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Abstract: The Lianjiang Plain, renowned for its position as ‘China’s textile hub’ and characterized by
its high population density, has experienced considerable subsidence due to excessive groundwater
extraction in recent years. Although some studies have investigated short-term subsidence in
this plain, research on long-term subsidence and rebound remain understudied. In this paper,
the characteristics of surface deformation in the Lijiang Plain during two periods (2015–2017 and
2018–2021) have been investigated using the time-series interferometric synthetic aperture radar (TS-
InSAR) technique, and the correlation with the changes in groundwater level, geological factors, and
urban construction are discussed. The InSAR-derived results are cross-validated with the adjacent
orbit datasets. Large-scale and uneven subsidence ranging from −124 mm/year to +40 mm/year is
observed from 2015 to 2017. However, a significant decrease in the subsidence rate during 2018–2021,
with local rebound deformation up to +48 mm/year in three regions, is also observed. Groundwater
level changes are found to be the major cause of the ground deformation, and the intercomparison
between groundwater level and ground displacement time series from TS-InSAR measurements also
indicates a clear relationship between them during 2018–2021. Geological factors control the range of
deformation area over the study period. The impact of urban construction on surface subsidence
is evident, contributing to high deformation. Our findings could improve the understanding of
how deformation is affected by groundwater rebound and offer valuable insights into groundwater
management, urban planning, and land subsidence mitigation.

Keywords: land displacement; time-series InSAR; groundwater level; Lianjiang Plain

1. Introduction

Land subsidence with natural or anthropogenic origin is a global phenomenon and may
cause environmental and socioeconomic impacts [1–4]. The Lianjiang Plain (LJP) is one of
the important manufacturing centers for knitted underwear in China [5]. Relying on the
strengths of its knitting industry, the economic and urban development of this plain have
been rapidly increasing over the last two decades, with gross domestic product (GDP) rising
from CNY 25.9 billion in 2000 to over CNY 151.5 billion by 2020, an average annual increase
of 0.9%. At the same time, printing and dyeing activities pollute surface water, reduce the
availability of clean water, and put increasing pressure on limited groundwater resources
and the ecological environment [6]. In addition, it has been affected by land subsidence
but is overlooked or underestimated because of its slow developmental characteristic. The
exponential population increase and the further development of industry in the Plain have
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led to a significant increase in water demand. Subsidence continued as a direct result of
groundwater extraction far exceeding the natural recharge [7]. Long-term subsidence not only
has led to the destruction of houses and the formation of earth fissures but also makes it more
vulnerable to flooding during rainy seasons. Over the past eight years, the LJP has frequently
encountered extreme surface flooding when intensive rainfall took place, affecting houses,
basements, and other underground structures [8–10]. Frequent flooding and continued land
subsidence in the LJP killed 12 people, caused the collapse of 20 thousand hectares of crops,
produced direct economic losses reaching up to CNY 3.5 billion, and put the lives of one
million people at risk [11,12]. Therefore, systematically monitoring and analyzing the long-
term spatiotemporal evolution of land deformation is vital for disaster prevention and warning
as well as promoting viable and sustainable development.

To date, few deformation studies have been conducted in the LJP using point-based
surveying methods, including leveling surveys and Global Positioning System (GPS), be-
cause of their high cost and time-consuming nature [13]. Therefore, there is a need for
accessible and effective methods to monitor the distribution and status of land deforma-
tion in the LJP. Interferometric Synthetic Aperture Radar (InSAR), an ideal and effective
remote sensing method for monitoring ground deformation, has been widely utilized
for this purpose. InSAR has already been successfully applied for monitoring a range of
ground displacement applications over the past 20 years, including glacier motion [14],
earthquake deformation [15,16], volcanic movement [17], fluid flow [18,19], slope stability
monitoring [20], mining activities [21], etc. Compared to conventional geodetic monitoring
techniques, InSAR offers a low-cost and low-labor way to measure surface displacement
over large spatial coverages with a high accuracy of centimeters or even millimeters [22–24].
TS-InSAR, an extension and supplement to InSAR, has been developed to map time-series
land surface displacement, including Persistent Scatterer Interferometry (PSI) [22] and
Small Baseline Subset (SBAS) [25]. The principle of TS-InSAR is to improve deformation
measurement accuracy through using multiple SAR images and significantly reducing
the drawbacks in conventional differential InSAR (D-InSAR) [22,26,27]. In addition to the
TS-InSAR methods mentioned above, many other approaches have been developed for
different monitoring conditions, which can be divided into two main categories: PS-based
methods that work on single point targets [3,28,29], and small baseline-based methods
that utilize spatially distributed targets [25,30,31]. All of these TS-InSAR methods have
facilitated ground subsidence monitoring in both urban and rural areas using various SAR
datasets [3,29,32–36].

Past studies of the LJP, based on TS-InSAR methods using various SAR data, have
found regional scale subsidence between 2006–2011 and 2015–2018. These studies have
demonstrated the feasibility of the TS-InSAR method for determining surface displacement
in the LJP. In addition, these studies have revealed the influence of structural geology, land
use, and faults on land subsidence [13,37]. Subsequent land subsidence was also observed
by Zhang et al. [38]. In particular, two obvious land uplift zones in the northern part of
the plain were detected. Zhang et al., through their analysis of displacement results with
geological data and local government reports, arrived at the conclusion that groundwater
was the major factor causing combined land subsidence and rebound. More recently,
Huang et al. [39] examined ground deformation and evaluated the deformation induced
by human activities using interannual groundwater extraction data from 2015 to 2020.
However, the above-mentioned studies detected and analyzed subsidence in a specific
time from 2015 to 2021. Most of these researchers emphasized the linkage between annual
groundwater extraction and land subsidence. However, the spatiotemporal evolution of
subsidence and rebound, especially in response to local-scale groundwater levels, were not
thoroughly investigated. The influence of groundwater rise on regional subsidence and
rebound deformation at this site remains inadequately understood. Moreover, there is a
clear need for further refinement in the quantitative analysis of deformation characteristics
caused by natural and anthropogenic factors.
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This paper is built upon the previous literature to conduct a comprehensive deforma-
tion study over the LJP to obtain better understanding of the deformation phenomenon
at the site. The main objectives of this study are as follows: (a) to quantify and map
the latest deformation trends of the LJP, utilizing long-term time-series deformation data
derived using TS-InSAR (2015–2021); (b) to investigate the relationship between deforma-
tion and multiple influencing factors through collecting in situ hydrogeological data and
multi-temporal building data, with a particular focus on the quantitative relationships
between groundwater levels, geological factors, and urban construction. The paper is
organized as follows. First, the long-term deformation velocity in the LOS (Line-Of-Sight)
direction during 2015–2017 and 2018–2021 is calculated by means of applying the TS-InSAR
analysis to unveil the spatio-temporal evolution of land subsidence and rebound in the
LJP. Second, cross-validation of the overlap areas between adjacent orbits is conducted.
Finally, subsidence-influencing factors such as groundwater levels, geological conditions,
and urban construction are taken into account, and their correlation with deformation is
thoroughly analyzed.

2. Study Area and Datasets
2.1. Study Area

The Lianjiang Plain is located in the southern part of the Chaoshan Alluvial Plain in
Guangdong Province (Figure 1). The area of the Plain is more than 3000 square kilometers,
which spans across three administrative regions: Chaonan (687 km2), Chaoyang (843 km2),
and Puning (1615 km2). The Plain is characterized by a subtropical monsoon climate and
is well-endowed with abundant sunshine and rainfall. According to local governmental
agencies’ records, the annual rainfall is 1750 mm. The spatial and temporal distribution of
rainfall in the Plain is non-uniform, with more rainfall observed in the southeast than in
the northwest, and more frequent rainfall between June and September.
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Figure 1. Geological formation of the Lianjiang Plain and data coverage of the SAR data. The yellow
and red rectangles are the Sentinel-1A tracks 40 and 113 coverage, respectively. The light pink box in
the top-right-corner map shows the location of the study area in China.

The Lianjiang River basin flows through the Lianjiang Plain and serves as the main
river in the area. Since the 1990s, the Lianjiang River has been subjected to severe pollution
resulting from the discharge of waste by printing and dyeing companies and electronic
waste [6]. Approximately 5.34 million inhabitants live within this plain, with an average
population density of approximately 1700 inhabitants/km2. The area is severely challenged
by scarce water resources, with surface water resources per capita only one-fifth of those
in Guangdong Province. The LJP is highly dependent on groundwater resources, with
extensive extraction of groundwater reported in many years [40]. Since 2018, the provincial
government has been leading efforts towards comprehensive pollution control manage-
ment in the Lianjiang River, resulting in a significant improvement in water quality [41].
Meanwhile, water conservation policies and measures aimed at restricting water consump-
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tion in printing and dyeing firms have also played a role in significantly reducing the
amount of groundwater extraction.

The Plain is characterized by flat terrain, and the elevation of the Plain ranges from
0 to 967 m. Extensive deposition processes occurred in the Lianjiang Plain, with geological
studies indicating that a larger part of the Plain is covered by Quaternary alluvial sediments,
while the remaining area is overlaid by bedrock, as presented in [42]. The thickness of the
Quaternary deposit, determined via interpolation of detailed borehole data [42], genereally
ranges from 40 m to 130 m. The locations of boreholes are represented with light blue
triangles in Figure 2.
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Figure 2. Sedimentary thickness map and borehole locations. The thickness of the sediment has been
calculated by means of geotechnical borehole data.

2.2. Data

A total of 129 Sentinel-1A SAR images along two adjacent orbits, covering the period
from June 2015 to November 2021, were collected and used. The coverage of SAR images is
depicted in Figure 1. Specific imaging parameters and properties of Sentinel-1A datasets
are illustrated in Table 1. Detailed distribution information regarding the spatiotemporal
baselines of these datasets is presented in Figure 3. The master image used for datasets I–III
was acquired on 6 May 2016, 3 February 2020, and 8 February 2020, respectively.

Table 1. Specific parameters of Sentinel-1 datasets.

Datasets Dataset I Dataset II Dataset III

Incidence angle 34.14◦ 37.06◦ 39.48◦

Track 40 40 113
Orbit direction Ascending Ascending Ascending

Polarization VV VV VV
Number of Scenes 33 48 48

Time range 2015–2017 2018–2021 2018–2021

Furthermore, geological boreholes were utilized to determinate the depth of Qua-
ternary deposits in the Plain. Groundwater level data from six water wells [43], with
a sampling period of six times a month, were used to assess the relationship between
InSAR-derived surface deformation and groundwater level measurements.
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3. Methodology
3.1. InSAR Time Series Processing

In this study, deformation information was derived from the multi-temporal Sentinel
SAR data, utilizing the PSI approach based on InSAR time-series analysis software named
GEOS-ATSA (Advance Time-Series Analysis) [28,44]. The interferograms were first gen-
erated using the conventional DInSAR method based on the InSAR Scientific Computing
Environment (ISCE) software [45], where the topographic phase component was estimated
and removed using the 1-arc second SRTM DEM [46]. After generating the interferograms,
initial PS candidate point (PSC) selection based on amplitude analysis was performed.
Pixels with dispersion amplitude index (DA) lower than 0.25 were considered as reliable
PSCs and are included in the following analysis. A triangular irregular network (TIN) was
then established via connecting the selected PSCs with a maximum arc length of 1.5 km.
The phase difference between two pixels within each arc of the TIN can be written as:

∆ϕdi f f = ∆ϕde f o + ∆ϕtopo + ∆ϕAPS + ∆ϕNoise + ∆ϕorbit

= − 4π
λ Bt∆v− 4π

λ
B⊥

rsinθ ∆h + ∆ϕAPS + ∆ϕNoise + ∆ϕorbit
(1)

where ∆ϕde f o refers to the phase of displacement, ∆ϕtopo denotes the topography phase,
∆ϕAPS indicates the phase due to atmospheric disturbances, ∆ϕNoise is the noise phase,
∆ϕorbit represents the phase due to residual orbital error, ∆v and ∆h denote the difference
of displacement rate and topographic error, and Bt, B⊥, r, λ, and θ are the temporal and
perpendicular baseline, range distance, radar wavelength, and local incidence, respectively.
In order to obtain the ∆ϕde f o and ∆ϕtopo phase components, which are the main objec-
tives of InSAR processing, it is necessary to estimate and eliminate the remaining phase
components. The estimation of the modeled parameters (∆v and ∆h) is hence carried out
using the Least-squares Ambiguity Decorrelation Adjustment (LAMBDA) method [47].
Then, the obtained relative modeled parameters were converted to absolute values through
performing the spatial integration and integration testing process. In addition, the less
reliable PCSs (DA less than 0.4) were also included and analyzed in order to increase the
number of PS. An adaptive estimation strategy was applied to estimate the parameters
of these PCSs [48]. The sparse phase unwrapping method [49] was utilized to unwrap
the residual phases. The linear spatial trend in unwrapped residual phases was assumed
to be caused by the orbit errors and hence was removed. The remaining residual phase
components include atmospheric artifacts, noise term, and non-linear displacement. The
filtering operations were executed in spatial–temporal mode to separate the nonlinear
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deformation phase from the two components. At the end, the time-series deformation
results were derived. The data process flowchart is shown in Figure 4.
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3.2. Estimated Vertical and Horizontal Deformation

According to the aforementioned InSAR processing method, the resulting estimated
displacement is in the LOS direction of the satellite. In areas where spatiotemporal coverage
overlaps, multi-track acquisition geometries allow us to reconstruct real deformation in
three dimensions: up–down, east–west, and north–south components. As a result, we
calculated the displacement rates in the vertical (up–down) and horizontal (east–west)
deformation fields, assuming that the component of the north–south is negligible [50,51].
Displacement components are computed using the following expression [52]:

Dlos =
[
cosθinc sinθinc

][Du
De

]
(2)

where Dlos is the deformation in the LOS direction and Du and De are the deformation in
the up and east directions. θinc is the radar incidence angle.

4. Results
4.1. Spatial-Temporal Variation of Surface Deformation

The annual LOS deformation rates of the study area for two periods, 2015–2017 and
2018–2021, were obtained through the TS-InSAR analysis. All results are adjusted based on
a reference point, which was set in a relatively stable area as depicted by the red pentagram
in Figure 5. As per convention, positive values in blue were deemed as the uplift, while
negative values in red represented subsidence.

Figure 5a,b show the annual deformation rate for the periods 2015–2017 and 2018–2021,
respectively. The comparison between the two results suggests that the study area is ex-
periencing inconsistent surface deformation patterns. As show in Figure 5a, large-scale
subsidence phenomena (T1), with a maximum rate of −124 mm/year, were recognized,
affecting the central part of the Plain where proximity to faults, land use, and thickness
of the Quaternary sedimentary were identified as the drivers. Meanwhile, the result of
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2018–2021 shows a deceleration in the rate of subsidence, and in some areas, significant land
uplift behavior is observed. Three main uplift zones were detected in the northwest and
northern parts of the study area, marked as S1 (Puning), S2 (Chaonan), and S3 (Chaoyang)
in Figure 5b, which had experienced subsidence during 2015–2017. The uplift rate ranged
from +10 mm/year to +50 mm/year, with S1 having higher uplift values (+48.9 mm/year)
than the other two areas, and involving a significant spatial magnitude of the uplift pattern.
These broad uplifting zones are expected to be closely related to the recovery of groundwa-
ter, which will be discussed in detail in Section 5.2. In addition, the ongoing subsidence
zone is persisting in the north-central part of the study area, with the maximum subsidence
rate of approximately −45 mm/year, reducing by approximately 64% with respect to the
period of 2015–2017. This is most likely be the consequence of a reduction in groundwater
withdrawal due to government policy for effective groundwater management and active
land subsidence prevention. This finding aligns with the result that groundwater pumping
volume in this area has declined from more than 39 million cubic meters in 2015 to less
than 22 million cubic meters in 2021 [52], as shown in Figure 6.
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4.2. Cross-Validation

While the authors did not have access to the ground truth data over the site, the
overlap time and coverage of dataset II and dataset III enabled validation of the InSAR
results through comparing the common part of deformation maps from both datasets. The
vertical deformation velocity derived from dataset III and dataset II, projected into the
vertical direction assuming horizontal displacement is negligible, is shown in Figure 7a,b,
respectively. The deformation results of the two maps are generally consistent in terms of
deformation range and patterns. The velocity histogram for the two datasets is shown in
Figure 7c; the correlation coefficient is 0.94, and the standard deviation of rates difference is
2.4 mm/year, which confirms the broad agreement between the two results. Furthermore,
using the approach mentioned in Section 3.2, the vertical and horizontal deformation
patterns during 2018–2021 are illustrated in Figure 8. The vertical velocity showed a
similarity to LOS rates (Figure 5b). A slight east–west deformation was also observed. The
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vertical component of the surface displacement dominates, suggesting that groundwater
level is likely to be the trigger factor of land deformation over these areas. In Section 5.2,
the vertical deformation time series within the overlapped regions will be used to explore
their relationship with groundwater level changes.
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5. Discussion
5.1. Comparison of Subsidence and Rebound between 2006–2021

Table 2 provides a comparison of this work and existing studies in terms of datasets,
time span, and employed methodology. In general, the consistency in both spatial pattern
and magnitude of the subsidence and uplift between this work and previous ones can be
found. A regional subsidence bowl (T1) of centimeter order has been found at all sites
in previous studies [13,37,53]. The two large uplift areas at Puning (S1) and Chaonan (S2)
also coincide with previously detected uplifting bowls [39,40]. However, there are sub-
tle differences when it comes to the magnitude of the deformation rate. The maximum
subsidence detected in this study was located in Chaonan (T1), which is similar to the find-
ings of Du et al. [37] and Liu et al. [13]. However, the peak subsidence estimated from
this work (−124.4 mm/year) was slightly lower than in those studies (157.2 mm/year and
−140 mm/year). Additionally, the maximum uplift was found in Puning (S1), occurring
in agreement with the location of previous studies [38,39], while the peak uplift rate of
+48 mm/year in this work differs from those, in which the uplift rate was over +100 mm/year
and +20 mm/year, respectively. There are two possible reasons for the discrepancy in the
observed peak subsidence and uplift rate: (1) different methods were employed to detect
measurement points and estimate annual rates, such that more measurement points were
detected in Liu et al. [13]; Du et al. [37] have greater subsidence due to longer wavelength
compared to the band used in this study; (2) different observation periods contributed to
different annual rates, and annual rates in Zhang et al. [38] are hence much higher than the
average annual rates according to Huang et al. [39] and this study. In additional, Zhang
et al. [38] and Huang et al. [40] noted the trend of stability for Chaoyang (S3), once a severe
subsidence area, which is not consistent with the result of this study. The magnitude of the
deformation Chaoyang (S3) varies from period to period, which could indicate temporal
variation in deformation rates.

Table 2. Comparison of previous studies and this study.

Reference SAR Data Location Processing Method Time Span

Du et al. [38] ALOS Guangdong Province MT-InSAR December 2006–October 2011
Li et al. [54] ALOS Puning SBAS-InSAR December 2007–July 2010

Liu et al. [14] Sentinel-1 Lianjiang Plain DS-InSAR November 2015– December 2017

Zhang et al. [39] RADASAT-2
Sentinel-1 Lianjiang Plain IPTA-InSAR November 2018–December 2019

June 2015–December 2019
Huang et al. [40] Sentinel-1 Chaoshan Plain MT-InSAR June 2015–October 2020

This study Sentinel-1 Lianjiang Plain GEOS-PSI June 2015–December 2021
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5.2. InSAR-Derived Deformation Association with Groundwater Level Change

The effective stress in the stratum can be altered due to changes in groundwater
levels within underground aquifers, which may cause ground displacements at the Earth’s
surface [54,55]. Previous studies indicate that ground subsidence occurring in the LJP
is most likely caused by extensive groundwater extraction [56]. Since 2018, the local
government has implemented effective measures for groundwater conservation, leading to
a decline in groundwater extraction and a possible recovery of regional groundwater to
some extent. During groundwater recovery, subsidence rates are expected to slow down,
and ground uplift is likely to be triggered once the recharged sections of the aquifer have
regained the pore pressure in the stratum during the previous drawdown [57–59].

Information about annual groundwater extraction at the regional scale from 2015 to 2021
is represented in Figure 6. However, the regional scale data are unable to accurately portray
the spatiotemporal evolution of groundwater because of their coarse resolution. To conduct
a more thorough analysis of the spatiotemporal relationship between groundwater level
and InSAR-derived deformation, groundwater level data from six local aquifer wells were
gathered for the period 2018–2021. These data were subsequently used to form a time series.
As such, groundwater level changes at the six groundwater observation wells (highlighted
with purple dots in Figure 5) situated near the uplift zones were compared with the average
ground deformation time series. The deformation time series was derived from all PS
pixels within a radius of 150 m centered around each observation well. Given that the
deformation data from multiple tracks are available for wells P1, P2, and P3, the vertical
displacement time series obtained using the approach outlined in Section 3.2 is applied to
these wells. For the rest of the wells, displacement data from the LOS direction are directly
used for the comparison. The four-year groundwater level time series from the observation
wells was plotted alongside the InSAR-derived deformation time-series measurements,
as shown in Figure 9. A strong correlation was observed. Over a period of more than
four years, a clear upward trend in groundwater level was observed for all wells, except
P2, where no visible correlation was observed. Correlation coefficients were calculated,
revealing the highest value for P1 (0.85) and P5 (0.79), followed by P3 (0.69) and P4 (0.61),
while P6 displayed the lowest correlation (−0.44). It is worth noting that these observation
wells are located at some distance from the center of the deformation zones. Consequently,
the analysis was conducted using the groundwater level trends from observation wells
near the uplift zone to understand the overall groundwater level trends in the uplift zone.

Within the S1 uplifting bowl, P1 and P2 are two representative points located inside
of S1. The magnitude of cumulative vertical displacements measured at the P1 well and
P2 well is 68 mm and 13 mm, respectively, during January 2018 and December 2021, with
groundwater level change reaching up to approximately +7.95 m and −1.134 m for the
two wells, respectively. Groundwater level evolution is aligned with the acceleration
and deceleration of uplift at P1, but it is not the case for P2. There is a discrepancy
between the InSAR results and the tendency of measured water level. There are three
possible reasons: (1) the groundwater level monitoring well is too sparse in the area where
coherence is already poor; (2) the magnitude of groundwater level change for P2 is not
significant enough; (3) the two wells have different local strata conditions (i.e., aquifer
type). Further investigation of hydrogeology needs to be done to better understand the
spatial heterogeneity of the aquifer system structure in the future. Furthermore, a positive
trend for both land uplift and groundwater level rise was observed in the P3 well, which is
located outside the S2 uplifting bowl.
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In the slightly uplifting bowl of S3, wells P4, P5, and P6 exhibit groundwater level
variability in accordance with the estimated displacement. Small-magnitude uplift was
observed at P4, with a measured ground uplift of +0.6 mm, and an agreed slight upward
trend in groundwater level change can be recognized (+0.42 m). The well P5, with higher
changes in piezometric level, has experienced higher ground uplift. Thus, ground surface
uplift and groundwater level rise generally correspond to each other. However, despite
P6’s proximity to P5, its time series exhibits differences from that of P5. More importantly, a
minor increase in groundwater level was noted after July 2019, which was not replicated to
some extent by the measured displacement, but instead showed a continuous downward
trend. This could be attributed to the delayed response of the aquifer system to changes in
pore pressure.

Insufficient data from observation wells located near the central area of subsidence
bowls hinder the analysis of the relationship between them in these regions. To better
understand the effect of the variation in groundwater level on the long-term subsidence
phenomena, it is recommended to deploy more distributed wells in the subsiding zone.
Additionally, conducting in situ geodetic measurements would help validate the results
obtained from InSAR.

Overall, the fluctuations in groundwater level and time series of displacement at
five wells (i.e., P1, P3, P4, P5, and P6) show that land uplift and subsidence are closely
related to groundwater level changes. The observed uplift phenomena can be attributed
to the poroelastic rebound of the aquifer system under the unloading of effective stress
associated with a rise in the water table, which is referred to as poroelastic rebound [60,61].
As a result, the deformation mechanism can be explained based on hydrogeology, empha-
sizing the hydrogeological factors that control the ground displacement rate. However, at
P2, there appears to be no correlation between ground deformation and groundwater level,
which may be due to the heterogeneity of the spatial distribution and thickness of aquifers
and aquifer units, the aquifer type, or the sparseness of groundwater observation wells.
Additionally, all the displacement time series show almost linear variations and an obvious
seasonal correlation (i.e., with the summer monsoon) is absent, indicating that ground
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deformation is predominantly due to human causes rather than natural process [62–64].
Therefore, it can be proposed that government regulation and legal enhancement can effec-
tively mitigate and arrest land subsidence. In the future, to better understand the effect of
groundwater level variation on long-term subsidence phenomena, more distributed wells
need to be deployed in the deformation zone, and more in situ geodetic measurements
need to be conducted to validate the InSAR results.

5.3. Geological Factor Control Deformation Pattern

Surface geological formation, such as Quaternary deposition conditions, is an impor-
tant inner geological background for ground deformation [65]. The Quaternary deposit
is subject to significant settlement and rebound deformation under the effect of effective
stress change due to fluctuations in groundwater level. As previously mentioned, the
subsurface underlying the Plain can generally be divided into bedrock in mountainous
and hilly environments and Quaternary sediments (Figure 1). Quaternary sediments are
widely distributed in the Plain, covering an area of 1005 km2. A strong spatial correlation
between variations in land deformation and the distributions of Quaternary sediments
can be observed through comparing the subsidence map during two monitoring periods
(Figure 5) with the geological maps (Figure 1). Almost all of the deformation, including
both uplift and subsidence, is distributed in lower-lying areas that are mainly filled by
Quaternary deposits, particularly those with notable deformation rates. Conversely, the
bedrock hill area shows a relatively stable and homogeneous pattern with very low or even
zero deformation rates. Therefore, the distribution of deformation on soft soil suggests that
the geological condition provides an environment for surface deformation.

On the other hand, the thickness of Quaternary sediments plays an important role
in deciding the progression of land deformation [66]. To examine the spatial relationship
between deposit thickness and deformation, a Quaternary sediment thickness map of the
study area was constructed based on the depths obtained from boreholes drilled, using an
ordinary Kriging interpolation method [67]. As seen in Figure 10a, an obvious correlation
between them is observed. Subsidence rates decreased with increasing thickness, and the
deeper deposits exhibited higher subsidence rates. Compression deformation is caused by
excessive groundwater withdrawal in the Quaternary sediment layer. However, there is
no correlation observed when the thickness exceeds 90 m, which could be the result of a
combination of soft soil compaction and groundwater recovery. During the 2018 to 2021
period, the rising groundwater level increased pore water pressure, resulting in expansion
of the sediments. Therefore, it is expected that higher uplift rates occur on thicker sediment,
as evident in Figure 10b, indicating a close relationship between concentrated uplift and
thicker soil layers. Soft soils thicker than 90 m are located in the central part of the Plain
towards the northwest (Figure 2), and the land uplift also occurs in these places (Figure 5b).
The uplift rate estimated for thicker deposits is relatively higher, and the maximum uplift
coincides with the thickest. Therefore, changes in groundwater level are expected to be the
main triggering factors in that area.

5.4. The Effect of Urban Construction

Urbanization has been often considered as an additional factor contributing to consoli-
dation and subsidence processes [68]. The LJP, an industrial area of Guangdong province,
has experienced rapid development in the textile and garment industry, which has become
a perennial “locomotive” pulling the steady development of the Plain’s economy. The rapid
growth of the industry in terms of driving economic development has led to extensive
construction of buildings, resulting in the imposition of significant loads on the ground and
uneven settlement. The relationship between subsidence and urban construction, therefore,
needs to be analyzed in detail.
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To analyze the relationship between surface subsidence and urban construction, a
visual interpretation of historical optical images was conducted to identify changes in
buildings. These modified buildings were subsequently utilized as indicators of urban con-
struction. Buildings constructed before 2015 were identified as unchanged areas, indicating
no construction activities over the study period. In contrast, buildings con-structed between
2015 and 2021 were deemed as typical construction areas. In this study, three small construc-
tion areas (R1–R3 in Figure 5b) with significant building changes were selected for analysis.
The distribution of land subsidence during 2018–2021 within three representative areas of
building changes are shown in Figure 11a–c. Severe and uneven subsidence was observed
predominantly within building construction areas, suggesting that urban construction may
exacerbate and contribute to the development of land subsidence. Figure 11d–i present
a comparison of historical images depicting building changes in regions R1–R3 over the
five years. However, subsidence is not solely influenced by urban construction. In the
case of region R2, subsidence was also observed in the unchanged area, suggesting that
other factors may contribute to subsidence, and urban construction can contribute to the
acceleration of the deformation. In the future, it is important to pay attention to newly
constructed buildings as well as to the regular monitoring of existing buildings.
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6. Conclusions

This study utilized Sentinel-1 SAR data of adjacent tracks to map surface deformation
in the LJP during 2015–2021. The LOS velocity field was calculated over two observation
intervals (2015–2017 and 2018–2021) to investigate the temporal behavior of land deforma-
tion phenomena. There was significant large-scale subsidence (more than −124 mm/year)
from 2015 to 2017. However, the magnitude of subsidence decreased from 2018 to 2021,
compared to the time span of 2015–2017. The subsidence rate decreased with a maximum
subsidence of −45 mm/year, and three uplift zones were detected with a maximum uplift
rate of up to +48.9 mm/year during 2018–2021. The Sentinel datasets from adjacent orbits
acquired between 2018 and 2021 were cross-validated. The standard deviation of the dif-
ference between the two datasets is 2.4 mm/year. A variety of casual variables, including
groundwater level change, thickness of Quaternary sediment, and urban construction,
have been investigated. Comparisons between trends of deformation and groundwater
level at six observation water wells within or near the uplift zone show some correlation
between the change in groundwater level and deformation time series. The distribution
of InSAR-derived deformation on Quaternary sediments suggests a spatial correlation
between geological factors and deformation. The spatial thickness of Quaternary sediments
was determined, and deformation was found to commence in areas where the sediment
thickness is above 90 m and proportional to the thickness of the deposit. In addition,
subsidence was found to be correlated with urban construction. Alteration in groundwater
level is anticipated to be the primary influencing factor in land deformation. These findings
provide further insights into understanding the cause of land deformation in the LJP and
guide local authorities to take appropriate action. Ongoing monitoring of ground deforma-
tion will be essential for managing future surface deformation and safety control in the LJP
and nearby cities.

Author Contributions: Conceptualization, Y.H. and A.H.-M.N.; Methodology, Y.H., A.H.-M.N. and
H.W.; Validation, Y.H.; Formal analysis, Y.H. and J.K.; Investigation, Y.H., H.W. and J.K.; Writing—
original draft, Y.H.; Writing—review & editing, A.H.-M.N., H.W. and J.K.; Supervision, A.H.-M.N.
and H.W. All authors have read and agreed to the published version of the manuscript.



Remote Sens. 2023, 15, 3236 15 of 17

Funding: This research is funded by the Program for Guangdong Introducing Innovative and En-
trepreneurial Teams (2019ZT08L213), National Natural Science Foundation of China (Grant no. 42274016/
D0402), Natural Science Foundation of Guangdong Province (grant number 2021A1515011483).

Data Availability Statement: The Sentinel-1 data used in this study are downloaded from the
European Space Agency (ESA) through the ASF Data Hub website https://vertex.daac.asf.alaska.edu
(accessed on 20 March 2023). The DEM data used in the study is available at https://earthexplorer.
usgs.gov/ (accessed on 10 March 2023). The Groundwater data used in the study is available at
https://geocloud.cgs.gov.cn/ (accessed on 15 February 2023).

Acknowledgments: The authors would like to express gratitude to the European Space Agency for
providing open access to the Sentinel-1 data used in this study.

Conflicts of Interest: The authors declare no conflicts interest.

References
1. El Kamali, M.; Saibi, H.; Abuelgasim, A. Land surface deformation monitoring in the Al-Ain arid region (UAE) using microgravity

and SAR interferometry surveys. Environ. Res. 2022, 212, 113505. [CrossRef]
2. Carlson, G.; Shirzaei, M.; Ojha, C.; Werth, S. Subsidence-Derived Volumetric Strain Models for Mapping Extensional Fissures and

Constraining Rock Mechanical Properties in the San Joaquin Valley, California. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019980.
[CrossRef]

3. Ng, A.H.-M.; Ge, L.; Li, X. Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote
Sens. Environ. 2015, 159, 86–101. [CrossRef]

4. Pu, C.; Xu, Q.; Zhao, K.; Chen, W.; Wang, X.; Li, H.; Liu, J.; Kou, P. Spatiotemporal evolution and surface response of land
subsidence over a large-scale land creation area on the Chinese Loess Plateau. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102835.
[CrossRef]

5. Zhong, Y.; Zhong, J. Report on the Development of the Cultural Industry in the Special Economic Zones of China. In Annual
Report on the Development of China’s Special Economic Zones (2019); Tao, Y., Yuan, Y., Eds.; Springer Nature: Singapore, 2022; pp.
181–195.

6. Cai, Y.; Chen, X.; Zhong, L.; Wang, L. Current situation of water pollution in Lianjiang River Basin and countermeasures of
control and management. Pearl River 2003, 6, 47–50.

7. Sina News. Cracking and Collapse of House in Some Towns of Guangdong Province Due to Groundwater Pumping. Available
online: https://news.sina.com.cn/c/2015-04-28/100031770323.shtml (accessed on 1 March 2022).

8. Tang, Y.; Wang, Y.; Zhao, E.; Yi, J.; Feng, K.; Wang, H.; Wang, W. Study on Hydrodynamic Characteristics and Environmental
Response in Shantou Offshore Area. J. Mar. Sci. Eng. 2021, 9, 912. [CrossRef]

9. Zhang, C.; Yin, K.; Shi, X.; Yan, X. Risk assessment for typhoon storm surges using geospatial techniques for the coastal areas of
Guangdong, China. Ocean Coast. Manag. 2021, 213, 105880. [CrossRef]

10. Xiong, G.; Chen, G.; Wu, J.; Wang, Z.; Yu, H.; Fu, T.; Liu, W.; Xu, X.; Hou, G.; Yang, Y. Identifying the characteristics and potential
risk of seawater intrusion for southern China by the SBM-DEA model. Sci. Total Environ. 2022, 844, 157205. [CrossRef]

11. Yi Cai. Shantou Flood Hit Directly: Many Workers in Famous Underwear Towns Were Trapped in Factories. Available online:
https://m.yicai.com/news/2954496.html (accessed on 1 March 2022).

12. Jie Mian. Village Settlement: A Famous Underwear Town under the Flood in Chaoshan. Available online: https://www.jiemian.
com/article/2459887.html (accessed on 1 March 2022).

13. Liu, Y.; Ma, P.; Lin, H.; Wang, W.; Shi, G. Distributed Scatterer InSAR Reveals Surface Motion of the Ancient Chaoshan Residence
Cluster in the Lianjiang Plain, China. Remote Sens. 2019, 11, 166. [CrossRef]

14. Kumar, V.; Venkataramana, G.; Høgda, K.A. Glacier surface velocity estimation using SAR interferometry technique applying
ascending and descending passes in Himalayas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 545–551. [CrossRef]

15. Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers
earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [CrossRef]

16. Wang, H.; Wright, T.J.; Liu-Zeng, J.; Peng, L. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS.
Geophys. Res. Lett. 2019, 46, 5170–5179. [CrossRef]

17. Lanari, R.; Lundgren, P.; Sansosti, E. Dynamic deformation of Etna volcano observed by satellite radar interferometry. Geophys.
Res. Lett. 1998, 25, 1541–1544. [CrossRef]

18. Teatini, P.; Castelletto, N.; Ferronato, M.; Gambolati, G.; Janna, C.; Cairo, E.; Marzorati, D.; Colombo, D.; Ferretti, A.; Bagliani, A.
Geomechanical response to seasonal gas storage in depleted reservoirs: A case study in the Po River basin, Italy. J. Geophys. Res.
Solid Earth 2011, 116, B08407. [CrossRef]

19. Vasco, D.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I. Satellite-based measurements of
surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophys. Res. Lett. 2010, 37, L03303.
[CrossRef]

https://vertex.daac.asf.alaska.edu
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://geocloud.cgs.gov.cn/
https://doi.org/10.1016/j.envres.2022.113505
https://doi.org/10.1029/2020JB019980
https://doi.org/10.1016/j.rse.2014.12.003
https://doi.org/10.1016/j.jag.2022.102835
https://news.sina.com.cn/c/2015-04-28/100031770323.shtml
https://doi.org/10.3390/jmse9080912
https://doi.org/10.1016/j.ocecoaman.2021.105880
https://doi.org/10.1016/j.scitotenv.2022.157205
https://m.yicai.com/news/2954496.html
https://www.jiemian.com/article/2459887.html
https://www.jiemian.com/article/2459887.html
https://doi.org/10.3390/rs11020166
https://doi.org/10.1016/j.jag.2011.02.004
https://doi.org/10.1038/364138a0
https://doi.org/10.1029/2019GL081916
https://doi.org/10.1029/98GL00642
https://doi.org/10.1029/2010JF001793
https://doi.org/10.1029/2009GL041544


Remote Sens. 2023, 15, 3236 16 of 17

20. Kuang, J.; Ng, A.H.-M.; Ge, L. Displacement Characterization and Spatial-Temporal Evolution of the 2020 Aniangzhai Landslide
in Danba County Using Time-Series InSAR and Multi-Temporal Optical Dataset. Remote Sens. 2022, 14, 68. [CrossRef]

21. Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Hu, J.; Wang, Y.J.; Chen, G.L. InSAR-based model parameter estimation of probability integral
method and its application for predicting mining-induced horizontal and vertical displacements. IEEE Trans. Geosci. Remote Sens.
2016, 54, 4818–4832. [CrossRef]

22. Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20.
[CrossRef]

23. Perissin, D.; Wang, T. Time-Series InSAR Applications Over Urban Areas in China. IEEE J.-STARS 2011, 4, 92–100. [CrossRef]
24. Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; López-Sánchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.;

Fernández, J. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues
through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [CrossRef]

25. Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline
differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [CrossRef]

26. Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959.
[CrossRef]

27. Yu, H.; Gong, H.; Chen, B.; Liu, K.; Gao, M. Analysis of the influence of groundwater on land subsidence in Beijing based on the
geographical weighted regression (GWR) model. Sci. Total Environ. 2020, 738, 139405. [CrossRef] [PubMed]

28. Ge, L.; Ng, A.H.-M.; Li, X.; Abidin, H.Z.; Gumilar, I. Land subsidence characteristics of Bandung Basin as revealed by ENVISAT
ASAR and ALOS PALSAR interferometry. Remote Sens. Environ. 2014, 154, 46–60. [CrossRef]

29. Kampes Bert, M. Radar Interferometry: Persistent Scatterers Technique; Springer: Berlin/Heidelberg, Germany, 2006; p. 211.
30. Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating

deformations on full-resolution differential SAR interferograms. IEEE J.-STARS 2004, 42, 1377–1386. [CrossRef]
31. Cavalié, O.; Doin, M.P.; Lasserre, C.; Briole, P. Ground motion measurement in the Lake Mead area, Nevada, by differential

synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. J. Geophys. Res. Solid
Earth 2007, 112, B03403. [CrossRef]

32. Ng, A.H.-M.; Ge, L.; Li, X.; Abidin, H.Z.; Andreas, H.; Zhang, K. Mapping land subsidence in Jakarta, Indonesia using persistent
scatterer interferometry (PSI) technique with ALOS PALSAR. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 232–242. [CrossRef]

33. Liao, M.; Zhang, R.; Lv, J.; Yu, B.; Pang, J.; Li, R.; Xiang, W.; Tao, W. Subsidence Monitoring of Fill Area in Yan’an New District
Based on Sentinel-1A Time Series Imagery. Remote Sens. 2021, 13, 3044. [CrossRef]

34. Tang, W.; Zhao, X.; Motagh, M.; Bi, G.; Li, J.; Chen, M.; Chen, H.; Liao, M. Land subsidence and rebound in the Taiyuan basin,
northern China, in the context of inter-basin water transfer and groundwater management. Remote Sens. Environ. 2022, 269, 112792.
[CrossRef]

35. Bui, L.K.; Le, P.V.V.; Dao, P.D.; Long, N.Q.; Pham, H.V.; Tran, H.H.; Xie, L. Recent land deformation detected by Sentinel-1A
InSAR data (2016–2020) over Hanoi, Vietnam, and the relationship with groundwater level change. GISci. Remote Sens. 2021, 58,
161–179. [CrossRef]

36. Kumar, H.; Syed, T.H.; Amelung, F.; Agrawal, R.; Venkatesh, A.S. Space-time evolution of land subsidence in the National Capital
Region of India using ALOS-1 and Sentinel-1 SAR data: Evidence for groundwater overexploitation. J. Hydrol. 2022, 605, 127329.
[CrossRef]

37. Du, Y.; Feng, G.; Liu, L.; Fu, H.; Peng, X.; Wen, D. Understanding Land Subsidence Along the Coastal Areas of Guangdong,
China, by Analyzing Multi-Track MTInSAR Data. Remote Sens. 2020, 12, 299. [CrossRef]

38. Zhang, L.; Ge, D.; Li, M.; Liu, B.; Guo, X.; Wu, Q. Land Subsidence and Uplift Surveying by Synthetic Aperture Radar
Interferometry in Lianjiang Plain. Sens. Mater. 2020, 32, 4449–4461. [CrossRef]

39. Huang, Z.; Yu, F. InSAR-derived surface deformation of Chaoshan Plain, China: Exploring the role of human activities in the
evolution of coastal landscapes. Geomorphology 2023, 426, 108606. [CrossRef]

40. Liang, J. Environmental and geological problems caused by over-exploitation of groundwater and its prevention of Guangdong
Province. Chin. J. Geol. Hazard Control 2007, 18, 64–67.

41. Guo, J.; Zhou, H.; Xia, H.; Yuan, D.; Zhang, J.; Zhou, Z. History and effect of water pollution control in Lianjiang River Basin.
Water Supply Drain. 2021, 57, 57–61.

42. Song, Y.S.; Chen, W.B.; Pan, H.; Zhang, Z.Z. Geological Age of Quaternary Series in Lianjiang Plain. J. Jilin Univ. Earth Sci. Ed.
2012, 42, 154–161. [CrossRef]

43. China Geological Environment Monitoring Institute. China Geological and Environmental Monitoring Groundwater Level Yearbook;
China Geological Environment Monitoring Institute: Beijing, China, 2021.

44. Ng, A.H.-M.; Wang, H.; Dai, Y.; Pagli, C.; Chen, W.; Ge, L.; Du, Z.; Zhang, K. InSAR Reveals Land Deformation at Guangzhou
and Foshan, China between 2011 and 2017 with COSMO-SkyMed Data. Remote Sens. 2018, 10, 813. [CrossRef]

45. Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR
2012—9th European Conference on Synthetic Aperture Radar, Nuernberg, Germany, 23–26 April 2012; pp. 730–733.

46. Rodriguez, E.; Morris, C.; Belz, J.; Chapin, E.; Martin, J.; Daffer, W.; Hensley, S. An Assessment of the SRTM Topographic Products;
Report No. JPL D-31639; Jet Propulsion Laboratory: Pasadena, CA, USA, 2005.

https://doi.org/10.3390/rs14010068
https://doi.org/10.1109/TGRS.2016.2551779
https://doi.org/10.1109/36.898661
https://doi.org/10.1109/JSTARS.2010.2046883
https://doi.org/10.1007/s12665-013-2422-z
https://doi.org/10.1109/TGRS.2002.803792
https://doi.org/10.1109/36.175330
https://doi.org/10.1016/j.scitotenv.2020.139405
https://www.ncbi.nlm.nih.gov/pubmed/32535280
https://doi.org/10.1016/j.rse.2014.08.004
https://doi.org/10.1109/TGRS.2004.828196
https://doi.org/10.1029/2006JB004344
https://doi.org/10.1016/j.jag.2012.01.018
https://doi.org/10.3390/rs13153044
https://doi.org/10.1016/j.rse.2021.112792
https://doi.org/10.1080/15481603.2020.1868198
https://doi.org/10.1016/j.jhydrol.2021.127329
https://doi.org/10.3390/rs12020299
https://doi.org/10.18494/SAM.2020.3117
https://doi.org/10.1016/j.geomorph.2023.108606
https://doi.org/10.13278/j.cnki.jjuese.2012.s1.040
https://doi.org/10.3390/rs10060813


Remote Sens. 2023, 15, 3236 17 of 17

47. Kampes, B.M.; Hanssen, R.F. Ambiguity resolution for permanent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2004,
42, 2446–2453. [CrossRef]

48. Ng, A.H.-M.; Ge, L.; Li, X.; Zhang, K. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferome-
try. J. Geodesy. 2012, 86, 375–392. [CrossRef]

49. Costantini, M.; Rosen, P.A. A generalized phase unwrapping approach for sparse data. In Proceedings of the IEEE 1999
International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), Hamburg, Germany, 28 June–2
July 1999; pp. 267–269.

50. Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004,
31, L01607. [CrossRef]

51. Samsonov, S.; d’Oreye, N. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied
to Virunga Volcanic Province. Geophys. J. Int. 2012, 191, 1095–1108. [CrossRef]

52. Water Affairs Bureau of Shantou. Shantou Water Resources Bulletin. Available online: https://www.shantou.gov.cn/stsswj/
gkmlpt/index (accessed on 1 March 2022).

53. Li, B.; Yang, Y.; Wang, D.; Wu, Y.; Zhang, Z. Joint InSAR technology and geological data to inverse the surface subsidence
characteristics of Puning city. Bull. Surv. Mapp. 2021, 83–88. [CrossRef]

54. Poland, J.; Ireland, R. Mechanics of Aquifer Systems. U. S. Geol. Surv. Prof. Pap. 1988, 497.
55. Parker, A.L.; Pigois, J.P.; Filmer, M.S.; Featherstone, W.E.; Timms, N.E.; Penna, N.T. Land uplift linked to managed aquifer

recharge in the Perth Basin, Australia. Int. J. Appl. Earth. Obs. Geoinf. 2021, 105, 102637. [CrossRef]
56. Shi, F.; Tang, Z.; Chen, Y.; Zhu, F.; Ye, S. Spatio-temporal evolution of land subsidence and its cause analysis in typical areas of

eastern Guangdong. Environ. Secur. 2019, 26, 8–16.
57. Lu, Z.; Danskin, W.R. InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino, California.

Geophys. Res. Lett. 2001, 28, 2661–2664. [CrossRef]
58. Colombo, L.; Gattinoni, P.; Scesi, L. Influence of underground structures and infrastructures on the groundwater level in the

urban area of Milan, Italy. Int. J. Sustain. Dev. Plann. 2017, 12, 176–184. [CrossRef]
59. Waltham, T. Sinking cities. Geol. Today 2002, 18, 95–100. [CrossRef]
60. Chaussard, E.; Milillo, P.; Bürgmann, R.; Perissin, D.; Fielding, E.J.; Baker, B. Remote sensing of ground deformation for monitoring

groundwater management practices: Application to the Santa Clara Valley during the 2012–2015 California drought. J. Geophys.
Res. Solid Earth 2017, 122, 8566–8582. [CrossRef]

61. Terzaghi, K. Principles of soil mechanics. IV. Settlement and consolidation of clay. ENR 1925, 95, 874.
62. Hu, X.; Lu, Z.; Wang, T. Characterization of hydrogeological properties in salt lake valley, Utah, using InSAR. J. Geophys. Res.

Earth Surf. 2018, 123, 1257–1271. [CrossRef]
63. Carlson, G.; Shirzaei, M.; Werth, S.; Zhai, G.; Ojha, C. Seasonal and Long-Term Groundwater Unloading in the Central Valley

Modifies Crustal Stress. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018490. [CrossRef] [PubMed]
64. Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 2004, 12, 155–164. [CrossRef]
65. Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR

time-series. Remote Sens. Environ. 2014, 140, 94–106. [CrossRef]
66. Chen, B.; Gong, H.; Li, X.; Lei, K.; Zhu, L.; Gao, M.; Zhou, C. Characterization and causes of land subsidence in Beijing, China. Int.

J. Remote Sens. 2017, 38, 808–826. [CrossRef]
67. van Beers, W.C.M.; Kleijnen, J.P.C. Kriging interpolation in simlation: A survey. In Proceedings of the Winter Simulation

Conference 2004, Washington, DC, USA, 5–8 December 2004; pp. 113–121.
68. Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR analysis in the Pisa urban area (Italy): A case study of

subsidence related to stratigraphical factors and urbanization. Remote Sens. 2016, 8, 120. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TGRS.2004.835222
https://doi.org/10.1007/s00190-011-0525-4
https://doi.org/10.1029/2003GL018827
https://doi.org/10.1111/j.1365-246X.2012.05669.x
https://www.shantou.gov.cn/stsswj/gkmlpt/index
https://www.shantou.gov.cn/stsswj/gkmlpt/index
https://doi.org/10.13474/j.cnki.11-2246.2021.0181
https://doi.org/10.1016/j.jag.2021.102637
https://doi.org/10.1029/2000GL012753
https://doi.org/10.2495/SDP-V12-N1-176-184
https://doi.org/10.1046/j.1365-2451.2002.00341.x
https://doi.org/10.1002/2017JB014676
https://doi.org/10.1029/2017JF004497
https://doi.org/10.1029/2019JB018490
https://www.ncbi.nlm.nih.gov/pubmed/33163318
https://doi.org/10.1063/1.1712886
https://doi.org/10.1016/j.rse.2013.08.038
https://doi.org/10.1080/01431161.2016.1259674
https://doi.org/10.3390/rs8020120

	Introduction 
	Study Area and Datasets 
	Study Area 
	Data 

	Methodology 
	InSAR Time Series Processing 
	Estimated Vertical and Horizontal Deformation 

	Results 
	Spatial-Temporal Variation of Surface Deformation 
	Cross-Validation 

	Discussion 
	Comparison of Subsidence and Rebound between 2006–2021 
	InSAR-Derived Deformation Association with Groundwater Level Change 
	Geological Factor Control Deformation Pattern 
	The Effect of Urban Construction 

	Conclusions 
	References

