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Abstract: Freshwater ecosystems host high levels of biodiversity but are also highly vulnerable to
biological invasions. Aquatic Invasive Alien Plant Species (aIAPS) can cause detrimental effects on
freshwater ecosystems and their services to society, raising challenges to decision-makers regarding
their correct management. Spatially and temporally explicit information on the occurrence of aIAPS
in dynamic freshwater systems is essential to implement efficient regional and local action plans. The
use of unmanned aerial vehicle imagery synchronized with free Sentinel-2 multispectral data allied
with classifier fusion techniques may support more efficient monitoring actions for non-stationary
aIAPS. Here, we explore the advantages of such a novel approach for mapping the invasive water-
hyacinth (Eichhornia crassipes) in the Cávado River (northern Portugal). Invaded and non-invaded
areas were used to explore the evolution of spectral attributes of Eichhornia crassipes through a time
series (processed by a super-resolution algorithm) that covers March 2021 to February 2022 and to
build an occurrence dataset (presence or absence). Analysis of the spectral behavior throughout the
year allowed the detection of spectral regions with greater capacity to distinguish the target plant
from the surrounding environment. Classifier fusion techniques were implemented in the biomod2
predictive modelling package and fed with selected spectral regions to firstly extract a spectral
signature from the synchronized day and secondly to identify pixels with similar reflectance values
over time. Predictions from statistical and machine-learning algorithms were ensembled to map
invaded spaces across the whole study area during all seasons with classifications attaining high
accuracy values (True Skill Statistic, TSS: 0.932; Area Under the Receiver Operating Curve, ROC:
0.992; Kappa: 0.826). Our results provide evidence of the potential of our approach to mapping plant
invaders in dynamic freshwater systems over time, applicable in the assessment of the success of
control actions as well as in the implementation of long-term strategic monitoring.

Keywords: aquatic biological invasions; multispectral; modelling; remote sensing; spectral reflectance

1. Introduction

Biological invasions are a major threat to biodiversity worldwide [1] and are identified
as one of the main pressures on ecological values [2]. The expansion of aquatic Invasive
Alien Plant Species (hereafter aIAPS) triggers complex and cumulative impacts on native
biodiversity [3], human health [4], economic activities [5], and an overall decrease in
ecosystem services and nature contributions to people [6]. Although the impacts of aIAPS
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are well studied by the scientific community [4–6], the number of habitats and locations
threatened by their presence continues to increase [7].

Fluvial ecosystems suffer multiple anthropogenic pressures (e.g., dam and weir con-
struction and diffuse pollution) leading to hydrological alterations (e.g., dissolved oxygen
levels, light penetration, or flow velocity), which can promote irreversible changes in native
species richness and composition [8,9]. Monitoring water systems is a required process to
prevent and mitigate large-scale expansion and impacts associated with aIAPS [10]. Al-
though monitoring water systems often entails high costs (e.g., human training, equipment,
and field surveillance) and efforts (e.g., over large areas, complex vegetation cover, and
inaccessible areas) when considered at early stages of the invasion process, it allows the
early detection of aIAPS and consequent prevention of the irreversible changes that their
spread could lead to [11]. Nonetheless, aIAPS are frequently best detected when they are
vastly spread, having become hard to eradicate due to their high plasticity and lack of
natural competitors.

The spread of aIAPS in rivers is usually exponentiated by anthropogenic and hy-
drological disturbances and are generally located at lower altitudes where rivers widen
and more light is accessible at the water surface [10]. Moreover, these areas are also used
for economic and recreational activities that (in)directly depend on “healthy” water bod-
ies. In order to support aIAPS management interventions (e.g., control, removal), local
decision-makers need a better understanding of aIAPS species’ dynamics over time and
space [12,13]. Remote sensing (RS) platforms offer valuable tools for the detection and
monitoring of aIAPS and ultimately for shaping and optimizing efficient strategic and
operational management of aIAPS [14,15]. Additionally, RS satellite platforms offer re-
peated and standardized imagery over the same area along the time, allowing the study
of spatiotemporal patterns of aIAPS [3,16]. The Copernicus mission, developed by the
European Space Agency, provides free-of-charge satellite image collections, from optical
to radar observations. Sentinel-2 multispectral optical images present us with promising
opportunities for studying vegetation and, in particular, for detecting aIAPS [17–19]. Plants
hold distinct phenologies, hence different leaf density rates and chlorophyll contents that
result in electromagnetic reflectance variations over time and space. These differences are
more pronounced in alien plants, which usually stand out from the autochthonous flora
due to their physiology [20,21].

However, due to the relatively low spatial resolution of free satellite imagery, the use
of such types of data has prevailed over large areas in natural or artificial great lakes [11,20],
with less complex fluid dynamics than rivers allowing floating macrophytes to remain
geographically stable without being dragged downstream by the current [3]. To overcome
the limitations of sensor resolution and the high cost needed to update equipment orbiting
space, powerful tools for image super-resolution based on pre-trained deep learning neural
networks are increasingly being developed and improved, transforming imagery with
coarse resolutions into a finer resolution, which allows enhancing the information registered
by the sensors [22]. The increasing accessibility of Unoccupied Aerial Vehicles (UAVs) also
allows improvements over satellite-derived data in aIAPS detection by producing highly
detailed orthomosaics of ultra-high spatial resolution enabling the identification of invaded
spaces with great reliability [23]. As such, the combined use of satellite and UAV imagery
emerges as a promising opportunity to monitor aIAPS. When timely synchronized, the
combined approach enables the identification (with high confidence) of target invasive
species, minimizing the risk of using erroneous spectral information (e.g., due to plant
displacement caused by river currents) [24–26].

Complementarily to advances in RS, the increased availability and ease of implementa-
tion of statistical and machine-learning algorithms further allow an in-depth interpretation
of the spectral information recorded in RS imagery. The package biomod2 [27] is a platform
implemented in R well-known and frequently used by the scientific community that can
combine different modelling/classification techniques in a final consensus model that
discriminates the presence/absence of a species across space [28]. The biomod2 frame-
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work can be applied to perform pixel-based supervised classification through an ensemble
approach, “classifier fusion” [29]. Therefore, it can be used as a suitable multi-classifier
stacking ensemble that standardizes the uncertainty present in the individual models and
determines a general prediction consistent with all classification methods [30,31]. Another
advantage of biomod2 for aIAPS mapping is its ability to run non-parametric models that,
unlike parametric models, can assume that a pixel is a mixture of features and sub-divide
each one to increase spectral variance inside and between pixels [32].

The ability to explore all spectral regions of Sentinel-2 with the same resolution,
combined with precise geopositioning data from UAVs and allied with processing abilities
of semi-automatic classification techniques, makes it possible to use multispectral imagery
to generate valuable information for the management of invasions considering short and
long-term monitoring time frames [33,34]. This is possible due to the model’s ability to deal
with large amounts of information and identify relationships between the input variables
(spectral variables) and species occurrence data. The execution of these techniques allows
policymakers to aggregate specific and local knowledge along the river to understand
which spaces are more prone to invasion, spread velocity throughout the year, and early
signs of necessity to anticipate measures of control or mitigation [9].

In this study, we developed and tested a methodological novelty framework for
monitoring a river body invaded by aIAPS by combining UAVs for high-precision mapping
(5 cm/pixel) and collections of multispectral data processed with classifier fusion techniques
that map and identify the spectral regions of the Sentinel-2 sensor most capable of detecting
invaded spaces as well as define optimal time frames. This study contributes to the
development and optimization of methodologies for monitoring aIAPS [22,32,35,36], using
Eichhornia crassipes (Mart.) Solms (hereafter E. crassipes) in dynamic rivers as a test case.

2. Materials and Methods
2.1. General Workflow

This study follows the main workflow described in Figure 1. In Step 1, field data were
collected using a UAV to obtain a georeferenced orthomosaic of invaded spaces. The flight
was performed on the 13 November 2021 (the collection date is important for subsequent
steps, where the UAV data is timely synchronized with the Sentinel-2 imagery). The main
objective of this step was the collection of data on two test sample areas that could allow
the testing of two questions: (1) if there is spectral separability between E. crassipes and the
other components of its habitat, and (2) if registered spectral information can be used to
map and monitor E. crassipes.

In Step 2, Sentinel-2 time series were retrieved and processed with a super-resolution
algorithm (DSen2) to standardize the spectral resolution. This algorithm enhances the
potential of Sentinel-2 imagery by upscaling the lower-resolution regions of the electromag-
netic spectrum covered by this sensor to 10 m resolution.

In Step 3, the first test sample of pixels (henceforward TS1) obtained in Step 1 was used
to understand whether there are regions of the electromagnetic spectrum where E. crassipes
reflectance patterns are distinct from the surrounding environment. Studying the spectral
behavior of aIAPS along the temporal space can be challenging, especially regarding
floating species that are frequently washed away by the river current. To overcome this
challenge, geographically static areas are necessary, so an ever-invaded area (Figure 2B)
was used to study the spectral behavior of the target species.

An image classification model was developed in Step 4, using the R package biomod2
and taking advantage of its classifier fusion approach that results in a final consensus model
by considering several classification methods. This step is unfolded in two subsequential
steps: In Step 4a, the second test sample obtained in Step 1 (henceforward TS2) was used to
record “presence” and “absence” training areas, with the selected spectral regions defined
in Step 3 being considered as predictor variables. In Step 4b, the spectral response recorded
on 13 November for the defined regions of the electromagnetic spectrum (spectral signature)
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was then used in the rest of the imagery collection to detect pixels with identical spectral
behavior to the one registered, enabling the mapping of E. crassipes invasion over time.
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2.2. Study Area

Located in the northern hemisphere of Northwestern (NW) Portugal, the study area
has a temperate climate with dry and mild summers (Csb type, according to the Köppen
and Geiger classification of climate systems) [37]. Characterized by the presence of discon-
tinuous patches of E. crassipes, which throughout the summer (June to August) and autumn
(September to November) have strong impact on riverine ecology and human activities, the
study area extends from the Caniçada dam (41◦39′N, 8◦14′W) to the mouth of the Cávado
River, covering a total of 60 km and an area of 548 ha (Figure 2). It is an elongated river
with a transversal profile of narrow valleys (characteristic of a mountain river) progressing,
after the Caniçada dam, from gradually opening valleys to flat valleys with higher levels of
solar exposition and lower flow velocity due to the river’s meandering.

2.3. Target Species

The E. crassipes (common name: water hyacinth) is an aquatic invasive plant species
listed in the Portuguese Decree-Law nº 92/2019 of 10 July and in the European Union Reg-
ulation 1143/2014 of the European Parliament and of the Council of 22 October 2014 [38].

As a perennial and herbaceous weed, it reproduces both sexually (seeds) and clonally
(vegetative parts). Seeds can be dormant for several years in the hydro soil and germinate
in favorable conditions, generating a constantly evolving gene pool [35,36]. The ability
to create dense light-excluding canopy layers on the water surface and to vegetatively
disperse over a wide area leads to several impacts on fluvial ecosystems (see Figure 3).
Once introduced, the species is very difficult to manage and can hinder riverside activities,
increase water loss, create hypoxic and hypercarbic systems [39,40], and decrease the
overall landscape visual quality.
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Figure 3. Illustration of E. crassipes invasion process. (a) establishment in a new area; (b) plant
reproduction creates dense mats on the surface, blocking light and decreasing dissolved oxygen;
(c) primary producers are affected, as well as trophic chains, promoting lifeless spaces.

The morphology of E. crassipes is closely related to the availability of light, pointed
out as a significant morphogenetic factor. When plants are sparsely distributed and have
short, inflated petioles, mature leaves do not shade the shoot apex and expanding leaves.
However, as crowding increases, the decrease in light stimulates the production of leaves
with long narrow petioles that elevate laminas above the existing canopy [41]. The increase
in leaf length directly expands the plant surface area and the reflectance levels, ultimately
making monitoring with RS techniques easier.

2.4. Occurrence Data

The delimitation of training areas is crucial for obtaining accurate results. A field
survey was conducted to assess invaded areas and obtain aerial images with a UAV on
13 November 2021 (Step 1).

One DJI Mavic Pro was set to fly at 70 m, and an overlay per image of 80% was
considered to collect imagery that enabled the creation of an orthophoto map (5 cm pixel)
with the 3D photogrammetry software Agisoft Metashape (version 1.7.3).

The orthophoto map supported the definition of target areas, which were defined as
TS1 (n = 15) and consisted of 5 areas per main occupation class (i.e., water, E. crassipes, and
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woody trees) containing 2 to 5 pixels each (Figure 2A), and the digitalization of all presence
areas detected in the orthophoto, defined as TS2 (n = 42). Absence areas (n = 97) were
implemented across all invaded areas to ensure a representative distribution of training
areas using an open-source base map.

2.5. Remote Sensing Data

Sentinel-2 satellite has a revisit time of approximately two to three days for our study
area. The L2A imagery, collected from both Sentinel-2 A and B, covered the period from
20 March 2021 to 2 February 2022, comprising 18 images with low levels of cloud cover
along the study area. The imagery was collected through the online platform Coperni-
cus Open Access Hub. Each image was pre-processed with the DSen2 super-resolution
algorithm [42], resulting in 12 bands per image (Step 2).

The delimitation of the study area with a 10 m buffer around the river margins allows
computational gains by reducing the total number of pixels analyzed and the types of land
occupations to mainly riparian woody trees, water, and our target species.

In total, 216 variables were collected (n = 18 × 12). This information was used to
compare the target species and the surrounding environment through the average of
reflectance values across the spectral regions registered as TS1 pixels (Step 3).

2.6. Multi-Algorithm Supervised Classification

The biomod2 (version 3.5.1) software package is a platform implemented in R that
allows the user to evaluate and combine different modelling/classification techniques
based on statistical and machine-learning algorithms.

The biomod2 workflow (Step 4) was implemented with 30 modelling rounds for several
classifiers: Random Forest (RF), Generalized Linear Model (GLM), Flexible Discriminant
Analysis (FDA), Artificial Neural Network (ANN), MAXENT. Phillips 2 (MAX. 2), and
Classification Tree Analysis (CTA). To evaluate the overall performance of the classifiers,
we calculated the True-Skill Statistic (TSS), Cohen Kappa (KAPPA), and the Area Under the
Receiver Operating Curve (ROC).

Although each statistical model provides a different perspective on performance,
TSS and Kappa are threshold-dependent measures that take into account the number
of correctly classified presences and absences relative to a threshold, whereas ROC is a
threshold-independent measure that evaluates the final result as a continuous value within
the [0, 1] range and is more prone to overestimation of the classifier’s performance.

Both TSS and Kappa measures vary from [−1, 1] and can be used to obtain a binary
outcome (species presence: 1; absence: 0) through the application of a numerical threshold;
however, kappa is also sensitive to class imbalance once it considers both true positives
and true negatives separately instead of measuring an overall agreement between observed
and predicted classifications.

This makes TSS a more reliable metric in cases where a high sensitivity (proportion of
observed presences correctly predicted) is more important than a high specificity (propor-
tion of observed absences that are correct) such as in the case of invasive plants (better a
false positive than false negative). A classifier fusion model was obtained by calculating the
weighted mean of the True-Skill Statistic (TSS) performance score of all partial classifiers
and applying the rule of TSS > 0.8.

Finally, to convert the model result from probability/suitability to a binary outcome,
we applied a numerical threshold that maximizes the TSS score [29]. Values close to the TSS
cutoff were considered pixels with very low spectral similarity to E. crassipes, in opposition
to values close to the maximum (1000), which were considered to have very-high spectral
similarity to E. crassipes.

Once the pipeline was implemented, the selected variables and training set TS2 were
processed through biomod2 to extract firstly a spectral signature of the target plant base on
the spectral information captured on the synchronized day (13 November 2021) (Step 4a),
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and secondly, to map through the collected time series pixels with similar spectral signature
to the ones registered (Step 4b).

3. Results
3.1. Spectral Analysis and Separability of E. crassipes through Time

The results show that riverbank riparian trees had a higher spectral reflectance during
the summer (close to the peak of the growing season) that decreases through autumn and
winter (December to February) due to the senescence process. Water reflectance also had
an expected behavior, maintaining low and constant reflectance values except in February
due to the severe drought that decreased the river flow (Figure 4).
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Figure 4. E. crassipes spectral profile and average of its reflectance evolution through time (at orange)
compared to riparian woody trees (green) and water (blue) along the multispectral bands of Sentinel-2.

For TS1 E. crassipes areas, a gradual increase in the reflectance values was registered
during spring and summer, with the highest reflectance levels registered in November, in
contrast to the leafless riparian forests.

Spectrally, our results show that the spectrum between wavelengths 0.443 µm (band 1)
and 0.665 µm (band 4) and at 2.190 µm (band 12) had a poor ability to distinguish E. crassipes
from other riparian vegetation. During most of the year (except for moments when the
growth or decay of the E. crassipes’ reflectance coincides with the one from riparian woody
trees), the spectrum between 0.740–1.610 µm (band 5 to band 11) presented a higher
spectral separability.

3.2. Classification Algorithms Performance

The performance of the considered models showed moderate (0.6 < 0.7) (e.g., CTA
and FDA) to very good (>0.8) (e.g., GLM and MAX.2) average scores for all evaluation
statistical algorithms used. On average, across all partial classifiers, scores with 0.76 for
TSS, 0.69 for ROC, and 0.90 for KAPPA were presented.
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Although GLM and MAX.2 were the only models performing with a TSS score > 0.8,
the partial classifier ANN and RF evaluations scores fall closely to the approved range (see
Table 1).

Table 1. Results of the evaluation scores for the test set TS2 by the classification algorithm. Values
show the average and standard deviation for each performance measure: TSS—True Skill Statistic;
ROC—Area Under the Receiver Operating Curve; KAPPA—Cohen’s Kappa.

Classification
Algorithm

TSS ROC KAPPA

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation

RF 0.777 0.146 0.697 0.135 0.891 0.091
GLM 0.846 0.121 0.747 0.132 0.956 0.041
FDA 0.674 0.224 0.639 0.151 0.885 0.116
ANN 0.787 0.142 0.698 0.128 0.913 0.081

MAX.2 0.831 0.092 0.734 0.138 0.957 0.032
CTA 0.628 0.157 0.571 0.139 0.830 0.079

Overall, the classifier fusion based on biomod2 showed very good performance values
as translated by their sensitivity and specificity (>0.95) for TSS (see Table 2). The ensem-
ble model presented a performance gain for any evaluation metric value compared to
the best partial classification model (i.e., GLM). This result demonstrates the benefit of
fusing multiple classifiers with distinct algorithmic frameworks concerning individual
partial classifiers.

Table 2. Performance evaluation scores for the final ensemble classifier combining biomod2 algorithms.
TSS—True Skill Statistic; ROC—Area Under the Receiver Operating Curve; KAPPA—Cohen’s Kappa.

Classification
Algorithm Testing Cutoff Sensitivity Specificity

KAPPA 0.826 518 78.94 99.49
TSS 0.932 279 97.36 95.85

ROC 0.992 283 97.36 96.23

3.3. Eichornia crassipes Mapping

The classified time series reproduced in a spatially explicit way the growth and decline
of E. crassipes, demonstrating the ability of the methodology to map and monitor the
distribution of this aIAPS (Figure 5). Pixels with identical spectral values to the ones
identified in presence areas were spatialized and classified according to their similarity
through the application of the TSS threshold (279).

The ability of E. crassipes to dominate large areas was recorded in the results, where the
expansion process of the target plant over a small trench of the analyzed area is visible. The
mapping timeline shows that as warmer months pass, the invaded area increases rapidly,
keeping rather static during autumn. Conversely, during colder months, at the start of
winter, a decrease in the invaded area can be observed.

The number of pixels classified based on the spectral similarity to the one registered
on 13 November was mapped and counted for the whole study area, and their evolution
through the following months is shown in Figure 6. Each pixel represents an area of 100 m2,
making it possible to estimate the total invaded area.
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Figure 6. Temporal change in the number of pixels classified as invaded by the ensemble clas-
sifier by spectral similarity class. The “very-low” class represents the relatively lowest level of
spectral similarity in relation to training areas, whereas “very-high” comprises the highest level of
spectral similarity.
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For the whole study area, results suggest a lower dispersion of E. crassipes during
winter, a fast growth during spring with a peak in summer, and a progressive slow de-
crease during autumn. The dispersion of pixels reached its maximum on 20 August with
3668 pixels; the lowest dispersion occurred on 20 March with 164 pixels, suggesting a rapid
expansion of E. crassipes.

Although pixels with very low and low spectral proximity made up more than 50%
of the information generated on most days tested, they followed a growth and decrease
pattern identical to the classes with greater spectral proximity, being able to serve as
proxies for the state of E. crassipes spread/growth. Pixels identified with very high spectral
similarity had a maximum (>200 pixels) during September and October.

4. Discussion
4.1. Eichornia crassipes Spectral Reflectance Patterns

The identification and use of specific regions of spectra where a target plant has a
distinct reflectance pattern enables classifier techniques to improve accuracy by being fed
with only relevant information [43–46].

In our study, Sentinel-2′s multispectral data proved to have enough spatial and tem-
poral resolution to detect and map the distribution of E. crassipes in dynamic freshwater
ecosystems [11,43]. For most of the year, E. crassipes had a distinctive spectral reflection
pattern compared to the studied surrounding environment, peaking during the first months
of autumn, which made this period favorable to the detection of our target species.

The spectral information captured the plant’s life cycle, showing increasingly high
reflectance levels as summer weather approached and a decline as winter brought low
temperatures and the plant entered dormancy.

Periods of overlap in the reflectance values happened between riparian woody trees
and E. crassipes during the end of summer and the beginning of spring. A possible explana-
tion for these overlaps is the seasonal variation in reflectance, where at the end of summer
and autumn, riparian woody trees enter a period of senescence, and in contrast, E. crassipes
maintains its photosynthetic activity. In the spring, the opposite happens, with E. crassipes
lowering photosynthetic activity and riparian woody trees increasing.

Spectral information between bands 5 and 11 (0.740–1.610 µm) were selected as the
best spectral regions registered by the Sentinel-2 sensor to detect E. crassipess. These
results are not surprising since the ability of the red edge and near-infrared to detect
changes in the physiological and structural characteristics of the vegetation is well known
in the literature [43,44].

Moreover, the Short Wave Infra-Red (SWIR) spectral region (Sentinel-2′s band 11) was
shown to be more sensitive to vegetation variations than SWIR 2 (Sentinel-2′s band 12) [46],
which is used to study mineral content (a reason why it has low spectral separability from
riparian woody trees) [47].

4.2. Predictive Modelling to Detect and Map

Accurate and reliable detection and mapping of invasive species such as E. crassipes
in dynamic freshwater ecosystems provide important spatial and ecological information
for sustainable early detection and consequent design of control measures in management
programs [48,49]. The application of algorithms to map aIAPS is an increasingly used tech-
nique [50], but this approach needs computational expertise and knowledge, which creates
difficulties for wide implementation. The use of straightforward modelling techniques,
well established in academic communities and with solid information available, facilitates
the adoption of this process to map aIAPS.

The R package biomod2 proved able to produce a classifier fusion final consensus
map useful for regional and local policymakers, who need spatially explicit information
to develop better strategic plants for aIAPS management [51,52]. The ability of biomod2 to
incorporate multispectral information in a classifier fusion technique to detect alien species
has been demonstrated before [29]; however, aquatic systems remained unexploited by
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this technique due to intrinsic difficulties of RS in dynamic freshwater systems [34]. The
applied methodology showed that UAVs and Sentinel-2 can be coupled and work in a
complementary framework that can provide more precise spectral information of aIAPS.

Among the different model techniques in biomod2, GLM had the best performance.
Although the GLM is simpler in some respects compared to other more complex models
such as neural networks or decision tree models, it is less prone to overfitting and has
a greater ability to generalize [53]. However, the ensemble shows the benefit of fusing
multiple classifiers with distinct algorithmic frameworks by receiving a higher evaluation
than all partial classifiers.

Our results indicate that upstream zones tend to have a very low presence/abundance
of E. crassipes, possibly due to higher speed and considerably smaller river width [10,41]. In
contrast, open valleys, associated with a lower flow velocity and higher incidence of light,
had a higher concentration of areas spectrally similar to invaded ones. As we approach the
river mouth, E. crassipes density decreases, probably due to the increase in water salinity
that acts as a biological barrier to the species [54].

4.3. Limitations and Proposed Advances

The detection of aIAPS through RS techniques often relies on the spectral regions with
the best spatial resolution registered on satellite sensors. Nonetheless, the super-resolution
algorithms employed in this study enhanced the potential of spectral regions associated
with lower spatial resolution such as Vegetation Red Edge and SWIR for monitoring aquatic
environments [55]. The study of longer time series processed through super-resolution
algorithms can provide further advances in RS techniques to detect aIAPS.

The overall performance of our models suggests that an increase in the areas of
E. crassipes presence can contribute to more spectral variance, which helps acquire more
robust and close-to-reality results. As we move away from the day on which the spectral
signature of E. crassipes was collected, the less robust the model results are, due to sea-
sonal variation in the spectral signature. Caution is warranted in relation to the temporal
variations associated with E. crassipes phenology, as they may limit the transferability of
the spectral signature of the species over time and other supervised classifiers. As such,
repeated satellite-synchronized UAV flights should be made to collect representative data of
the plant spectra in different seasons, thus increasing the phenological variability presented
to classifier models.

The lessons learned from our test study suggest that the way forward may be taking
our proposed methodology to incorporate correlations between dispersion and descrip-
tive physical factors of space (e.g., flow velocity, bathymetry, river curvature index, water
temperature, solar exposure, and soil occupation). Such considerations would also deepen
knowledge of ecological and human factors that promote or inhibit the process of inva-
siveness, which is fundamental to the success of aIAPS management sustained by yearly
warning and prevention.

5. Conclusions

Meaningful information and data on aIAPS spatial distribution, growth, and spread
remain a challenge in fluvial systems. In this study, we tested a spatially and temporally
explicit mapping of Eichornnia crassipes through the use of selected spectral information
recorded by Sentinel-2 on semi-automatic classification systems.

Our results indicate that the inclusion of a synchronization process between UAV
and satellite imagery and the implementation of super-resolution algorithms can improve
aIAPS detection and monitorization. The use of only spectral information sensitive to a
highly dynamic aIAPS (Eichornnia crassipes) proved capable of performing semi-automatic
classification processes with temporally and spatially accurate results throughout its appli-
cation in data fusion models. Specifically, this study demonstrates the influence of the red
edge region of the electromagnetic spectrum derived from the Sentinel-2 sensor, amongst
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other influential spectral bands that are relevant in detecting and mapping invasive species
in freshwater ecosystems.

Our findings suggest that embracing cutting-edge remote sensing technologies to
monitor and manage freshwater ecosystems can improve the spatial awareness of invaded
areas from a regional to a local scale.

Author Contributions: Conceptualization, J.F.G., N.M. and R.S.; data curation, N.M., R.S. and J.F.G.;
funding acquisition, J.R.V., A.S.V. and J.M.A.; investigation, N.M. and J.F.G.; data creation, N.M. and
E.M.P.; writing—original draft, N.M., E.M.P. and J.F.G.; writing—review, A.S.V., J.H., J.M.A. and J.R.V.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Fundo Ambiental Notice nº 9678/2021 as part of the project
“SINVAQUA-Support system for the control, monitoring, containment and eradication of aquatic
invasive exotic flora by remote detection” and proMetheus—Research Unit on Materials, Energy
and Environment for Sustainability. N.M. was supported by the Portuguese Science Foundation
(FCT) through the 2022 PhD Studentships (grant reference 2022.12295.BD); E.M.P. was supported
by the Portuguese Science Foundation (FCT) through the 2022 PhD Studentships (grant reference
2022.10833.BD); J.F.G. was funded by the Individual Scientific Employment Stimulus Program (2017)
through FCT (contract no. CEECIND/02331/2017); A.S.V. acknowledges support from the Por-
tuguese Foundation for Science and Technology (FCT) through the program Stimulus for Scientific
Employment—Individual Support [contract reference 2020.01175.CEECIND/CP1601/CT0009]; J.R.V.
acknowledges research contract DL57/2016/CP1440/CT0024.

Data Availability Statement: The data presented in this study are available on request from the corre-
sponding author. The data are not publicly available due to legal (e.g., privacy) and ethical restrictions.

Acknowledgments: To all anonymous rewires.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Vaz, A.S.; Kueffer, C.; Kull, C.A.; Richardson, D.M.; Vicente, J.R.; Kühn, I.; Schröter, M.; Hauck, J.; Bonn, A.; Honrado, J.P.

Integrating Ecosystem Services and Disservices: Insights from Plant Invasions. Ecosyst. Serv. 2017, 23, 94–107. [CrossRef]
2. European Commission. European Union Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives; European Commission:

Brussels, Belgium, 2020.
3. Thamaga, K.H.; Dube, T. Remote Sensing of Invasive Water Hyacinth (Eichhornia crassipes): A Review on Applications and

Challenges. Remote Sens. Appl. Soc. Environ. 2018, 10, 36–46. [CrossRef]
4. May, L.; Dobel, A.J.; Ongore, C. Controlling Water Hyacinth (Eichhornia crassipes (Mart.) Solms): A Proposed Framework for

Preventative Management. Inland Waters 2021, 12, 163–172. [CrossRef]
5. Cuthbert, R.N.; Pattison, Z.; Taylor, N.G.; Verbrugge, L.; Diagne, C.; Ahmed, D.A.; Leroy, B.; Angulo, E.; Briski, E.;

Capinha, C.; et al. Global Economic Costs of Aquatic Invasive Alien Species. Sci. Total Environ. 2021, 775, 145238. [CrossRef]
[PubMed]

6. Janssen, A.B.G.; Hilt, S.; Kosten, S.; de Klein, J.J.M.; Paerl, H.W.; Van de Waal, D.B. Shifting States, Shifting Services: Linking
Regime Shifts to Changes in Ecosystem Services of Shallow Lakes. Freshw. Biol. 2021, 66, 1–12. [CrossRef]

7. Basu, A.; Hazra, A.K.; Chaudhury, S.; Ross, A.B.; Balachandran, S. State of the Art Research on Sustainable Use of Water Hyacinth:
A Bibliometric and Text Mining Analysis. Informatics 2021, 8, 38. [CrossRef]

8. Sabater, S.; Elosegi, A. Balancing Conservation Needs with Uses of River Ecosystems. Acta Biol. Colomb. 2014, 19, 3–10. [CrossRef]
9. Oficialdegui, F.J.; Zamora-Marín, J.M.; Guareschi, S.; Anastácio, P.M.; García-Murillo, P.; Ribeiro, F.; Miranda, R.; Cobo, F.;

Gallardo, B.; García-Berthou, E.; et al. A Horizon Scan Exercise for Aquatic Invasive Alien Species in Iberian Inland Waters. Sci.
Total Environ. 2023, 869, 161798. [CrossRef]

10. Aguiar, F.C.F.; Ferreira, M.T. Plant Invasions in the Rivers of the Iberian Peninsula, South-Western Europe: A Review. Plant
Biosyst. 2013, 147, 1107–1119. [CrossRef]

11. Thamaga, K.H.; Dube, T. Understanding Seasonal Dynamics of Invasive Water Hyacinth (Eichhornia crassipes) in the Greater
Letaba River System Using Sentinel-2 Satellite Data. GIScience Remote Sens. 2019, 56, 1355–1377. [CrossRef]

12. Villamagna, A.M.; Murphy, B.R. Ecological and Socio-Economic Impacts of Invasive Water Hyacinth (Eichhornia crassipes): A
Review. Freshw. Biol. 2010, 55, 282–298. [CrossRef]

https://doi.org/10.1016/j.ecoser.2016.11.017
https://doi.org/10.1016/j.rsase.2018.02.005
https://doi.org/10.1080/20442041.2021.1965444
https://doi.org/10.1016/j.scitotenv.2021.145238
https://www.ncbi.nlm.nih.gov/pubmed/33715860
https://doi.org/10.1111/fwb.13582
https://doi.org/10.3390/informatics8020038
https://doi.org/10.15446/abc.v19n1.38045
https://doi.org/10.1016/j.scitotenv.2023.161798
https://doi.org/10.1080/11263504.2013.861539
https://doi.org/10.1080/15481603.2019.1646988
https://doi.org/10.1111/j.1365-2427.2009.02294.x


Remote Sens. 2023, 15, 3248 13 of 14

13. Hall, S.A.; Bastos, R.; Vicente, J.; Vaz, A.S.; Honrado, J.P.; Holmes, P.M.; Gaertner, M.; Esler, K.J.; Cabral, J.A. A Dynamic Modeling
Tool to Anticipate the Effectiveness of Invasive Plant Control and Restoration Recovery Trajectories in South African Fynbos.
Restor. Ecol. 2021, 29, e13324. [CrossRef]

14. Pádua, L.; Antão-Geraldes, A.M.; Sousa, J.J.; Rodrigues, M.Â.; Oliveira, V.; Santos, D.; Miguens, M.F.P.; Castro, J.P. Water Hyacinth
(Eichhornia crassipes) Detection Using Coarse and High Resolution Multispectral Data. Drones 2022, 6, 47. [CrossRef]

15. Datta, A.; Maharaj, S.; Prabhu, G.N.; Bhowmik, D.; Marino, A.; Akbari, V.; Rupavatharam, S.; Sujeetha, J.A.R.P.; Anantrao, G.G.;
Poduvattil, V.K.; et al. Monitoring the Spread of Water Hyacinth (Pontederia crassipes): Challenges and Future Developments.
Front. Ecol. Evol. 2021, 9, 631338. [CrossRef]

16. Kleinschroth, F.; Winton, R.S.; Calamita, E.; Niggemann, F.; Botter, M.; Wehrli, B.; Ghazoul, J. Living with Floating Vegetation
Invasions. Ambio 2021, 50, 125–137. [CrossRef] [PubMed]

17. Mukarugwiro, J.A.; Newete, S.W.; Adam, E.; Nsanganwimana, F.; Abutaleb, K.; Byrne, M.J. Mapping Spatio-Temporal Variations
in Water Hyacinth (Eichhornia crassipes) Coverage on Rwandan Water Bodies Using Multispectral Imageries. Int. J. Environ. Sci.
Technol. 2021, 18, 275–286. [CrossRef]

18. State, P. Erratum Regarding Missing Declaration of Competing Interest Statements in Previously Published Articles. Remote Sens.
Appl. Soc. Environ. 2021, 21, 100453. [CrossRef]

19. Karouach, F.; Ben Bakrim, W.; Ezzariai, A.; Sobeh, M.; Kibret, M.; Yasri, A.; Hafidi, M.; Kouisni, L. A Comprehensive Evaluation
of the Existing Approaches for Controlling and Managing the Proliferation of Water Hyacinth (Eichhornia crassipes): Review. Front.
Environ. Sci. 2022, 9, 767871. [CrossRef]

20. Silva, T.S.F.; Costa, M.P.F.; Melack, J.M.; Novo, E.M.L.M. Remote Sensing of Aquatic Vegetation: Theory and Applications. Environ.
Monit. Assess. 2008, 140, 131–145. [CrossRef]

21. Rowan, G.S.L.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-specialists. Remote Sens.
2021, 13, 623. [CrossRef]

22. Wang, P.; Bayram, B.; Sertel, E. A Comprehensive Review on Deep Learning Based Remote Sensing Image Super-Resolution
Methods. Earth Sci. Rev. 2022, 232, 104110. [CrossRef]

23. Dash, J.P.; Hartley, R.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J. Taking a Closer Look at Invasive Alien Plant Research: A Review of
the Current State, Opportunities, and Future Directions for UAVs. Methods Ecol. Evol. 2020, 10, 2020–2033. [CrossRef]

24. Elkind, K.; Sankey, T.T.; Munson, S.M.; Aslan, C.E. Invasive Buffelgrass Detection Using High-Resolution Satellite and UAV
Imagery on Google Earth Engine. Remote Sens. Ecol. Conserv. 2019, 5, 318–331. [CrossRef]

25. Martin, F.M.; Müllerová, J.; Borgniet, L.; Dommanget, F.; Breton, V.; Evette, A. Using Single- and Multi-Date UAV and Satellite
Imagery to Accurately Monitor Invasive Knotweed Species. Remote Sens. 2018, 10, 1662. [CrossRef]

26. Holden, P.B.; Rebelo, A.J.; New, M.G. Mapping Invasive Alien Trees in Water Towers: A Combined Approach Using Satellite Data
Fusion, Drone Technology and Expert Engagement. Remote Sens. Appl. Soc. Environ. 2021, 21, 100448. [CrossRef]

27. Thuiller, W.; Georges, D.; Robin, E.; Breiner, F.; Engler, R.; Breiner, F. Package “biomod2” Type Package Title Ensemble Platform for
Species Distribution Modeling; R Foundation: Vienna, Austria, 2020.

28. Georges, D.; Engler, R.; Breiner, F.; Georges, M.D.; Thuiller, C.W. Package ‘Biomod2′ February; R Foundation: Vienna, Austria, 2003.
29. Mouta, N.; Silva, R.; Pais, S.; Alonso, J.M.; Gonçalves, J.F.; Honrado, J.; Vicente, J.R. ‘The Best of Two Worlds’—Combining

Classifier Fusion and Ecological Models to Map and Explain Landscape Invasion by an Alien Shrub. Remote Sens. 2021, 13, 3287.
[CrossRef]

30. Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A Platform for Ensemble Forecasting of Species Distributions.
Ecography 2009, 32, 369–373. [CrossRef]

31. Fernandes, R.F.; Vicente, J.R.; Georges, D.; Alves, P.; Thuiller, W.; Honrado, J.P. A Novel Downscaling Approach to Predict Plant
Invasions and Improve Local Conservation Actions. Biol. Invasions 2014, 16, 2577–2590. [CrossRef]

32. Huang, C.; Asner, G. Applications of Remote Sensing to Alien Invasive Plant Studies. Sensors 2009, 9, 4869. [CrossRef]
33. Janssens, N.; Schreyers, L.; Biermann, L.; Van Der Ploeg, M.; Bui, T.K.L.; Van Emmerik, T. Rivers Running Green: Water Hyacinth

Invasion Monitored from Space. Environ. Res. Lett. 2022, 17, 044069. [CrossRef]
34. Rowan, G.; Kalacska, M. Remote Sensing of Submerged Aquatic Vegetation: An Introduction and Best Practices Review.

Available online: https://www.researchgate.net/publication/343210031_Remote_sensing_of_submerged_aquatic_vegetation_
an_introduction_and_best_practices_review (accessed on 3 May 2023).

35. Fawad, M.; Jamal, A. Water Hyacinth: Utilization and Impact on Diversity. Black Sea J. Agric. 2019, 2, 58–62.
36. García-De-lomas, J.; Dana, E.D.; Borrero, J.; Yuste, J.; Corpas, A.; Boniquito, J.M.; Castilleja, F.J.; Martínez, J.M.; Rodríguez,

C.; Verloove, F. Rapid Response to Water Hyacinth (Eichhornia crassipes) Invasion in the Guadalquivir River Branch in Seville
(Southern Spain). Manag. Biol. Invasions 2022, 13, 724–736. [CrossRef]

37. Falquina, R.; De, A.; Cabos, W.; Sein, D.; Gallardo, C. Impact of Ocean-Atmosphere Coupling on Present and Future Köppen-
Geiger Climate Classification in Europe. Atmos. Res. 2022, 275, 106223. [CrossRef]

38. European Parliament; Council of the European Union. REGULATION (EU) No 1143/2014 of the European Parliament and of the
Council of 22 October 2014 on the Prevention and Management of the Introduction and Spread of Invasive Alien Species. Off. J.
Eur. Union 2014, 2014, 35–55.

39. Strange, E.F.; Landi, P.; Hill, J.M.; Coetzee, J.A. Modeling Top-down and Bottom-up Drivers of a Regime Shift in Invasive Aquatic
Plant Stable States. Front. Plant Sci. 2019, 10, 889. [CrossRef] [PubMed]

https://doi.org/10.1111/rec.13324
https://doi.org/10.3390/drones6020047
https://doi.org/10.3389/fevo.2021.631338
https://doi.org/10.1007/s13280-020-01360-6
https://www.ncbi.nlm.nih.gov/pubmed/32720252
https://doi.org/10.1007/s13762-020-02824-8
https://doi.org/10.1016/j.rsase.2020.100453
https://doi.org/10.3389/fenvs.2021.767871
https://doi.org/10.1007/s10661-007-9855-3
https://doi.org/10.3390/rs13040623
https://doi.org/10.1016/j.earscirev.2022.104110
https://doi.org/10.1111/2041-210X.13296
https://doi.org/10.1002/rse2.116
https://doi.org/10.3390/rs10101662
https://doi.org/10.1016/j.rsase.2020.100448
https://doi.org/10.3390/rs13163287
https://doi.org/10.1111/j.1600-0587.2008.05742.x
https://doi.org/10.1007/s10530-014-0688-z
https://doi.org/10.3390/s90604869
https://doi.org/10.1088/1748-9326/ac52ca
https://www.researchgate.net/publication/343210031_Remote_sensing_of_submerged_aquatic_vegetation_an_introduction_and_best_practices_review
https://www.researchgate.net/publication/343210031_Remote_sensing_of_submerged_aquatic_vegetation_an_introduction_and_best_practices_review
https://doi.org/10.3391/mbi.2022.13.4.09
https://doi.org/10.1016/j.atmosres.2022.106223
https://doi.org/10.3389/fpls.2019.00889
https://www.ncbi.nlm.nih.gov/pubmed/31354763


Remote Sens. 2023, 15, 3248 14 of 14

40. Otieno, D.; Nyaboke, H.; Nyamweya, C.S.; Odoli, C.O.; Aura, C.M.; Outa, N.O. Water Hyacinth (Eichhornia crassipes) Infestation
Cycle and Interactions with Nutrients and Aquatic Biota in Winam Gulf (Kenya), Lake Victoria. Lakes Reserv. Res. Manag. 2022,
27, e12391. [CrossRef]

41. Richards, J.H.; Lee, D.W. Light Effects on Leaf Morphology in Water Hyacinth (Eichhornia crassipes). Am. J. Bot. 1986, 73, 1741–1747.
[CrossRef]

42. Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-Resolution of Sentinel-2 Images: Learning a Globally
Applicable Deep Neural Network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319. [CrossRef]

43. Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760.
[CrossRef]

44. Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of
Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [CrossRef]

45. Thakur, S.; Mondal, I.; Ghosh, P.B.; Das, P.; De, T.K. A Review of the Application of Multispectral Remote Sensing in the Study of
Mangrove Ecosystems with Special Emphasis on Image Processing Techniques. Spat. Inf. Res. 2020, 28, 39–51. [CrossRef]

46. Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central
Europe. Remote Sens. 2016, 8, 166. [CrossRef]

47. Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for Geological Applications.
Remote Sens. Environ. 2014, 148, 124–133. [CrossRef]

48. Mucheye, T.; Haro, S.; Papaspyrou, S.; Caballero, I. Water Quality and Water Hyacinth Monitoring with the Sentinel-2A/B
Satellites in Lake Tana (Ethiopia). Remote Sens. 2022, 14, 4921. [CrossRef]

49. Cai, J.; Jiao, C.; Mekonnen, M.; Legesse, S.A.; Ishikawa, K.; Wondie, A.; Sato, S. Water Hyacinth Infestation in Lake Tana, Ethiopia:
A Review of Population Dynamics. Limnology 2023, 24, 51–60. [CrossRef]

50. Bayable, G.; Cai, J.; Mekonnen, M.; Legesse, S.A.; Ishikawa, K.; Imamura, H.; Kuwahara, V.S. Detection of Water Hyacinth
(Eichhornia crassipes) in Lake Tana, Ethiopia, Using Machine Learning Algorithms. Water 2023, 15, 880. [CrossRef]

51. Potgieter, L.J.; Shrestha, N.; Cadotte, M.W. Prioritizing Sites for Terrestrial Invasive Alien Plant Management in Urban Ecosystems.
Ecol. Solut. Evid. 2022, 3, e12160. [CrossRef]

52. Tucker, A.J.; Chadderton, W.L.; Annis, G.; Davidson, A.D.; Hoffman, J.; Bossenbroek, J.; Hensler, S.; Hoff, M.; Jensen, E.;
Kashian, D.; et al. A Framework for Aquatic Invasive Species Surveillance Site Selection and Prioritization in the Us Waters of the
Laurentian Great Lakes. Manag. Biol. Invasions 2020, 11, 607–632. [CrossRef]

53. Faraway, J.J. Generalized Linear Models. In International Encyclopedia of Education, 3rd ed.; Peterson, P., Baker, E., McGaw, B., Eds.;
Elsevier: Oxford, UK, 2010; pp. 178–183. [CrossRef]

54. Hadad, H.R.; Mufarrege, M.M.; Di Luca, G.A.D.; Maine, M.A. Salinity and PH Effects on Floating and Emergent Macrophytes in
a Constructed Wetland. Water Sci. Technol. 2018, 2017, 270–275. [CrossRef]

55. Ade, C.; Khanna, S.; Lay, M.; Ustin, S.L.; Hestir, E.L. Genus-Level Mapping of Invasive Floating Aquatic Vegetation Using
Sentinel-2 Satellite Remote Sensing. Remote Sens. 2022, 14, 3013. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/lre.12391
https://doi.org/10.1002/j.1537-2197.1986.tb09705.x
https://doi.org/10.1016/j.isprsjprs.2018.09.018
https://doi.org/10.3390/rs12172760
https://doi.org/10.1016/j.isprsjprs.2013.04.007
https://doi.org/10.1007/s41324-019-00268-y
https://doi.org/10.3390/rs8030166
https://doi.org/10.1016/j.rse.2014.03.022
https://doi.org/10.3390/rs14194921
https://doi.org/10.1007/s10201-022-00706-1
https://doi.org/10.3390/w15050880
https://doi.org/10.1002/2688-8319.12160
https://doi.org/10.3391/mbi.2020.11.3.17
https://doi.org/10.1016/B978-0-08-044894-7.01331-2
https://doi.org/10.2166/wst.2018.110
https://doi.org/10.3390/rs14133013

	Introduction 
	Materials and Methods 
	General Workflow 
	Study Area 
	Target Species 
	Occurrence Data 
	Remote Sensing Data 
	Multi-Algorithm Supervised Classification 

	Results 
	Spectral Analysis and Separability of E. crassipes through Time 
	Classification Algorithms Performance 
	Eichornia crassipes Mapping 

	Discussion 
	Eichornia crassipes Spectral Reflectance Patterns 
	Predictive Modelling to Detect and Map 
	Limitations and Proposed Advances 

	Conclusions 
	References

