range, and shifted the arbitrary WVS-C1 with a step of 0.01 pixel
within the specified range. For each shifting step, we calculated the RMSE and
recorded it. After completing the shift, we determined the minimum RMSE and the
corresponding shift value. This shift value was regarded as the optimal drift amount
∆p2 for Channel 1.

8. The total drift amount of Channel 1 for an arbitrary spectrum was then calculated as
∆p = ∆p1 + ∆p2.

9. Similar to the above procedures, we calculated the total drift amount of Channel 2 and
Channel 3. According the drift amount of each channel, we completed the wavelength
drift correction.

The drift amount of Sample No. 2 in this experiment is displayed here to provide a
basic order-of-magnitude concept. As mentioned above, the minimum shifting step was
0.01 pixel within each channel. This minimum step unit is denoted as Si here, where i
represents the channel number (i = 1, 2, 3). For Sample No. 2, the drift amount values in
the three channels were +503 S1, −1156 S2, and −681 S3, respectively (“+” for left drift and
“−” for right drift). These drift amount values approximately corresponded to 0.5 nm for
Channel 1, 2.3 nm for Channel 2, and 2.0 nm for Channel 3, respectively.

2.3.3. Ineffective Pixel Screening and Channel Splicing

According to real engineering experience, the spectral responses of the pixels at the two
ends of the CCD in the MarSCoDe spectrometer system are not sufficient, and the output
of those pixels are not so credible [19]. In fact, to ensure the pixels within each spectral
channel covered the required band specified in Table 1, there were redundant pixels at both
ends of the CCD. For example, the actual spectral range of Channel 1 was approximately
223–344 nm, exceeding the 240–340 nm specification. The pixels corresponding to the out-
of-range wavelength values were regarded as ineffective pixels, and those pixel data points
were screened out. The remaining pixel data points of each of the three channels were then
spliced. For each spectrum, after the ineffective pixel screening and channel splicing, a
further processed spectrum was formed that included 4506 pixel data points in this study.

So far, the three preliminary preprocessing steps have been completed for one spec-
trum, and such a spectrum was defined as an original spectrum that was the starting point
of each of the five specific preprocessing schemes described in the following.

2.3.4. Intensity Normalization

For different target samples, the overall absolute intensity of a LIBS signal can vary
greatly. Hence, one may pay more attention to the relative strength between the characteris-
tic lines within each spectrum in the analysis. As a result, intensity normalization becomes
a common preprocessing approach in LIBS research. For each spectrum, the intensity value
of each pixel is divided by the intensity sum of the 4506 pixels; i.e., the intensity sum of the
4506 pixels in each normalized spectrum is 1.
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2.3.5. Baseline Removal

Due to the intrinsic bremsstrahlung and ion–electron recombination processes in LIBS
detection, there is usually a continuum baseline that appears in a LIBS spectrum. The
baseline can play a negative role in the determination of the real intensity of characteristic
peaks. Hence, baseline removal is frequently seen in LIBS analyses, especially when a
classical chemometrics method is employed. In this study, the baseline in the LIBS spectrum
was removed by using a baseline correction algorithm called asymmetric least squares
(ALS). Taking Sample No. 25 as an illustrative example, we display an original spectrum
and its profile after baseline removal in Figures 3a and 3b, respectively. In addition, the
main elements corresponding to some prominent peaks are identified and marked in
Figure 3b.
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Figure 3. (a) An original spectrum of Sample No. 25 (randomly picked from the 60 original spectra).
(b) The spectrum shown in (a) after baseline removal. The main elements corresponding to some
prominent peaks are identified and marked.

2.3.6. Mg-Peak Wavelength Correction

As stated above, the wavelength drift correction was carried out based on the special
Ti-alloy sample and the characteristic peaks of the Ti element. Since the component for the
quantitative analysis in this work was MgO, the characteristic peaks of the Mg element
were considered essential. Hence, an additional wavelength correction based on Mg peaks
was implemented in the spectra after the regular drift correction (based on the Ti peaks).
The correction procedures were highly similar to those described in Section 2.3.2, but the
Mg data in the NIST database were utilized herein.

Note that in this Mg-peak correction preprocessing, the overall drift amount for
different samples may have been slightly different even if their spectra were acquired in the
same collection batch. For example, Sample No. 2, Sample No. 3, and Sample No. 4 were
in the same collection batch in this experiment. For Channel 1, the overall drift amount
values for the three samples were +473, +463, and +448 (in the unit of S1), respectively. For
Channel 2, the overall drift amount values for the three samples were −1161, −1186, and
−1196 (in unit of S2), respectively. For Channel 3, the overall drift amount values for the
three samples were −741, −756, and −765 (in unit of S3), respectively.
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2.3.7. Mg-Peak Feature Engineering

In most of the quantification calculations in this work, the entire data for each spectrum
was used as the input of the chemometrics methods. As the component for quantitative
analysis is MgO herein, we also tried a Mg-peak feature engineering scheme; i.e., only
adopting the intensity of prominent Mg peaks as the input of the chemometrics methods.
The two most prominent peaks of the Mg element were the 279.5 nm peak and the 285.2 nm
in Channel 1, which could be found in all the spectra of the 39 samples. Therefore, the peak
intensity (rather than area) values of these two Mg characteristic peaks were selected as
the feature for analysis. It is worth emphasizing that this Mg-peak feature engineering
scheme was the only situation in which we did not use the entire spectrum as the input for
the chemometrics.

2.3.8. Concentration Range Reduction

According to general experience in LIBS chemometrics, the higher the similarity of the
training samples and the testing samples, the better the accuracy that can be achieved in the
testing. Hence, one may infer that if the MgO concentration range in the training sample
set was very wide; i.e., it includes a few samples with very high/low MgO concentration
values in the training set, then the overall accuracy of testing could be low because most
samples had intermediate MgO concentration values. In other words, those samples with
very high/low MgO concentration values may have reduced the overall similarity between
the training set and the testing set. Therefore, it was interesting to determine whether
the testing accuracy could be improved by making the MgO concentration range in the
training sample set more “focused”. Hence, in addition to the aforementioned sample
set containing 39 samples (called Sample Set 1), we prepared a second sample set (called
Sample Set 2) by removing the samples with very high/low MgO concentration values.
Herein, the threshold values were set to be 3% and 0.1%; namely, the samples with MgO
concentrations above 3% or below 0.1% were excluded in Sample Set 2. After the filtering,
only 29 samples were included in Sample Set 2. The statistical data of the two sample sets
are shown in Table 3.

Table 3. The statistics for the MgO component content distribution in Sample Set 1 and Sample Set 2.
The content values are presented in weight percentage (in unit of %).

Sample
Quantity Average Standard

Deviation Minimum Median Maximum

Sample Set 1 39 2.75 4.08 0.057 1.63 20.37
Sample Set 2 29 1.46 0.89 0.12 1.62 2.98

2.4. Analytical Approaches

The chemometrics approaches used in this paper included PLS and BPNN. PLS
integrates the functions of multiple linear regression analysis, canonical correlation analysis,
and principal component analysis. There is no requirement for the number of samples
in PLS. The unique weight calculation method can extract effective data from the input
data and eliminate the interference caused by matrix effects [28]. Therefore, PLS has been
widely used in LIBS spectral quantitative analysis. In this work, MATLAB was adopted for
the PLS programming.

The BPNN used herein was a three-layer network that included an input layer, a hid-
den layer, and an output layer, as illustrated in Figure 4. The input variables x1, x2, . . . , xn
denote the intensity values of each spectrum, where n is 4506 herein. The number of hidden
layer neurons in this model was 1024. The output layer provided the predicted MgO
concentration value y.
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Figure 4. Principle and structure diagram of the BPNN model, which mainly included an input layer,
a hidden layer and an output layer. The input variables x1, x2, . . . , xn denote the intensity values of
each spectrum, where n is 4506 herein. The number of hidden layer neurons in this model was 1024.
There was only one output neuron that yielded the predicted MgO concentration y.

In this work, Python (3.8.12) was adopted for the BPNN programming. The BPNN was
constructed by utilizing Keras (2.4.3), a Python-based advanced neural network application
programming interface (API) able to run on top of a TensorFlow framework. TensorFlow
not only possesses various built-in libraries for machine learning but also supports GPU
computing, and Keras is a user-friendly API.

During the model-training process, the training set of LIBS spectra and the corre-
sponding real MgO concentration values were fed into the network, and the network
weight values (including biases) were updated in an iterative manner to minimize the
loss function. When the network weights tended to be stable, a trained BPNN model
was obtained. Then, the testing set of LIBS spectra were input into the BPNN model to
examine its prediction ability. BPNN generated the predicted component concentration of
the validation set sample.

3. Results and Discussion
3.1. Results

In this work, RMSE was an important factor used to evaluate the quantification
accuracy of the PLS and the BPNN, as can be expressed by Equation (2):

RMSE =

√
∑M

i=1(Pi − Ri)
2

M
(2)

where Pi is the MgO predicted value of the validation set sample, Ri is the real value of the
MgO component in the validation set, M is the number of spectra for prediction of each
testing target sample, and here M = 60.

The so-called “leave-one-out” strategy was used to perform the training and testing.
Since there were 39 samples in the sample set (we normally refer to Sample Set 1 unless
otherwise specified), for one testing round 38 samples were selected as the training sample
set, and the remaining sample was the testing sample set. The 39 samples correspond to
39 testing rounds, with each testing round yielding an RMSE value. It should be noted that
in this study there were six sets of spectra; i.e., one original spectra set and five preprocessed
spectra sets corresponding to the five specific preprocessing approaches.

A brief statistical summary of the RMSE values is displayed in Table 4, and the more
detailed RMSE values are shown in Table 5.
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Table 4. Statistical summary of RMSE values. The first line states the 6 different spectra sets; i.e., the
original spectra set and the spectra sets corresponding to the 5 different preprocessing approaches. On
the left of the slash is the predicted result of the BPNN, and on the right of the slash is the predicted
result of the PLS.

Original Spectra Intensity
Normalization

Baseline
Removal

Mg-Peak
Wavelength
Correction

Mg-Peak Feature
Engineering

Concentration Range
Reduction

Maximum 0.0896/0.0263 0.0800/0.0387 0.1426/0.0263 0.0853/0.0267 0.1238/0.0331 0.0271/0.0125
Minimum 0.0010/0.0054 0.0008/0.0054 0.0008/0.0064 0.0007/0.0056 0.0024/0.0060 0.0011/0.0040
Average 0.0100/0.0100 0.0105/0.0135 0.0166/0.0103 0.0100/0.0106 0.0128/0.0121 0.0065/0.0064
Median 0.0045/0.0089 0.0047/0.0107 0.0078/0.0097 0.0052/0.0091 0.0068/0.0104 0.0048/0.0062

Table 5. The RMSE values obtained using the BPNN and PLS methods on different spectra sets. The
first number of each column represents the sample number of the validation set. There are two data
values in each cell. The first one is the result of the BPNN (on the left of the slash), and the last one is
the result of the PLS (on the right of the slash).

Sample No. Original Spectra Intensity
Normalization Baseline Removal Mg-Peak Wavelength

Correction
Mg-Peak Feature

Engineering

1 0.0025/0.0086 0.0043/0.0096 0.0033/0.0101 0.0012/0.0102 0.0086/0.0094
2 0.0012/0.0132 0.0027/0.0054 0.0014/0.0074 0.0009/0.0083 0.0132/0.009
3 0.0107/0.0087 0.012/0.0073 0.0109/0.0075 0.0083/0.0074 0.0087/0.0232
4 0.0605/0.0106 0.0186/0.0257 0.0258/0.0125 0.0216/0.0108 0.0106/0.0108
5 0.0053/0.0116 0.0065/0.0108 0.0078/0.0121 0.0059/0.0126 0.0116/0.0177
6 0.0206/0.0166 0.0483/0.0213 0.0261/0.016 0.0185/0.0158 0.0166/0.0145
7 0.0025/0.0101 0.0018/0.0076 0.0031/0.0076 0.0023/0.0097 0.0101/0.0081
8 0.0024/0.0061 0.006/0.0092 0.0054/0.0064 0.0016/0.0073 0.0061/0.0079
9 0.007/0.0068 0.0015/0.0127 0.0074/0.0064 0.0036/0.0076 0.0068/0.0179

10 0.0035/0.0078 0.0053/0.0176 0.004/0.0097 0.0065/0.008 0.0078/0.0169
11 0.0111/0.0114 0.0074/0.0097 0.0123/0.0132 0.0179/0.0153 0.0114/0.0089
12 0.0211/0.012 0.0296/0.0387 0.1056/0.0162 0.0481/0.0178 0.012/0.0311
13 0.003/0.0065 0.0018/0.006 0.0018/0.0087 0.001/0.0066 0.0065/0.006
14 0.0018/0.0084 0.0047/0.0107 0.0023/0.0099 0.0007/0.0088 0.0084/0.0069
15 0.006/0.0106 0.0037/0.0103 0.0072/0.0117 0.0054/0.0109 0.0106/0.0119
16 0.001/0.0068 0.0013/0.0066 0.0017/0.0079 0.0015/0.0072 0.0068/0.0106
17 0.0074/0.0116 0.0074/0.0098 0.0073/0.011 0.008/0.0113 0.0116/0.0124
18 0.0021/0.0084 0.0026/0.0131 0.0018/0.0097 0.0018/0.0086 0.0084/0.0077
19 0.0014/0.0076 0.0022/0.007 0.0045/0.008 0.0013/0.0075 0.0076/0.0075
20 0.0089/0.0103 0.0058/0.0177 0.0277/0.0089 0.0121/0.0137 0.0103/0.0097
21 0.0045/0.0072 0.0046/0.011 0.0054/0.0088 0.0113/0.0071 0.0072/0.0103
22 0.0057/0.0101 0.0082/0.0193 0.0067/0.0096 0.0061/0.0091 0.0101/0.0135
23 0.0037/0.0116 0.0656/0.0367 0.0095/0.0106 0.004/0.0097 0.0116/0.0138
24 0.0896/0.0263 0.08/0.0328 0.0916/0.0263 0.0853/0.0267 0.0263/0.0331
25 0.0041/0.0089 0.0037/0.0113 0.0061/0.0107 0.003/0.0089 0.0089/0.0107
26 0.0086/0.0078 0.0133/0.0251 0.0212/0.0109 0.0078/0.0091 0.0078/0.0075
27 0.0051/0.0089 0.0031/0.0203 0.0049/0.0086 0.0052/0.0076 0.0089/0.0134
28 0.0029/0.0091 0.0043/0.0075 0.0041/0.0083 0.0025/0.0092 0.0091/0.0104
29 0.0069/0.0075 0.0088/0.0085 0.0082/0.0101 0.0075/0.0074 0.0075/0.011
30 0.0015/0.0088 0.0017/0.0072 0.0045/0.0099 0.0015/0.0093 0.0088/0.0064
31 0.0078/0.0102 0.0095/0.0125 0.012/0.0098 0.0082/0.0092 0.0102/0.0127
32 0.0079/0.0068 0.0045/0.0135 0.0106/0.0071 0.0069/0.0056 0.0068/0.0123
33 0.0023/0.0078 0.0021/0.0078 0.003/0.0077 0.0024/0.0076 0.0078/0.008
34 0.043/0.0129 0.0086/0.0097 0.1426/0.0135 0.0538/0.0136 0.0129/0.0167
35 0.008/0.0054 0.0074/0.0092 0.0078/0.0074 0.0086/0.0069 0.0054/0.0084
36 0.0029/0.0168 0.0092/0.0136 0.0143/0.0135 0.0019/0.0176 0.0168/0.0102
37 0.0015/0.0119 0.0009/0.0058 0.0023/0.0093 0.0015/0.0119 0.0119/0.0079
38 0.0019/0.0102 0.0009/0.0122 0.0027/0.0107 0.0014/0.0098 0.0102/0.0094
39 0.0011/0.0064 0.0008/0.0061 0.0008/0.0072 0.0013/0.0066 0.0064/0.0081

Sum 0.389/0.3883 0.4107/0.5269 0.6257/0.4009 0.3884/0.3983 0.3883/0.4719
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In this work, the relative error (RE) was another key factor used to evaluate the
accuracy of the chemometrics. The absolute error (AE) is the difference between the
predicted value and the real value. The RE refers to the ratio of the AE to the real value, as
expressed by Equation (3):

RE =

∣∣∣∣Pc − Rc

Rc

∣∣∣∣ ∗ 100% (3)

where Pc represents the predicted concentration and Rc represents the real concentration.
The RE values obtained by the sample when it was used as the testing set are shown in
Table 6. The maximum, minimum, and median of the RE values obtained using different
methods are shown at the end of the table. The last line shows the average of the RE, which
is important data for evaluating the precision of a quantitative analysis.

Table 6. The RE values (in %) obtained by the BPNN and PLS methods on the different spectra sets.
On the left of the slash in each cell is the RE value obtained by the BPNN; on the right of the slash is
the RE value obtained by the PLS.

Sample No. Original Spectra Intensity
Normalization Baseline Removal Mg-Peak Wavelength

Correction
Mg-Peak Feature

Engineering

1 48.94/155.51 87.42/213.28 58.2/222.88 22.06/230.4 183.13/164.39
2 202.41/2787.89 453.41/219.02 215.53/496.72 145.95/709.12 1233.8/1316.16
3 31.46/18.51 39.42/16.96 28.68/10.34 21.7/4.95 75.92/179.44
4 53.79/1.1 14.35/65.9 18.2/11.85 0.6/1.44 17.31/5.11
5 27.06/60.05 28.04/62.66 4.27/67.81 30.5/76.27 57.01/164.48
6 21.96/34.99 62.07/58.33 28.58/31.3 13.21/31.81 56.77/25.57
7 354.78/1266.69 231.49/260.76 401.36/453.18 326.03/1148.95 945.88/870.93
8 71.42/23.62 176.75/203.17 154.14/40.2 45.82/140.47 194.12/156.17
9 27.32/8.62 5.15/68.95 24.76/3.22 12.86/18.05 31.66/134.23

10 17.59/15.3 29.5/189.61 21.21/49.93 29.89/23.75 60.66/169.07
11 13.56/15.3 8.49/9.72 14.67/19.28 24.07/32.97 31.79/1.46
12 8.81/2.76 11.61/73.66 42.09/11.71 21.49/12.95 11.47/47.27
13 47.76/42.28 24.85/41.3 26.31/115.56 2.85/45.34 82.64/5.69
14 60.74/219.96 168.7/427.23 68.76/316.93 20.53/250.33 261/148
15 21.66/46.07 12.26/41.68 11.84/41.11 18.6/48.28 19.8/42.39
16 13.33/22.28 17.88/47.46 5.01/70.8 5.97/18.07 121.07/138.09
17 34.87/64.72 30.46/51.21 36.62/45.89 37.96/62.13 26.34/88.94
18 35.42/61.57 53.68/160.47 18.15/131.54 28.09/95.69 110.76/60.99
19 17.34/13.28 26.96/17.39 36.6/67.3 16.39/28.91 67.43/15.97
20 14.24/19.31 7.99/59.42 3.82/12.98 2.5/35.96 40.68/10.51
21 25.44/2.68 31.68/85.08 29.26/36.87 68.78/1.56 20.62/55.12
22 17.18/37.11 21.92/121.47 6.95/32.63 19.39/28.94 44.98/37.9
23 15.07/64.62 163.04/169.4 39.23/53.42 10.3/42.37 52.62/91.44
24 59.14/46.06 41.53/73.76 57.79/45.69 55.15/47.62 84.6/74.28
25 19.35/43.66 19/60.4 30.15/69.76 15.38/45.21 22.5/38.63
26 33.2/24.99 59.06/303.45 73.45/31.5 25.85/37.94 22.22/3.18
27 21.27/19.56 14.21/223.13 22.48/25.93 23.6/0.69 34.39/81.16
28 19.41/47.56 27.86/22.95 25.83/37.34 3.28/51.75 25.9/30.04
29 22.68/2.66 33.25/20.28 27.66/34.2 25.25/2.45 18.72/35.67
30 25.83/125.71 31/55.86 81.77/188.91 25.48/156.65 124.55/9.72
31 23.39/38.69 31.43/58.73 35.5/32.76 15.77/30.66 16.2/54.33
32 35.56/17.39 19.5/87.32 48.34/17.39 29.32/6.41 11.29/65.59
33 263.9/624.51 222.85/159.53 310.16/645.99 272.92/555.54 867.78/665.44
34 133.15/54.57 24.96/30.55 443.91/58.7 169.86/60.85 23.59/91.85
35 44.1/6.97 41.52/44.05 42.06/28.47 47.55/24.35 12.01/17.83
36 45.58/465.24 154.39/314.84 224.91/262.32 27.64/520.69 105.16/165.46
37 29.67/267 16.14/31.48 52.42/123.32 31.22/273.42 117.86/96.16
38 181.97/16 126.95/1697.26 347.97/1538.92 160.87/417.54 1029.04/1260.18
39 88.69/180.86 56.35/14.29 52.56/288.1 103.26/228.88 558.28/481.47

Minimum 8.81/1.1 5.15/9.72 3.82/3.22 0.6/0.69 11.29/1.46
Maximum 354.78/2787.89 453.41/1697.26 443.91/1538.92 326.03/1148.95 1233.8/1316.16

Median 30.57/40.49 31.22/67.43 36.61/47.91 25.37/45.28 56.89/77.72
Average 57.15/178.61 67.36/150.31 81.31/148.02 50.2/142.29 174.91/182.06
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3.1.1. Analysis of Original Spectra Set

Figure 5 shows the relationship between the RMSE and validation sample number of
the original spectra. One can compare the analysis ability of the BPNN and PLS based on
the figure. The red line with circle represents the analysis results of the BPNN, and the blue
line represents the analysis results of the PLS. In order to show the differences between
the data more clearly, the y-axis uses logarithmic coordinates. When selecting a different
sample for verification, it can be seen that the RMSE values changed obviously.
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Figure 5. RMSE values of original spectra when we predicted MgO content using two different
methods. The red line represents the BPNN, the blue line represents the PLS, and the x-axis number
represents the verification set sample number.

It can be seen in Figure 5 that most samples could obtain lower RMSE values using the
BPNN. The advantage of the PLS was stability, while the BPNN was more accurate. Only
four samples (4, 12, 24, and 34) had significantly higher RMSE values than the PLS when
using the BPNN for prediction. It can be seen in Table 5 that these four samples had higher
RE values than the PLS when using the BPNN for prediction. In Table 3, it can be seen that
the concentrations of Sample Nos. 4, 12, and 24 were the highest for all samples, and all
three of them were more than 10%. Therefore, we speculated that the accuracy of the PLS
was better than that of the BPNN when predicting samples with a higher concentration.
For all samples with a concentration less than 1% among the 39 samples, the RMSE values
of the BPNN-predicted results were less than those of the PLS, and the lowest RMSE
value of 0.0010 appeared when predicting sample 16. The RMSE value of Sample No. 2,
which had the lowest MgO concentration (0.057%), was only 0.0012. In general, the BPNN
could obtain better results than the PLS in predicting samples with lower concentrations in
this experiment.

When comparing the RE values of the two chemometrics methods using the original
spectra, it can be seen that Sample Nos. 2, 7, and 33 with low concentrations had the largest
RE values when using the PLS to analyze. The MgO concentration of these samples was
lower than 0.1%. When the PLS was used to predict the samples with a high concentration,
relatively lower RE values could be obtained compared with the BPNN. In order to show the
prediction accuracy of the BPNN and PLS more intuitively, we arranged the concentrations
of 39 samples in ascending order and compared the AE of each sample obtained using two
chemometrics methods. It can be seen that the AE values of the BPNN in predicting samples
with a low concentration were smaller than those of the PLS (Figure 6). The AE values of the
PLS prediction were smaller for the samples with a high concentration, and the prediction
results of the PLS were relatively stable. Based on this phenomenon, we speculated that
the accuracy of the BPNN was higher and the prediction error is smaller when predicting
samples with a lower concentration. The PLS was more stable than the BPNN, and the PLS
showed better performance in predicting samples with a higher concentration.
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Figure 6. The AE values of the BPNN and PLS when using the original spectra for prediction. The
sequence of samples is different from other figures (it is arranged according to the concentration). A
logarithmic y-axis is employed for better visualization. Grey diamonds represent the results of the
BPNN, and red circles represent those of the PLS.

3.1.2. Analysis of Preprocessed Spectra Sets

In addition to the direct comparison of RMSE values, the statistical data of the results
obtained under five types of spectra and different data sets are given in Table 4, including
the maximum, minimum, average, and median of each method. The maximum value of
the BPNN was larger than that of the PLS, and the minimum value was less than that of
the PLS in all cases. When the difference between the averages was close, the median of the
BPNN was smaller. Although most of the BPNN values were lower than those of the PLS
for the same sample, the average values of the two chemometrics methods were not very
different due to the large individual values. Taking this factor into account, we speculated
that the prediction ability of the BPNN was better than that of the PLS.

When using Sample Set 1 to conduct the quantitative analysis, two chemometrics
methods were employed to analyze five sets of spectra; i.e., the original spectra set and the
first four preprocessed spectra sets (the concentration range reduction spectra set results
are displayed individually in Section 3.1.3). Hence, each target sample could correspond
to a total of 10 schemes when it was used as the testing sample (5 schemes for PLS and
5 schemes for BPNN).

For each scheme, we counted the number of samples on which this scheme could
achieve the minimum RMSE value among the 10 schemes. The statistical results are shown
in Figure 7. It can be seen that there were 34 samples with the minimum RMSE obtained by
the BPNN, and this number was significantly more than 5 samples obtained by the PLS.
Moreover, the scheme of “BPNN + Mg-peak wavelength correction preprocessing” had
the highest accuracy on as many as 11 samples, which was the most among all 10 schemes.
To verify whether the Mg-peak wavelength corrected spectra could obtain more accurate
results when using the BPNN, the RE values were also examined.
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Figure 7. The number of samples on which a certain scheme could achieve the minimum RMSE
value among the 10 schemes, with 5 schemes for the BPNN (left) and 5 schemes for the PLS (right).
Different colors represent the 5 different spectra sets. The value marked above each bar indicates the
exact count. Note that the sum of the 10 above-bar values is 39, corresponding to the sample quantity
in Sample Set 1.

For the BPNN method, the lowest RMSE value was obtained when Sample No. 14 was
the testing sample and the Mg-peak wavelength corrected spectra set was used (the RMSE
was 0.0007). The RE value obtained in the case was also the lowest compared with other
schemes. For the BPNN method, the RMSE value obtained on the original spectra was
0.18 and the corresponding RE value was 60.74%, while the RMSE value on the Mg-peak
corrected spectra was 0.0007 and the corresponding RE value was 20.53%. For the PLS
method, when using the original spectra, the RMSE value was 0.0084 and the corresponding
RE value was 219.96%. The RE values of the BPNN were far less than those of the PLS. It
can be seen in Table 6 that when the Mg-peak wavelength corrected spectra were used, the
average RE of the BPNN was 50.2%, which was the smallest RE value among the five sets
of spectra when using the BPNN. In addition, the PLS counterpart was 142.29%, also the
smallest among the five sets of spectra when using the PLS.

When the PLS was used for quantitative analysis, all of the average RE values exceeded
100%. However, if the BPNN was employed, the average RE values would exceed 100%
only when the Mg-peak feature engineering was used as the preprocessing. The advantage
of a BPNN is that one may improve the performance through the optimization of the various
parameters so that excessive RE values can often be avoided by parameter adjustment. By
contrast, the adjustable space of the PLS model is much smaller, leading to the occurrence
of extremely large RE values (over 1000%). A BPNN requires a large amount of data to
establish a good model. Therefore, when only two Mg-peak feature values were adopted
as the input of the BPNN, too little information could be learned, and the performance of
BPNN was poor no matter how we adjusted the parameters.

It is worth mentioning that for both the PLS and BPNN, the lowest level of the RE
could reach a 0.1% order of magnitude only when the Mg-peak wavelength corrected
spectra were used for analysis. For the BPNN, the minimum RE value was lower than 1%
except for the Mg-peak feature scheme. This proved that good prediction results could
be obtained when using the BPNN for quantitative analysis. In addition, when the Mg-
peak wavelength corrected spectra were used, the maximum RE was also smaller than for
other spectra.

In order to go a step further in the comparison of the RE values, six RE value
ranges were set to characterize different accuracy levels. These six RE ranges were (0, 10],
(10, 30], (30, 50], (50, 100], (100, 1000] and (1000, +∞), respectively (RE values in %), which
are denoted as Rg 1 to Rg 6 for simplicity. The distribution results are shown in Figure 8.
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It can be seen that there were 94 RE values of the BPNN falling in Rg 1 and Rg 2, and the
number for the PLS was 54. A large number of RE values of the PLS fell in Rg 4, Rg 5, and
Rg 6, indicating the relatively low accuracy of the PLS quantification.
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Figure 8. The statistical results of the RE values obtained using different spectra. The six ranges
are (0, 10], (10, 30], (30, 50], (50, 100], (100, 1000] and (1000, +∞), respectively (RE values in %).
(a) Distribution of the BPNN; (b) distribution of the PLS. The value marked above each bar indicates
the exact count falling within this range, and different colors represent different spectra.

For the BPNN, there was no case in which the greatest RE value exceeded 1000% for
the four approaches using full spectral information. Among these four spectra, using the
Mg-peak wavelength corrected spectra could obtain the best overall accuracy. Not only
were the RE values falling in ranges 1 and 2 more than when using other spectra, but the
number of samples that had RE values less than 30% was 26, significantly more than for
other spectra. When using the Mg-peak corrected spectra, five samples could achieve very
high accuracy (i.e., with RE values falling in Rg 1), more than for the other kinds of spectra.

The above results indicated that higher accuracy could be obtained when using the
Mg-peak wavelength corrected spectra with the BPNN in this work. It is also worth noting
that when the Mg-peak feature was used to analyze, the number of RE values greater than
30% was also more than for the others, and there was no RE value less than 10%. For the
other spectra, the accuracy of prediction did not differ much, and the phenomenon was not
worth analyzing.

As for the PLS method, the number of RE values falling in Rg 1 was a bit larger than
that of the BPNN, but the number of RE values falling in Rg 1 and Rg 2 was apparently
lower than that of the BPNN. Moreover, all sets of spectra had RE values falling in Rg 6,
indicating a lower predication ability of the PLS model herein. In addition, unlike the BPNN
case, using the Mg-peak feature engineering scheme did not obviously decrease the overall
accuracy. This was in line with expectations because PLS is a classical statistical method
instead of a big-data-required machine learning method. This result also implied that the
intensity values of the two prominent Mg peaks played a major role in the PLS calculation.

The overall RE values of all the 39 samples indicated that more accurate results could
be achieved if the Mg-peak wavelength corrected spectra set was utilized regardless of
whether the BPNN or PLS method was employed.

When the intensity-normalized and baseline-removed spectra were used for analysis,
the prediction accuracy was not significantly improved. For the PLS, these two spectral
preprocessing approaches improved the accuracy of the prediction results if we considered
the statistics of the RE. It may be that the preprocessing approaches were helpful in the
extraction of the Mg peaks, making the analysis results more accurate. For the BPNN,
intensity normalization had no significant impact, and the result for the normalized spectra
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was close to the result of the original spectra. In the samples analyzed this time, the
performance of BPNN was decreased due to removing the baseline of spectra. Considering
that a BPNN is a non-linear machine learning method, other elements could affect the
Mg-peak strength. The baseline may have contained information that was conducive to its
learning, so the impact of the baseline removal on the quantitative analysis is still uncertain.

3.1.3. Analysis of Concentration Range Reduction Spectra Set

In addition to the above four preprocessing approaches, we also examined the in-
fluence of the sample set size on the quantification accuracy by utilizing a concentration
range reduction preprocessing scheme. The MgO concentration range was 0.12–2.98% for
the 29 samples in Sample Set 2. The analytical results for the samples that existed in both
samples sets are displayed. The RMSE results are exhibited in Figure 9, and specific RE
values are shown in Table 7.
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Figure 9. The RMSE values obtained for Sample Set 1 and Sample Set 2. The data for Sample Set 1
only retains the samples that were common with Sample Set 2.

After the concentration range of the training set was reduced, the accuracy of the PLS
was significantly improved, and both the RMSE and RE were the best. As can be seen in
Figure 9, when using Sample Set 2 for analysis, the RMSE values of almost all samples were
lower than those of Sample Set 1. Based on the RMSE statistical data given in Table 4, it
can be seen that the average of the RMSE was only 0.0064 when Sample Set 2 was used
for the quantitative analysis. In this experiment, after reducing the sample concentration,
the performance of the PLS was significantly improved, the prediction range was more
accurate, and the average of the RE was only 39. We speculated that the concentration
range of the sample set had a great impact on the final results for the linear method.

For the BPNN, the change in the sample set had little impact on the accuracy of
the analysis results, and there was no obvious improvement in the prediction accuracy.
The average of the RE did not decrease significantly, and the prediction results of some
samples were actually worse than those for Sample Set 1. When using the BPNN for content
prediction, the larger the number of samples, the higher the accuracy of the final prediction
results. The concentration range of samples in this experiment had little influence on the
final results because the change in sample set concentration had no significant impact on
the results of the BPNN. Therefore, it can be indicated that as the training set expanded,
the concentration range of the samples became larger, and the results obtained by BPNN
would be more accurate.
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Table 7. The RE values (in %) of the 29 samples in Sample Set 2 and the quantitative analysis results of
those samples in Sample Set 1 are displayed. The last row shows the average number of each column.

Sample No. BPNN Set 1 BPNN Set 2 PLS Set 1 PLS Set 2

1 22.59 91.51 66.87 57.84
2 93.11 197.52 54.78 156.66
3 45.53 30.68 103.29 29.00
4 24.08 43.51 7.09 45.77
5 63.64 99.07 20.08 62.00
6 28.50 13.53 24.79 12.64
7 32.24 12.85 25.79 24.34
8 18.88 49.42 57.19 27.06
9 45.25 109.86 110.10 60.24
10 11.35 12.90 13.82 18.93
11 57.52 48.47 105.49 32.77
12 28.51 15.77 28.32 35.22
13 11.61 10.23 8.89 19.07
14 35.35 27.72 3.73 11.91
15 49.67 114.91 98.70 69.47
16 51.16 236.78 129.89 41.43
17 35.38 23.42 67.67 13.66
18 68.39 184.50 51.47 80.13
19 121.27 17.52 35.79 40.16
20 25.04 16.78 61.36 16.59
21 56.71 102.45 6.64 68.32
22 13.60 7.84 59.09 12.86
23 91.33 47.27 99.82 16.84
24 82.13 34.59 35.47 9.54
25 427.48 52.82 162.62 64.54
26 76.29 59.56 12.05 38.20
27 158.59 66.48 274.49 7.62
28 22.28 21.32 112.14 10.61
29 10.56 40.97 21.70 31.04

Average 62.34 61.73 64.11 38.43

3.2. Discussion

In addition to the results analyzed in Section 3.1, several additional details that might
be important are discussed herein.

3.2.1. The BPNN Parameters

One of the most important parameters of the three-layer BPNN model is the number
of hidden layer neurons. According to the parameter testing on the LIBS dataset in our
previous studies, we found that 1024 was a good number for the hidden neuron parameter.
Therefore, in the current work we inherited this number; i.e., 1024. It should be noted that
a simple test was performed before we confirmed that 1024 was still a good enough value
for the LIBS data in this study.

Specifically, 2 of the 39 samples were randomly selected as the testing sample, and
the effect of hidden neuron number was investigated based on their original spectra. The
two chosen samples were Sample No. 1 and Sample No. 4, and we tried 100, 500, 1024, and
2000 neurons. For Sample No. 1, the testing RMSE values were 0.1012, 0.0078, 0.0025 and
0.004, respectively. For Sample No. 4, the testing RMSE values were 0.1086, 0.0737, 0.0605
and 0.0743, respectively. Apparently, the parameter value of 1024 could outperform the
other three parameter values in terms of the testing accuracy. Despite the fact we did not
implement a thorough investigation based on all the samples, these results indicated that
1024 is a credible parameter value for the BPNN model in the current work.

Another important parameter was the number of iteration steps for the BPNN model
training. In this work, the iteration number was set to be 801. Figure 10 shows the
RMSE vs. step curve when Sample No. 1 was adopted as the testing sample (the step range
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is from 101 to 801). It can be seen that when the number of iterations was 801, the RMSE
value could converge to a small value. In very few cases (e.g., Sample No. 5), further
increasing the iteration number could yield an even smaller RMSE value. However, the
improvement was very tiny, so we still adopted the results of the 801-step scheme.
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Figure 10. The RMSE vs. step curve when Sample No. 1 was adopted as the testing sample. The step
range is from 101 to 801 for a better visualization effect.

It is worth mentioning that although the RMSE value tended to decrease in a relatively
smooth pattern, the changing trend of the loss function value was very different. The loss
vs. step curve when Sample No. 1 was adopted as the testing sample is shown in Figure 11.
As can be seen in Figure 11a, the loss function value dropped sharply in the first 20 steps,
while in Figure 11b one can find that it kept oscillating at a certain level during the latter
part of the training process.
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3.2.2. The Overfitting Check

One of the most notorious shortcomings of neural network algorithms is the overfitting
problem. The overall accuracy of the training set is a key factor used to analyze whether
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overfitting appears in the training. Here, the BPNN model trained when Sample No. 1 was
used as testing sample is taken as the example to demonstrate the condition of overfitting
in this study. When Sample No. 1 was used as the testing set sample, the BPNN model was
trained by the spectra from the other 38 samples (i.e., Sample No. 2 to Sample No. 39).

Figure 12 displays the RMSE values of the 39 samples when Sample No. 1 was in the
testing set and Sample No. 2 to Sample No. 39 were in the training set. The RMSE of the
testing sample was 0.0025 (red square). It can be seen that some of the training samples
had lower RMSE values, while some of the training samples had higher RMSE values
(blue dots). Generally, the overall RMSE level of the training samples was approximately
the same as the RMSE value of the testing sample. Based on this example, one may infer
that there was no apparent overfitting or underfitting phenomenon for the BPNN model
in this work.
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Figure 12. The RMSE values of the 39 samples when Sample No. 1 was in the testing set and Sample
No. 2 to Sample No. 39 were in the training set. The RMSE value of Sample No. 1 is represented by
the red square, while the RMSE values of the other 38 samples are represented by the blue dots.

3.2.3. Some other Chemometrics Methods

Based on the analysis in the previous sections, one may find that some specific spectral
preprocessing schemes have the potential to improve the performance of LIBS chemomet-
rics; e.g., the Mg-peak wavelength correction approach.

In order to investigate whether this spectral preprocessing approach could improve
the accuracy of other chemometrics algorithms, we applied two additional algorithms,
namely OLS and ENet, to the original spectra set and the Mg-peak wavelength correction
spectra set.

The RMSE values of the results predicted by the OLS and the ENet are shown in
Figure 13. For the ENet, 23 samples could obtain a smaller RMSE after using Mg-peak
wavelength corrected spectra. For the OLS, the minimum value of the RE was 5.34 and
the maximum value was 1599 when using Mg-peak wavelength corrected spectra. For the
original spectra, the minimum RE value was 13.26 and the maximum RE value was 2925.
This spectral preprocessing approach had a similar effect on the OLS as the PLS, with both
the maximum and minimum values decreasing.
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Figure 13. The RMSE values of the results predicted by the OLS and the ENet methods. Each method
was applied to two spectra sets; i.e., the original spectra set and the Mg-peak correction spectra set.

To further compare the RE values, five RE ranges were set to represent different
accuracy levels, namely (0, 30], (30, 50], (50, 100], (100, 1000] and (1000, +∞), respectively
(RE values in %). The distribution results are shown in Figure 14. For the ENet, the
quantification accuracy of the Mg-peak wavelength corrected spectra was generally higher
than that of the original spectra, as can be inferred from the counts in Rg 1 and Rg 2. This
result further confirmed that the Mg-peak wavelength correction was beneficial to accuracy
improvement for the ENet method. For the OLS, there was hardly any positive information
that could support the benefit of Mg-peak correction preprocessing based on the counts
in Figure 14. Combined with the positive information provided in Figure 13, it may be
concluded that the effect of Mg-peak correction on the OLS method was ambiguous and
needs further investigation. Hence, from the comprehensive results of the BPNN, PLS, and
ENet, it was shown that the Mg-peak wavelength correction preprocessing scheme really
has great potential to improve the accuracy of MgO component quantification.
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different spectra.
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More calculations based on other algorithms, whether regular machine learning meth-
ods (e.g., Ridge and RF [20]) or sophisticated deep learning methods (e.g., convolutional
neural networks [19]), will be carried out in our future work so that the effect of specific
spectral preprocessing schemes can be further revealed.

4. Conclusions

In this study, we collected more than 2300 LIBS spectra from 39 geochemical samples
using a MarSCoDe laboratory model in a simulated Martian atmospheric environment.
Two LIBS chemometrics methods; i.e., PLS and BPNN, were employed to quantify the
MgO concentration in the 39 samples. The results indicated that the BPNN model was
better than the PLS model in terms of overall accuracy, especially for those samples with
a relatively low MgO concentration. The PLS model could show better performance in
the prediction of those samples with a high MgO concentration, and the PLS results were
more stable than the BPNN results. For the two chemometrics methods, more accurate
analysis results could be achieved when using the Mg-peak wavelength corrected spectra,
as indicated by the RMSE and the RE values.

For the PLS, the employment of a sample set with a reduced concentration range could
significantly improve the quantification accuracy. Intensity normalization and baseline
removal could slightly improve the accuracy, while Mg-peak feature engineering hardly
had any effect on accuracy promotion.

For the BPNN, the effect of either intensity normalization or baseline removal could be
definitely determined and needs further examination. Mg-peak feature engineering would
greatly reduce the accuracy because two Mg-peak intensity values can provide the BPNN
model with too little information for its learning.

The Mg-peak wavelength correction was the most shining preprocessing scheme
in this study, bringing clear benefits to the MgO quantification accuracy improvement
for both the BPNN and PLS. In addition, this preprocessing approach also showed good
performance in the ENet method. These results indicated that wavelength correction based
on a certain element has great potential in promoting the accuracy of quantifying the
content of the element.

Despite the fact that the sample set size was not too large, this study put forward
new ideas for improving the accuracy of LIBS quantification. Larger sample datasets will
be adopted in our future work to further investigate the effects of the specific spectral
preprocessing schemes.
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