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Abstract: Soil salinity is one of the parameters used for determining the extent of soil salinization.
During water evaporation, the surface of salt-affected soils in the Songnen Plain, China, exhibits
obvious shrinkage and cracking phenomena due to the high salt content. The aim of this current
study is to quantify the influence of the salt content on the surface shrinkage–cracking process and
to achieve quantitative extraction of soil salinity parameters based on different crack parameter
types. In order to achieve the above objectives, a controlled shrinkage–cracking experiment was
conducted. Subsequently, three kinds of crack characteristics such as crack length, box-counting
dimension, and 12 gray-level co-occurrence matrix (GLCM) texture features were quantitatively
extracted from the standard binary crack patterns. In order to predict the soil physical–chemical
properties of salt-affected soils in the Songnen Plain, three models such as multiple linear regression
(MLR), multiple stepwise regression (MSR), and artificial neural network (ANN) were developed and
compared based on the crack length, box-counting dimension, and the first two principal components
of GLCM texture features. The results show that the extent of desiccation cracks was determined by
soil salinity since the water film caused by exchangeable cations and the thickness of DDL determined
by soil salinity can promote desiccation cracking. Although the three methods have high prediction
accuracy for Na+, electrical conductivity (EC), and total soil salinity, the ANN-based method showed
the best prediction with R2 values for Na+, EC, and soil salinity as high as 0.91, 0.91, and 0.89, and
ratio of performance to deviation (RPD) values for Na+, EC, and soil salinity corresponding to 2.96,
3.47, and 2.95.

Keywords: salt-affected soil; soil salinization; Songnen Plain; artificial neural network; desiccation crack

1. Introduction

In both arid and semi-arid areas, soil salinization is considered as very severe land
degradation, which causes a great reduction in crop yields, damages the properties of
the soil, and also poses a very large detrimental impact on the ecological environment.
Therefore, determining the extent of salinization and measuring soil salinity quickly and
accurately are important prerequisites for the scientific management and rational utilization
of salt-affected regions [1]. In soil salinity detection methods, field sampling followed by
traditional laboratory analysis is the most direct method [2,3]. However, real-time soil
salinity parameters cannot be obtained effectively by conventional methods due to their
tedious testing processes, long-term measurement periods, and high labor cost. The elec-
tromagnetic induction method is commonly used to determine the salt content without
contact, which refers to a quick determination of the apparent soil conductivity by measur-
ing the correlation between the primary magnetic field and the induced secondary magnetic
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field [4,5]. Although this method is widely used when field monitoring the content and
spatial distribution of soil salinity, soil texture measurement, and other soil properties [6–8],
the accuracy of electromagnetic induction sensors such as the EM-38 can be easily affected
by soil physical–chemical properties due to their high sensitivity. Moreover, the limitation
of electromagnetic sensors also lies in their susceptibility to environmental influences [9–11].
Owing to its powerful data synthesis and high effectiveness, remote sensing technology
is widely used to monitor soil salinity in large-scale and multi-temporal ways, which de-
pends on the diagnostic spectroscopy of different salt minerals [12,13]. Many scholars have
identified and classified saline–alkali soils using spectral measurements and the response
of saline soils [14–17], band combinations of soil spectral features [18–20], and inversion
modeling for soil salinity from different scales [21–23]. However, there are still many
factors influencing the transmission process of electromagnetic waves, indicating that the
estimation of soil salinity parameters using spectroscopy is often limited to qualitative
descriptions [24–26]. Therefore, it is important and urgent to develop a quick and effective
method to measure salinity levels without damaging the surface of salt-affected soil.

Due to its high clay contents, cohesive saline–alkali soil tends to generate desicca-
tion cracks on its surface under drought conditions, which will weaken the mechanical
properties of the soil and reduce the stability of the soil structure [27,28]. Therefore, quan-
tifying the relationship between soil salinity and crack characteristics can greatly help
to improve the accuracy in identifying the salinity of saline–alkali soils. In an earlier
study, Lima et al. [29] confirmed that as the salt content increases, the area and volume
of soil cracks increase, while the crack width showed an opposite trend. With the rapid
development of the computer field, the accurate and effective acquisition of soil crack
characteristics based on image processing technology has gradually attracted the attention
of scholars, which makes more and more researchers strive to the influence of salinity on
surface desiccation cracking of saline–alkali soils. Sun et al. [30] quantitatively analyzed
changes in crack morphology by deploying saturated mud samples with different salt
concentrations. Their results showed that the total crack length and the average crack
width gradually decreased, and the cracking time of the soil surface was also delayed with
salt concentration. Chang et al. [31] simulated the soil shrinkage characteristic curve using
a trilinear model. They found that different concentrations of sodium salt solutions can
destroy soil colloids, which in turn leads to soil shrinkage. DeCarlo et al. [32] proposed an
X-ray microtomography method to determine the 3D crack parameters of mixed bentonite
with different NaCl concentrations. They found that the soil cracks showed a concentrated
distribution with the increase in soil salinity. Xing et al. [33] analyzed the effects of salt
cations on the water-holding capacity and dry shrinkage cracking in pink clay loam soil
in Shanxi, China. They found that four ions (Na+, K+, Mg2+, and Ca2+) can decrease the
cracking degree of the soil, which thus provided a reference for the development of irri-
gation patterns for saline soils. After simulating the process of the dry cracking of laterite
soil fractures, Huang et al. [34] found that the fractal dimension computed from the crack
pattern was clearly positively correlated with the total crack length, the crack area, the crack
rate, the crack node number, and the crack bar number, their results also indicated that the
fractal dimension was significantly negatively correlated with the block area. Although
many scholars have focused on the impact mechanism of soil salinity on the cracking
process of salt-affected soils, the relationship between cracks and salinity still varies due
to different conditions such as climate, topography, hydrological characteristics, and soil
types. This is because the complex interaction between salt and soil particles during the
desiccation cracking process is influenced by the valence state and the ion concentration,
denoting that the mechanism by which the soil salt content affects the surface cracking of
cohesive soil has not been fully determined.

Although many studies have focused on the characterization of desiccation cracking
in relation to soil salinity, most of them rely on only one type of crack characteristics,
which represents a limitation in describing the occurrence and development of cracks
and also makes it difficult to fully quantify the effect of soil salinity parameters on the



Remote Sens. 2023, 15, 3249 3 of 22

desiccation cracking process. This study intended to explore the response of different crack
characteristics to the soil salinity of salt-affected soils in the Songnen Plain of China. To
achieve the objectives, a laboratory-controlled cracking test was designed using 57 soil
samples. An attempt was also made to synthetically extract crack parameters, such as
geometric, fractal dimension, and texture features based on the images obtained from
ground-based remote sensing techniques, and to analyze the mechanism of soil salinity on
the desiccation cracking process of cohesive salt-affected soils. After that, three different
regression models were further developed and compared in order to estimate the soil
salinity parameters effectively and accurately, which can thus provide accurate data support
for the improvement of local salt-affected soils and can also be used to explore the possibility
for further non-destructive and online measurement of soil salinity under field conditions
at different scales.

2. Materials and Methods
2.1. Study Area

The Songnen Plain is commonly considered one of three typical soda-salt-affected soil
concentration areas worldwide. With the increase in human activities and the imbalance
between resource utilization and environmental protection, the soil salinization of the
Songnen Plain is showing a trend of increasing year by year. The cohesive soil in the
area suffers from soil salinization and is almost completely scattered with very low soil
permeability, leading to significant shrinkage and cracking on the soil surface during the
evaporation of water, which severely restricts the sustainable development of both livestock
and agriculture in the region. Figure 1 describes the surface desiccation cracks developed
from typical soda salt-affected soil with different salt contents in the Songnen Plain under
natural conditions.
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Figure 1. Desiccation cracks generated on the surface of salt-affected soil. (a) Overall cracking
conditions at 123◦52′46′′E, 45◦36′36′′N, (b) cracking surface at 123◦47′59′′E, 45◦26′16′′N, (c) cracking
surface at 123◦44′27′′E, 45◦37′57′′N, (d) cracking surface at 123◦56′30′′E, 45◦23′58′′N, (e) cracking
surface at 124◦3′33′′E, 45◦32′28′′N.
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In this study, Da’an City was determined as the main research area, which is located
in the western region of the Songnen Plain. The annual average temperature in Da’an City
is 4.5 ◦C with annual minimum and maximum temperatures of −35 ◦C and 36.9 ◦C, respec-
tively. In addition, the rainfall in this area is concentrated in July and August, with annual
average evaporation of up to 1900 mm; however, the annual average precipitation is only
maintained at approximately 400 mm. This seriously unbalanced evaporation–precipitation
ratio, coupled with the impact of local special terrain, hydrogeological conditions, and
unreasonable anthropogenic activities such as flood irrigation, excessive deforestation, over-
cultivation, and overgrazing have made the study area one of the most severely salinized
regions in the Songnen Plain [35]. The primary salt minerals of salt-affected soils in Da’an
City are NaHCO3 and Na2CO3. This kind of salt-affected soil with low infiltration capacity
can largely prevent salt from moving downward, denoting that the soil properties are thus
stable from the topsoil layer. Therefore, after consideration of the environmental factors and
spatial heterogeneity, 57 soil samples were obtained from the top 20 cm with the sampling
points distributed in Figure 2. Note that all soil samples were selected within a small region
with longitude from 123◦42′33′′E to 124◦6′1′′E and latitude from 42◦23′57′′N to 45◦39′57′′N.
After air-drying, grounding, and sieving all soil samples through a 2 mm mesh, they were
divided into three parts: the first sub-samples were used for determining the soil chemical
parameters, the second sub-samples were prepared for measuring the soil particle size
distribution, and the third sub-samples were used to simulate a shrinkage–cracking test on
the soil surface.
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2.2. Soil Property Measurements

In this study, salinity parameters refer to pH, electrical conductivity (EC), sodium
adsorption ratio (SAR), exchangeable sodium saturation percentage (ESP), and the eight
main ions of salt-affected soil, including Na+, K+, Mg2+, Ca2+, Cl−, HCO3

−, CO3
2−, and

SO4
2−. Note that since the saline-sodic soils of the Songnen Plain are almost devoid of

SO4
2− [36,37], the measurement of SO4

2− was therefore neglected in the present study.
After preparing soil suspensions with a soil–water mass ratio of 1:5, the EC values and pH
of soil samples were measured based on the conductometric method and the potentiometric
method, respectively. After that, a soil extract with the same soil–water mass ratio was
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used to determine the ion contents of all soil samples. Specifically, a flame photometer was
used for the contents of Na+ and K+; the EDTA titration method was carried out for the
contents of Mg2+ and Ca2+; the AgNO3 solution titration method was used to measure the
content of Cl−; and the HCO3

− and CO3
2− contents were determined based on the double

indicator neutralization method. In addition, a Mllvern MS-200 laser particle size analyzer
was used for the particle size distribution of all the soil samples.

2.3. Soil Surface Cracking Experiments

To simulate the shrinkage and cracking process, 57 saturated slurry samples with the
same water content of 80% were prepared, mixed, stirred well, and poured into square
wooden sample boxes of the same size (50 × 50 × 3 cm) and the surface was smoothed
using a spatula. After that, the prepared soil samples were then placed and dried under
controlled laboratory conditions with temperature, humidity, and pressure kept at 25 ◦C,
35%, and 101 kPa, respectively. After each soil sample was weighed every day, a standard
process was used to take photos of the cracking status of all soil samples. In particular, a
digital camera with high resolution was first fixed on an experimental metal platform to
take standard images of all soil samples during the desiccation cracking process, ensuring
that the lens was pointed vertically down and at a height of 1 m from the ground. Second,
a fixed area of 50 cm × 50 cm was determined, with the center corresponding to the
projection of the camera lens on the ground. Third, the light sensitivity of the laboratory
was measured using a digital photometer. After that, the white balance process of the
camera was carried out accordingly; in addition, some other camera parameters including
shutter speed and aperture size were also configured and set. Thereafter, every soil sample
was then placed in a fixed area above and photographed for a standard crack pattern of
the same size. After the images of all cracked soil samples were obtained every day, a
black-and-white grid calibration plate (size of 50 cm × 50 cm) was covered on the fixed
area mentioned above and photographed again for further geometric calibration. Figure 3
shows the desiccation cracking process of a typical soil sample in this study. When the
mass of all samples no longer decreased, the cracking process could be considered finished,
and the soil samples were thus considered completely dried soil samples.

Remote Sens. 2023, 15, 3249 5 of 23 
 

 

method, respectively. After that, a soil extract with the same soil–water mass ratio was 
used to determine the ion contents of all soil samples. Specifically, a flame photometer 
was used for the contents of Na+ and K+; the EDTA titration method was carried out for 
the contents of Mg2+ and Ca2+; the AgNO3 solution titration method was used to measure 
the content of Cl−; and the HCO3− and CO32− contents were determined based on the double 
indicator neutralization method. In addition, a Mllvern MS-200 laser particle size analyzer 
was used for the particle size distribution of all the soil samples.  

2.3. Soil Surface Cracking Experiments 
To simulate the shrinkage and cracking process, 57 saturated slurry samples with the 

same water content of 80% were prepared, mixed, stirred well, and poured into square 
wooden sample boxes of the same size (50 × 50 × 3 cm) and the surface was smoothed 
using a spatula. After that, the prepared soil samples were then placed and dried under 
controlled laboratory conditions with temperature, humidity, and pressure kept at 25 °C, 
35%, and 101 kPa, respectively. After each soil sample was weighed every day, a standard 
process was used to take photos of the cracking status of all soil samples. In particular, a 
digital camera with high resolution was first fixed on an experimental metal platform to 
take standard images of all soil samples during the desiccation cracking process, ensuring 
that the lens was pointed vertically down and at a height of 1 m from the ground. Second, 
a fixed area of 50 cm × 50 cm was determined, with the center corresponding to the pro-
jection of the camera lens on the ground. Third, the light sensitivity of the laboratory was 
measured using a digital photometer. After that, the white balance process of the camera 
was carried out accordingly; in addition, some other camera parameters including shutter 
speed and aperture size were also configured and set. Thereafter, every soil sample was 
then placed in a fixed area above and photographed for a standard crack pattern of the 
same size. After the images of all cracked soil samples were obtained every day, a black-
and-white grid calibration plate (size of 50 cm × 50 cm) was covered on the fixed area 
mentioned above and photographed again for further geometric calibration. Figure 3 
shows the desiccation cracking process of a typical soil sample in this study. When the 
mass of all samples no longer decreased, the cracking process could be considered fin-
ished, and the soil samples were thus considered completely dried soil samples. 

 
Figure 3. Cracking process of a typical soil sample in this study. Figure 3. Cracking process of a typical soil sample in this study.



Remote Sens. 2023, 15, 3249 6 of 22

2.4. Standardized Preprocessing of Crack Images

After the drying process was fully completed, polynomial-based geometric distortion
correction was applied to all crack patterns based on the grids of the calibration plate. In
order to avoid the influence of shadows generated from the edges of frames, all corrected
images were cropped using a uniform size of 47.5 cm × 47.5 cm. To accurately extract
various kinds of crack characteristics, all standard crack images were subjected to a standard
preprocessing operation, as shown in Figure 4.
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correction, (b) grayscale crack image, (c) binarized crack image, (d) inversed binary image, (e)
denoised crack image, (f) crack image after bridging process.

First, the red, green, and blue components of each crack image (Figure 4a) were
averaged for a grayscale image (Figure 4b). Second, a grayscale threshold was determined
for each crack image based on the statistical histogram of the gray levels and then used to
perform binarization for all grayscale images (Figure 4c). The binarized images were then
inverted to highlight the cracked areas and facilitate subsequent crack feature extraction
(Figure 4d), where the white areas represent the cracked regions and the black areas signify
the uncracked soil surface. Fourth, an open-operating process with a given threshold
(50 pixels was chosen for this study) was performed to remove noise because of small
amounts of soil weeds and salt that precipitated on the soil surface during the drying
process (Figure 4e). Finally, a given threshold of 10 pixels to perform expansion operation
was carried out to eliminate the narrow space between cracks with a distance of fewer than
10 pixels and achieve the bridging processing of crack fracture parts (Figure 4f).

Figure 5 shows the crack images of all 57 soil samples obtained based on the standard-
ized preprocessing according to the operation mentioned above.
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2.5. Crack Feature Extraction
2.5.1. Crack Length

Crack length (CL) is one of the most commonly used geometric features to quantify
the extent of desiccation cracking generated on the soil surface, which also allows the
visual determination of desiccation crack development. To extract the crack length of
the cracked samples accurately, a skeletonization algorithm was used in this study to
repeatedly remove pixels from the boundary of the crack region of the binary crack images
until the width of the skeleton reached one pixel. Subsequently, a threshold of 10 pixels
was set to remove extra burrs generated from the skeletonization process. Following the
processes described above, the number of pixels in the skeleton was extracted from each
crack pattern to compute the crack length according to the actual size of one pixel in the
standard crack image.

2.5.2. Fractal Dimension

Fractal theory is often introduced to represent various irregular phenomena and
objects in nature, which also helps explain complex and nonlinear problems. The process
of desiccation cracking is very random in nature, showing that the fractal dimension can
thus be extracted to quantify the cracks generated on the soil surface. In this study, the
well-known box-counting dimension (D) was selected as the main method to describe the
fractal dimension of desiccation cracks [38]. In particular, the box-counting dimension
focuses on computing the number of boxes covering the object to evaluate the coverage of
irregular collections, which was calculated using the following equation:

D = lim
δ→0

ln N(δ)

ln( 1
δ )

(1)

where δ describes the width of the square box covering the cracked image at a specific
equal-partition condition (two equal partitions were selected in this study), and N(δ) refers
to the number of non-empty boxes corresponding to a given box width δ. Note that since δ
cannot converge to zero indefinitely, the box-counting dimension is thus represented and
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estimated by extracting the slope value of the linear equations corresponding to δ and N(δ)
in the double logarithmic coordinate system in the actual calculations.

2.5.3. Texture Feature

Texture features usually represent visual features that are not determined by the bright-
ness or color of an image and can thus describe the homogeneous phenomenon of the image,
which also reflects the image element distributions of the neighborhood space [39–41]. In
all types of texture analysis, the gray-level co-occurrence matrix (GLCM) is usually consid-
ered the most representative method, which can be extracted by computing the conditional
probability density of the second-order combinations between different gray levels of
pixels within the image [42,43]. GLCM textures can be introduced to characterize the
variations and structure of desiccation cracks generated on salt-affected soils since the
development and expansion of cracks are statistically random in this study. Formally, for
angles quantized to intervals of 45◦, the conditional probability density of the second-order
combinations of two neighboring pixels separated by distance d can be derived from the
following equations:

p(i, j, d, 0◦) = #{(x1, y1), (x2, y2) ∈ (LrLc)(LrLc)with x1 − x2
= 0, |y1 − y2| = d, and f (x1, y1) = i, f (x2, y2) = j} (2)

p(i, j, d, 45◦) = #{(x1, y1), (x2y2) ∈ (LrLc)(LrLc)with x1 − x2
= d, y1 − y2 = −d or x1 − x2 = −d, y1 − y2
= d, and f (x1, y1) = i, f (x2y2)= j}

(3)

p(i, j, d, 90◦) = #{(x1, y1), (x2, y2) ∈ (LrLc)(LrLc)with |x1 − x2|
= d, y1 − y2 = 0, and f (x1, y1) = i, f (x2, y2)= j} (4)

p(i, j, d, 135◦) = #{(x1, y1), (x2, y2) ∈ (LrLc)(LrLc)with x1 − x2
= d, y1 − y2 = −d or x1 − x2 = −d, y1 − y2
= d, and f (x1, y1) = i, f (x2, y2)= j}

(5)

where # describes the element number in the set. In addition, i and j represent the gray
values of pixels located at the (x1,y1) and (x2,y2) in the crack pattern, respectively. p(i,j) refers
to the element of the GLCM corresponding to the position of the ith row and the jth column,
which reflects the probability of the simultaneous occurrence of gray level i and gray level j
in the image. In order to describe the texture characteristics more scientifically, 12 specific
texture features were calculated from the extracted GLCMs using the equations proposed
by Haralick et al. [44], including contrast (CON), angular second moment (ASM), entropy
(ENT), homogeneity (HOM), correlation (COR), cluster shade (CS), cluster prominence
(CP), max probability (MP), sum average (SA), sum entropy (SE), sum variance (SV), and
information of correlation (IC). Note that in order to effectively consider the computational
complexity and fully maintain the GLCM texture information, five pixels were selected as
the GLCM step size according to the research proposed by Zhao et al. [45]. Moreover, after
considering the effect of the directions, the GLCM texture features computed from 0◦, 45◦,
90◦, and 135◦ were averaged for further analysis.

In order to further simplify the expression of texture features on crack morphology
with minimal loss of information, principal component analysis (PCA) was carried out in
this study for the extracted GLCM texture features since PCA can replace older variables
with fewer mutually independent new variables by using the idea of linear dimensionality
reduction with less loss of information to preserve metadata features and data compres-
sion. Specifically, 12 CLCM texture features were firstly normalized in this study using
SPSS 26.0, after that the normalized texture features were further subjected to principal
component analysis.
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2.6. Correlation Analysis and Regression Model Establishment

To quantitatively analyze the relationship between different soil parameters and crack
characteristics, Pearson correlation coefficients were computed using the following equation
between each soil salinity parameter and different types of crack characteristic parameters.

R =

n
∑

i=1
(xi − x)×(yi − y)√

n
∑

i=1
(xi − x)×

n
∑

i=1
(yi − y)

(6)

where xi and yi refer to the measured and fitted soil parameters of the soil samples and n
stands for the number of soil samples. Note that yi was calculated from linear regression
models based on different types of characteristics.

In order to effectively estimate the soil salinity of salt-affected soils in the Songnen
Plain, China, three prediction models including multiple linear regression (MLR), multiple
stepwise regression (MSR), and artificial neural network (ANN) were developed based on
different types of characteristics such as crack length, the box-counting dimension, and the
first two principal components of GLCM texture features. Note that all 57 soil samples were
rearranged in ascending order based on salinity levels. Afterwards, 38 soil samples were
uniformly selected as the modeling dataset, and the remaining soil samples were used for
validation. Specifically, both MLR and MSR were performed for the prediction of different
soil parameters using the SPSS software (version 26.0), and the significant contribution
levels of the variables F ≤ 0.05 and F ≥ 0.10 were set as the criteria for selecting and
excluding variables from MSR, respectively. In addition, the most widely used BP neural
network model was selected among all kinds of ANN methods, which covers a three-
layer structured multilayer feed-forward back-propagation network including a topology
consisting of an input layer, a single implicit layer, and an output layer [46–48]. For each
output node corresponding to the soil parameter, the crack length, the box-counting fractal
dimension, and the first two principal components of the texture features were selected
as nodes for each input layer. Figure 6 shows a neuron model in a BP neural network,
where x represents the input signal, w describes the connection weights, S refers to a linear
combination of the weights and input signal, A is the tan-sigmoid transfer function of the
neuron, and Y is the output signal. For different soil parameters, the maximum number
of iterations of the training model was 1000, with an error threshold of 1.0 × 10−6 and a
learning rate of 0.01. In addition, the number of implicit neurons varied systematically
from two to six, and the most suitable network size for different soil salinity parameters
was selected based on the performance of the test dataset [49].
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3. Results
3.1. Soil Physical and Chemical Properties

The statistical characteristics of the physical and chemical parameters of all the soil
samples are shown in Table 1. Note that salinity refers to the sum of the ion content. From
the table, it can be observed that Na+ refers to the dominant cation, and CO3

2− and HCO3
−

are the major anions, which covers the similar measurements obtained by Zhou et al. [50]
and further confirms the results of mineralogy analysis in the Songnen Plain [51,52]. As
seen from the table, the pH ranged from 8.01 to 10.77, the EC values of the samples ranged
from 0.06 ds/m to 3.39 ds/m, and the ESP ranged from 0.26 to 47.30, indicating that most
experimental samples in this study could be regarded as a typical type of Solonetz according
to the international classification standard ESP > 15% and pH > 8.5 [53,54]. The soil salinity
from 1.06 mg/g to 29.73 mg/g showed an extensive range in total salinity between soil
samples, denoting significant differences in salinity. In addition, Table 1 also shows that the
coefficients of variation of the physical and chemical parameters are apparent for different
soil samples, reflecting the large degree of dispersion of all the soil samples. This therefore
indicated that the selected samples were well representative and thus accurately described
the distribution of soil properties in the study area.

Table 1. Statistical description of physical and chemical parameters of soil samples.

Soil Parameters Min Max Mean SD CV (%) Skewness Kurtosis

pH 8.01 10.77 9.83 0.73 7.41 −1.14 0.18
EC (ds/m) 0.06 3.39 0.97 0.84 86.64 1.02 0.56

Na+ (mg/g) 0.12 14.12 3.32 3.28 98.95 1.51 2.13
K+ (mg/g) 0.01 0.06 0.02 0.01 67.41 2.14 5.49

Ca2+ and Mg2+ (mg/g) 0.10 1.60 0.53 0.32 59.75 1.19 1.67
HCO3

− (mg/g) 0.12 5.00 1.57 0.99 63.40 1.11 1.38
CO3

2− (mg/g) 0.00 5.50 1.75 1.56 89.33 1.02 0.14
Cl− (mg/g) 0.08 5.25 1.32 1.46 110.44 1.34 0.86

Salinity (mg/g) 1.06 29.73 8.50 6.46 75.98 1.22 1.43
SAR 0.34 42.03 9.63 8.71 90.44 1.72 3.51

ESP (%) 0.26 47.30 10.58 9.91 93.67 1.67 3.43
Clay (%) 25.39 32.04 27.98 1.54 5.49 0.43 −0.27
Silt (%) 28.72 40.4 35.19 3.18 9.03 −0.12 −0.82

Sand (%) 28.26 43.94 36.85 3.64 9.87 −0.21 −0.85

N = 57; SD: standard deviation; CV: coefficient of variation.

3.2. Crack Characteristic Parameters
3.2.1. Crack Length

The statistical results of CL for 57 soil samples with desiccation cracks indicated that
the crack lengths of all soil samples covered quite a large distribution from 200 cm to
797.18 cm with an average value of 444.26 cm. In addition, the standard deviation and coef-
ficient of variation of all soil samples in this study were 120.65 cm and 27.16%, respectively,
showing that the extent of desiccation cracking was quite random and fluctuating in a wide
range, covering a similar range measured by Ren et al. [55].

3.2.2. Fractal Dimension

From the extraction results of the box-counting dimensions of all 57 soil samples,
a minimum value of 1.27 and a maximum value of 1.69 were found in this study with
a mean value of 1.55, representing quite a concentrated range. Moreover, the standard
and the coefficient of variation were 0.09 and 5.63%, respectively, indicating relatively
small fluctuations in the value of the fractal dimension, which is similar to the fractal
dimension measurements measured by Zhang et al. [56] for the cracked soil surface in the
Songnen Plain.
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3.2.3. GLCM Texture Features

In Table 2, statistical parameters of 12 GLCM texture features in the binary images
were listed for all 57 cracked soil samples. The table indicates that the distribution range of
different types of texture features varied greatly and that all texture features were positive
except for SV. Although the HOM and MP were low (4.252% and 11.421%, respectively), the
CV of the other texture features was above 20%, denoting that the GLCM texture features
of cracked soil samples were highly dispersed and well distinguished. In addition, the
kurtosis and skewness coefficients for the different texture features ranged from −1.008
to 3.401 and −1.853 to 1.452, respectively. From the extracted GLCM texture features and
the GLCM texture analysis for desiccation cracking soils in natural conditions by Zhao
et al. [45], it can be seen that although it differed slightly, the overall distribution of all
12 texture features was still poorly skewed and well-concentrated, which conformed to the
characteristics of a normal distribution.

Table 2. Statistical results of 12 texture features of all cracked soil samples.

Texture Features Min Max Mean SD CV (%) Skewness Kurtosis

CON 0.001 0.287 0.123 0.080 64.941 0.330 −1.006
ASM 0.430 0.999 0.761 0.151 19.820 −0.345 −0.842
ENT 0.009 1.552 0.712 0.398 55.830 0.185 −0.830

HOM 0.856 1.000 0.938 0.040 4.252 −0.332 −1.008
COR 0.007 0.297 0.089 0.065 72.981 1.452 1.894
CS 0.001 0.364 0.136 0.085 62.270 0.478 −0.042
SP 0.001 0.638 0.199 0.146 73.550 1.019 1.098
MP 0.612 0.999 0.860 0.098 11.421 −0.632 −0.432
SA 0.008 1.265 0.589 0.319 54.051 0.154 −0.757
SE 1.946 3.971 2.650 0.551 20.782 0.623 −0.571
SV −0.156 −0.001 −0.029 −0.033 113.430 −1.853 3.401
IC 0.010 0.320 0.092 0.064 69.701 1.405 2.195

N = 57; SD: standard deviation; CV: coefficient of variation.

Figure 7 shows the cross-correlation coefficients among the 12 texture features from
crack patterns of all 57 soil samples. As can be seen in the figure, different GLCM texture
features were strongly correlated with high correlation coefficients, all above 0.85, indicating
a large redundancy in the quantitative description of crack cracking status by the 12 textures,
which thus increased the complexity of further analysis.
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Table 3 indicates the PCA results of 12 GLCM texture features of all soil samples in this
study. From the table, it can be seen that the first two principal components offered a cumu-
lative contribution rate of 97.9% with eigenvalues of 9.45 and 2.30, respectively, showing
that they can be considered effective components representing the GLCM texture features.

Table 3. Cumulative principal component eigenvalues and contribution rates of texture feature extraction.

Components
Initial Eigenvalue

Eigenvalue λi Variance (%) Cumulative Contribution Rate (%)

1 9.45 78.75 78.75
2 2.30 19.15 97.90
3 0.13 1.06 98.96
4 0.09 0.77 99.73
5 0.02 0.19 99.92
6 0.01 0.06 99.98
7 0.00 0.01 100.00
8 0.00 0.00 100.00
9 0.00 0.00 100.00
10 0.00 0.00 100.00
11 0.00 0.00 100.00
12 0.00 0.00 100.00

N = 57.

Table 4 presents the loading matrix of the GLCM texture features corresponding to
the first two principal components, and the loading of each variable indicated its correla-
tion with each principal component. The principal component coefficient was calculated
as follows:

ei =
αi√
λi

(7)

where ei represents the principal component coefficient, αi describes the variable loading
corresponding to each principal component, and λi refers to the eigenvalue corresponding
to the principal component.

Table 4. The first two GLCM texture feature principal component loading matrices.

Variables First Principal Component Second Principal Component

CON 0.96 −0.23
ASM −0.98 0.16
ENT 0.98 −0.16

HOM −0.96 0.23
COR 0.50 0.85
CS 0.99 0.06
SP 0.97 0.15
MP −0.98 0.13
SA 0.98 −0.15
SE −0.93 0.24
SV −0.16 −0.95
IC 0.77 0.60

N = 57.

The loading data and eigenvalues were then transformed into the following equations
to calculate the principal component expressions further:

F1 = 0.315ZCON − 0.32ZASM + 0.321ZENT − 0.315ZHOM + 0.165ZCOR + 0.323ZCSH+
0.318ZSCP − 0.319ZMRO + 0.321ZSAV − 0.304ZSNT − 0.055ZSAR + 0.25ZINCOR1

(8)

F2 = −0.153ZCON + 0.108ZASM − 0.109ZENT + 0.153ZHOM + 0.563ZCOR + 0.046ZCSH+
0.102ZSCP + 0.088ZMRO − 0.099ZSAV + 0.16ZSNT − 0.631ZSAR + 0.397ZINCOR1

(9)
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where F1 and F2 represent the first and second principal components of the GLCM texture
features, and Z refers to the normalized GLCM texture features. The principal compo-
nent values of the texture features of the 57 samples were calculated based on principal
component expressions.

3.3. Correlation Analysis

Table 5 shows the correlation coefficients of different soil salinity parameters with the
CL, the box-counting dimension, and the first two principal components of the GLCM
texture features. The table shows that the soil parameters were all positively correlated with
the cracking parameters. In addition, Table 5 also shows the highest correlation coefficient
of 0.88 between the CL and the total salt content.

Table 5. Correlation coefficient matrix of soil salinity parameters and crack characteristics.

Soil Salinity Parameters CL D F1 F2

pH 0.64 0.50 0.59 −0.26
EC (ds/m) 0.87 0.57 0.59 −0.62

Na+ (mg/g) 0.87 0.51 0.52 −0.40
K+ (mg/g) 0.24 0.29 0.29 −0.05

Ca2+ and Mg2+ (mg/g) 0.24 0.10 0.26 −0.02
HCO3

− (mg/g) 0.60 0.51 0.65 −0.08
CO3

2− (mg/g) 0.73 0.37 0.25 −0.62
Cl− (mg/g) 0.82 0.48 0.46 −0.41

Salinity (mg/g) 0.88 0.54 0.53 −0.45
Clay (%) 0.14 0.30 0.20 −0.05

N = 57; CL: crack length; D: box-counting dimension; F1: the first principal component of GLCM texture features;
F2: the second principal component of GLCM texture features.

It can also be seen from Table 5 that the box-counting fractal dimension was the most
strongly correlated with EC among all soil salinity parameters, with a correlation coefficient
of 0.57. In addition, the first principal component of the texture features also showed a high
correlation with most soil parameters, whereas the highest correlation coefficients were
found between the second principal of GLCM texture features and CO3

2−, EC, which were
significantly higher than those with salinity, Cl−, Na+, and pH. Moreover, the correlation
coefficients with K+, Ca2+, and Mg2+ were very low, from 0.02 to 0.29, with all kinds of
crack characteristics, indicating that the crack characteristics did not show a good response
to these salinity parameters of salt-affected soils in this study.

3.4. Soil Salinity Parameter Prediction Models
3.4.1. Multiple Linear Regression Model

Table 6 represents the MLR models for different soil salinity parameters. As can be
seen from the table, Na+, EC, and total salt content were modeled with high accuracy with
R2 values of 0.83, 0.86, and 0.89, respectively, followed by the major anions CO3

2− and
Cl−, with an R2 of 0.72 and 0.79, respectively. Although multiple linear regression methods
could also predict HCO3

− and pH, the R2 of 0.46 and 0.48 indicated limited prediction
accuracy. Moreover, Table 6 also indicates that the worst prediction accuracy was found for
K+, Ca2+, and Mg2+ with an R2 of only 0.07 and 0.18, respectively.

3.4.2. Multiple Stepwise Regression Model

Table 7 lists the variables of the best model retained for the different soil parameters
when multiple stepwise regressions were performed. As seen in Table 7, the CL was
the only influencing factor for pH, HCO3

−, Cl−, and salinity. For EC, two independent
variables of CL and the second principal component of the texture features were selected
as variables, and Na+ and CO3

2− were multivariate linearly modeled by excluding only
one crack characteristic. However, because of their limited contents, all types of crack
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parameters did not show sufficient contribution and thus were not selected as effective
variables for the prediction models of K+, Ca2+, and Mg2+.

Table 6. Multiple linear regression of soil parameters and cracking parameters.

Soil Parameters Formulas R R2

pH Y = 13.272 + 0.003 X1 − 2.992 X2 + 0.126 X3 − 0.038 X4 0.69 0.48
EC Y = −3.443 + 0.008 X1 + 0.570 X2 − 0.054 X3 + 0.123 X4 0.93 0.86

Na+ Y = −13.421 + 0.034 X1 + 1.202 X2 − 0.299 X3 + 0.623 X4 0.91 0.83
K+ Y = 0.034 − 5.634 × 10−6 X1 − 0.01 X2−0.001 X3 0.26 0.07

Ca2+ and Mg2+ Y = 3.465 − 1.953 X2 + 0.079 X3 + 0.10 X4 0.42 0.18
HCO3

− Y = 5.98 + 0.003 X1 − 3.807 X2 + 0.191 X3 + 0.079 X4 0.68 0.46
CO3

2− Y = −15.078 + 0.012 X1 + 7.361 X2 − 0.395 X3 − 0.004 X4 0.85 0.72
Cl− Y = −9.221 + 0.014 X1 + 2.903 X2 − 0.157 X3 − 0.182 X4 0.89 0.79

Salinity Y = −28.225 + 0.063 X1 + 5.689 X2 − 0.579 X3 + 0.89 X4 0.94 0.89

N = 38; X1: crack length; X2: box-counting dimension; X3: the first principal component of GLCM texture features;
X4: the second principal component of GLCM texture features.

Table 7. Variables retained in multiple stepwise regression for each soil parameter.

Soil Parameters CL D F1 F2

pH
√

× × ×
EC

√
× ×

√

Na+ √
×

√ √

K+ - - - -
Ca2+ and Mg2+ - - - -

HCO3
− √

× × ×
CO3

2− √ √ √
×

Cl−
√

× × ×
Salinity

√
× × ×

N = 38; CL: crack length; D: box-counting dimension; F1: the first principal component of GLCM texture features;
F2: the second principal component of GLCM texture features.

The prediction models and accuracy of different soil salinity parameters derived
from multiple stepwise regression analyses were listed in Table 8, showing that the model
accuracy remained the highest for the total salinity with an R2 of 0.86 and that Na+ and
EC were also well predicted with R2 values of 0.83 and 0.85, respectively. In addition, R2

values of 0.76 and 0.72 described the accuracy of Cl− and CO3
2− prediction. However, the

multiple stepwise regression method was not used to estimate the pH and HCO3
− because

of the poor prediction R2 of only 0.42 and 0.36.

Table 8. Multiple stepwise regression model and accuracy.

Soil Parameters Formulas R R2

pH Y = 8.197 + 0.004 X1 0.65 0.42
EC Y = −2.12 + 0.007 X1 + 0.08 X4 0.92 0.85

Na+ Y = −11.535 + 0.034 X1 + 0.613 X3 − 0.267 X4 0.91 0.83
K+ - - -

Ca2+ and Mg2+ - - -
HCO3

− Y = 1.475 + 0.169 X3 0.60 0.36
CO3

2− Y = −15.128 + 0.012 X1 − 0.396 X3 + 7.378 X2 0.85 0.72
Cl− Y = −3.47 + 0.011 X1 0.87 0.76

Salinity Y = −12.908 + 0.049 X1 0.93 0.86

N = 38; X1: crack length; X2: box-counting dimension; X3: the first principal component of texture features; X4:
the second principal component of texture features.
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3.4.3. BP Neural Network Model

The specific number of iterations, number of neurons, and the R2 of the modeling
results selected for the BP neural network model are listed in Table 9. It can be seen that
the model accuracy for both Na+ and salinity was greater than 0.9. Table 9 also indicates
that good accuracy also can be found for predicting Cl− and EC since the corresponding
R2 was 0.85 and 0.87, respectively. In addition, the modeling results of R2 values of 0.75
and 0.62 for CO3

2− and pH indicated that only a relatively coarse estimation was made
using BP neural networks. Moreover, it can also be seen from Table 9 that the predictive
abilities of HCO3

−, K+, Ca2+, and Mg2+ were poor, with R2 values of only 0.47, 0.27, and
0.24, respectively.

Table 9. BP neural network modeling accuracy and network parameters.

Soil Parameters Number of Iterations Number of Neurons R R2

pH 13 4 0.79 0.62
EC 11 4 0.93 0.87

Na+ 10 4 0.96 0.92
K+ 14 3 0.52 0.27

Ca2+ and Mg2+ 12 3 0.49 0.24
HCO3

− 10 4 0.69 0.47
CO3

2− 13 2 0.87 0.75
Cl− 9 3 0.92 0.85

Salinity 13 4 0.97 0.94
N = 38.

4. Discussion
4.1. Effects of Salinity on the Desiccation Cracking Process

Many research studies have revealed that mechanical properties such as suction,
surface energy, and tensile strength can largely determine the desiccation cracking pro-
cess of clayey saline soils, which are mainly affected by physical–chemical properties of
salt-affected soils including the clay mineral types, the clay contents, and the salinity lev-
els [57–60]. However, both mineral type and clay content were not found to determine the
desiccation cracking process of salt-affected soil in the Songnen Plain, China. This is because
the clay content has a low impact on the soil cracking process due to the small concentration
of soil samples ranging from 25.39% to 32.04% with a standard deviation of only 1.54%, and
the results are very close to those found by Wang et al. [61] and Zhang et al. [62]. Moreover,
the measurements from Zhang et al. also revealed that the main primary minerals of salt-
affected soils in the Songnen Plain, China, are feldspar and quartz, and that illite/smectite
formation with an inter-layer ratio above 0.5 is found as the main type of secondary mineral;
in addition, clay minerals of this type are very inactive, with an activity index of only 0.33
to 0.48, denoting that both the content and mineral composition of the clay have almost no
impact on the desiccation cracking process of salt-affected soils in this region. Specifically,
the relationship between the clay content and the different crack characteristics was further
analyzed in this study, as shown in Figure 8. The scatter diagrams in Figure 8 show that no
regularity can be found for the data distribution, showing that clay content is not sensitive
to the desiccation cracks generated on the surface of salt-affected soils in the Songnen Plain,
which also concurs with the research of Wang et al. [61] and Zhang et al. [62].

As shown in Table 1, the high SAR and ESP of the soil samples show that Na+ is
the dominant cation compared with K+, Ca2+, and Mg2+. In addition, the correlation
coefficients listed in Table 5 also indicate that the soil salinity parameters are significantly
and positively correlated with different soil surface crack characteristics, showing that soil
salinity is the dominant factor in determining the shrinkage and cracking conditions. In
particular, the exchangeable cations (especially for the Na+ with a large hydrolytic radius)
interact with soil particles during the dehydration process of the saturated slurry of salt-
affected soil samples in this study area. After that, a prominent bound water film is then
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formed between various soil particles and largely increases the distance between them.
This kind of water-bounding film can be thickened due to the content of exchangeable
cations, which thus reduces the shear and tensile strength between different colloidal soil
particles, and also decreases the cementation of the salt-affected soils [63]. At the same time,
the internal friction angle is also reduced between different soil particles due to the effect of
the salt solution lubricant raised by soil salinity, indicating that the extent of shear resistance
was further weakened in the soil samples. In addition, after analyzing the effect of soil salt
content on the surface shrinkage–cracking process from the perspective of the diffusion
double layer (DDL), DeCarlo et al. [32] and Shokri et al. [64] showed that the increasing soil
salinity could significantly reduce the thickness of DDL, which in turn reduces the strength
of the soil and further promotes the shrinkage and cracking of cohesive salt-affected soils
in the Songnen Plain, China.
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4.2. Prediction Abilities of Different Models

As a single type of crack parameter is often unable to describe the process of desiccation
cracking fully, three different kinds of common crack characteristics were selected to
comprehensively quantify the cracking condition of the soil surface in this study. Among
them, CL is the most commonly used characterization index of crack characteristics, which
can visually determine the extent of desiccation cracks generated on the soil surface. The
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fractal dimension can quantitatively describe the autocorrelation and complexity of the
crack morphology, and texture features can effectively describe the spatial distribution
and the structural arrangement information of soil desiccation cracks. The correlation
coefficients (R values) between the measured and estimated soil properties shown in
Tables 6, 8, and 9 were notably higher than those shown in Table 5 since the results in
Table 5 also represented the relationship between the measured soil properties and the
predicted soil properties based on the linear model. Therefore, modeling approaches
integrating different types of crack characteristics are more relevant and applicable than
prediction results based on only one particular crack parameter.

It can be seen from the regression models developed in Tables 6, 8, and 9 that the three
models combining different types of crack characteristics have better modeling accuracy for
the total salt content, EC, and Na+ (R2 values are all greater than 0.83) compared with other
soil properties in this study. Although specific prediction abilities can be guaranteed, the
prediction accuracy of Cl−, HCO3

−, CO3
2−, and pH is quite different for different models,

and the overall prediction accuracy shows a tendency of Cl− > CO3
2− > pH > HCO3

−

because CO3
2− and HCO3

− are easily hydrolyzed in solution with a reversible process,
indicating that the contents of these two ions are very unstable. In addition, none of the
models showed good prediction accuracy for K+, Ca2+, or Mg2+, with R2 values below 0.28.
This is because the very low contents of these cations in the Songnen Plain had a lower
impact on the soil cracking process than Na+, thus showing a poor correlation with the soil
cracking characteristics.

Multiple stepwise regression analysis was performed using multiple linear regressions.
Specifically, after comparing the contribution rate of the independent variables to the
dependent variable, the variables with a large contribution rate were selected via the MSR
method according to their importance in this study. Table 8 indicates that the multiple
stepwise regression method leads to some crack characteristics being ignored owing to their
low contribution, resulting in the overall prediction accuracy of the soil salinity parameters
being lower than those of the other two models. For parameters with low contents of K+,
Ca2+, and Mg2+, modeling may not be achieved because all crack characteristic variables
cannot reach the selection criteria. In general, multiple stepwise regression analysis can
achieve optimization of multiple linear regression methods in many cases and achieve
model simplification and variable compression in the case of a large number of independent
variables. However, this study included only four independent variables in the model.
In addition, the crack characteristics were rarely correlated, showing that using multiple
stepwise regression may ignore the role of certain crack features, resulting in the low
prediction accuracy of soil parameters.

As a traditional method, multiple linear regression can offer fast prediction speed
with a simple structure, which is commonly used to analyze the influence of different
crack parameters. In addition, this type of method can remove autocorrelation and multi-
collinearity between other variables with accurate prediction results. However, this method
usually does not express the complex nonlinear relationships between different variables
well and also requires the treatment of the characteristic variables when the variables are
very smooth or correlated with each other.

As shown in Tables 6 and 9, BP neural networks significantly improve the prediction
accuracy of all soil parameters compared to multiple linear regression. This is because the
BP neural network has a strong memory ability and can find optimal solutions through
autonomous learning. However, the artificial neural network method also relies on large
amounts of data, indicating that the prediction results can be inaccurate when the data
are insufficient. In addition, the method also needs to manually adjust the network pa-
rameters and nodes, denoting that improper operations can reduce the accuracy of the
prediction results.

In order to further compare the prediction accuracy of different models for estimating
salinity parameters of soda-salt-affected soils in the Songnen Plain, China, validation work
was also carried out in this study using 19 soil samples. Table 10 shows the accuracy of the
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three prediction models for different salinity parameters of all 19 validation soil samples,
where R2 indicates the fit degree between the measured and estimated soil parameters
related to salinity, and the ratio of performance to deviation (RPD) is used to analyze the
degree of match between the measured and estimated values. Table 10 also indicates that
for most soil parameters in this study, BP neural networks can be found with a higher
overall prediction accuracy compared with the multiple linear method and the multiple
stepwise method. Specifically, from the criteria proposed by Farifteh et al. [65], it can be
seen that the BP neural network method is accurate in predicting EC and Na+ because the
R2 and RPD are above 0.91 and 2.5, respectively; the validation results of soil salinity also
satisfy the criteria of R2 above 0.81 and RPD above 2.5, showing that the BP neural network
method also has a relatively good prediction ability. In addition, a specific prediction ability
can be reached for Cl−, CO3

2−, HCO3
−, and pH since R2 for all of these soil parameters

was found to be above 0.6, but the low RPD values indicated that the predicted results
were not stable. Table 10 also shows that although the prediction accuracy of these soil
parameters can be largely improved by the ANN method rather than the MLR method and
the MSR method, the R2 and RPD of the estimation results are still very low for K+, Ca2+,
and Mg2+ and thus cannot achieve adequate accuracy.

Table 10. Indicators of prediction accuracy of soil salinity parameters under different modeling methods.

Method Index pH EC Na+ K+ Ca2+ and Mg2+ HCO3− CO32− Cl− Salinity

MLR R2 0.55 0.85 0.90 0.14 0.02 0.72 0.67 0.58 0.91
RPD 0.85 2.47 3.11 0.45 0.44 0.69 1.49 1.36 3.15

MSR R2 0.49 0.89 0.87 - - 0.53 0.66 0.63 0.92
RPD 1.32 3.06 2.21 - - 1.33 1.69 1.44 3.38

ANN R2 0.66 0.91 0.91 0.22 0.28 0.65 0.71 0.62 0.89
RPD 1.06 2.96 3.47 0.40 0.60 0.84 1.50 1.58 2.95

N = 19; MLR: multiple linear regression; MSR: multiple stepwise regression; ANN: artificial neural networks.

To further evaluate the predictive ability of the BP neural network method for the
soil parameters of salt-affected soils in this study, the predicted results computed from the
BP neural network method were linearly fitted to the measured results based on a y = x
function (Figure 9).

According to the fitting results in Figure 9 and the range of soil parameters in Table 1,
the soil samples are well represented. The fitting function of the model is very close to the
actual relationship between the soil parameters and the crack characteristics. In addition,
Figure 9 indicates that the BP neural network method can combine different types of crack
characteristics, which can be used to measure saline soil parameters quickly and effectively
such as Na+, EC, and salt content with high prediction accuracy. Note that the generalization
ability of the BP neural network is largely affected by the number and the representativeness
of the soil samples. If there are more representative training samples, the fitting function of
the model will be closer to the actual relationship between the soil parameters and the crack
characteristics. Therefore, in future research, both the types of crack characteristics and the
number of network training samples can be increased, and the most appropriate network
types with different soil saline parameters can also be selected based on the performance
of the test dataset to improve the application potential and accuracy of this method in the
online field measurement of cracked soil saline parameters. Moreover, the most suitable
neutral network types with different soil salinity parameters can be selected according to
the performance of the test dataset, which can further improve the accuracy and application
potential of the proposed method in the online field measurement of salinity parameters
for salt-affected soils. Despite the high accuracy of the above prediction models, it is still
necessary to improve the models under natural conditions in future research. Specifically,
the prediction of salt information throughout the entire region should be further achieved
and verified within a large region through the interpolation method. In addition, the
influencing factors of crack production (such as climate, topography, hydrology, and drying–
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wetting cycles) should also be considered in future research to improve the prediction model
with the aim of ultimately achieving the synchronous and large-scale accurate measurement
of soil salt salinity parameters through combining different remote sensing scales based on
point spread function, resampling method, and error transfer theory.
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5. Conclusions

In this study, a laboratory soil cracking experiment was designed to quantitatively
simulate the shrinkage–cracking process of salt-affected soils in the Songnen Plain, China.
The results provided basic information for understanding the mechanism of the desiccation
cracking process of saline-sodic soil and the relationship between soil salinity and different
types of crack characteristics. In conclusion, Na+ was considered as the dominant role
affecting the cracking process. The water film generated due to exchangeable cations
reduced the tensile strength, the friction angle, and the cementation between soil particles,
which promoted the desiccation cracking. The increasing thickness of DDL caused by
soil salinity also made the surface of cohesive saline-sodic soil more prone to cracking.
Regression models combining different types of crack characteristics can effectively predict
the salinity parameters of salt-affected soils. Artificial neural networks can estimate the
salinity parameters of salt-affected soils with a certain accuracy compared with multiple
linear regression and multiple stepwise regression, particularly for predicting Na+, EC,
and total soil salinity (R2 from 0.89 to 0.91, RPD from 2.95 to 3.47), thereby showing great
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importance for improving the salt-affected soils, ensuring food security, and enhancing
the local environment. Future work includes investigating the deep mechanism of soil
salinity on the desiccation cracking process based on the consideration of other factors such
as climate, topography, and hydrological characteristics, and achieving the synchronous
measurement of soil salt information at different scales.
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