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Abstract: Tropical storm Isaias (2020) moved quickly northeast after its landfall in North Carolina
and caused extensive damage to the east coast of the United States, with electric power distribution
disruptions, infrastructure losses and significant economic and societal impacts. Improving the real-
time prediction of tropical storms like Isaias can enable accurate disaster preparedness and strategy.
We have explored the configuration, initialization and physics options of the Weather Research and
Forecasting (WRF) model to improve the deterministic forecast for Isaias. The model performance
has been evaluated based on the forecast of the storm track, intensity, wind and precipitation, with
the support from in situ measurements and stage IV remote sensing products. Our results indicate
that the Global Forecasting System (GFS) provides overall better initial and boundary conditions
compared to the North American Model (NAM) for wind, mean sea level pressure and precipitation.
The combination of tropical suite physics options and GFS initialization provided the best forecast
improvement, with error reduction of 36% and an increase of the correlation by 11%. The choices
for model spin-up time and forecast cycle did not affect the forecast of the storm significantly. In
order to check the consistency of the result found from the investigation related to TS Isaias, Irene
(2011), Henri (2021) and Elsa (2021), three other tropical storms, were also investigated. Similar to
Isaias, these storms are simulated with NAM and GFS initialization and different physics options.
The overall results for Henri and Elsa indicate that the models with GFS initialization and tropical
suite physics reduced error by 44% and 57%, respectively, which resonates with the findings from the
TS Isaias investigation. For Irene, the initialization used an older GFS version and showed increases
in error, but applying the tropical physics option decreased the error by 20%. Our recommendation
is to consider GFS for the initialization of the WRF model and the tropical physics suite in a future
tropical storm forecast for the NE US.
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1. Introduction

Tropical storms are extreme weather events with a circulating center of low atmo-
spheric pressure and intense winds, and formed by the energy of warm ocean water over
which they originate [1–6]. In the Northeast United States (NE US), tropical storms are not
uncommon, but the frequency is lower than that for storms that have caused damage and
landfall close to Florida. Nonetheless, the storms that have made landfall or reached the
NE US have severely damaged people’s lives and property as well as the economy and
society [7–9]. Damage to infrastructure and trees disrupts electrical power distribution,
transportation systems, and, thus, public life [10].

We have examined various tropical storms (TS) that made landfall in the Northeast
US, and counted nine storms since 2010. Several of these storms lingered in the NE for a
few hours, including Hurricane Sandy (2012), which touched down in New Jersey before
moving to Pennsylvania, having a major impact on the area. A few, like Florence (2018),
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had severely lost strength by the time they reached the NE US. Therefore, considering the
strength and track location of the storms, we have focused on four storms, which are Isaias
(2020), Henri (2021), Elsa (2021) and Irene (2011).

The strongest and most damaging of the four hurricanes discussed here was Irene. It
made its first landfall in the United States at Cape Lookout, North Carolina, on 27 August
2011, with a maximum wind of approximately 70 knots and a minimum central pres-
sure of 952 mbar. The storm continued moving north northeastward and made multiple
landfalls over New Jersey and New York on 28 August. The strongest winds, 60 and
55 knots, during these landfalls were mostly to the east of the storm core or over the ocean,
causing less damage inland than anticipated. However, the storm kept moving towards
the NE with powerful winds inland, triggering a week-long power disruption for up to
three million people in Connecticut and Long Island. It caused heavy rainfall and
catastrophic floods across New York and New England. In the US, the storm caused
USD 15.8 billion in total damage and was associated with 40 recorded fatalities, of which 13
were due to wind-driven tree falls and 21 to rainfall-induced floods, in addition to fatalities
from storm surges [11].

Isaias, the second-most destructive storm out of the four, made landfall on 4 August
2020, near Ocean Isle Beach, North Carolina, with a sustained wind of 80 knots and a
minimum central pressure of 986 mbar [12]. It was a significant event, with economic losses
reaching USD 3.5 billion, considering only the NE US, according to the NOAA Centers for
Environmental Information (NCEI). The storm even caused multiple fatalities. During the
storm, three million residents of the United States were without power, and for many, this
continued for several days. In particular, in the state of Connecticut, there were tens of
thousands of power outages, whereas in Rhode Island and Massachusetts, the numbers
were in the hundreds of thousands. The main reason for the widespread power outages
during this storm was the combination of high winds and densely forested areas, resulting
in numerous broken trees and downed power lines [12].

Henri, which made landfall on 22 August 2021, at Westerly, Rhode Island, was the
first storm to hit New England following Hurricane Bob (1991). It had a sustained wind of
55 knots and a minimum central pressure of 988 mbar [13]. The fast-weakening trend of
the storm and weak landfall did not cause extreme damage, but the storm was associated
with high winds, precipitation and flooding in the area. The widespread power outages
took place during the event in Rhode Island, Massachusetts, Connecticut, southeastern
New York, and New Jersey due to downed trees and power lines, and left more than one
hundred and forty thousand homes without power [13]. The power outages that happened
during Henri in Connecticut were much smaller and shorter-lived compared to the outages
during Isaias and Irene, but due to the uncertainty of the storm’s landfall, there were
stand-by crews from out-of-state for anticipated repairs.

Compared to other storms, Elsa was rather a compact storm. It made its landfall in
northern Florida on 7 July 2021, with a maximum wind of about 55 kt and a minimum
central pressure of 1000 mbar. On July 9, it reemerged over the ocean off the coast of New
Jersey, and with a wind peak of 50 knots and 999 mbar minimum pressure, it hit land over
Long Island and Rhode Island the same day. Along the shore of New Jersey and southern
New England, gusty wind damaged several trees and electrical lines. The storm also caused
heavy rain and significant flooding in New York City [14].

These storms’ damage restoration times could have been reduced by better disaster
preparedness and strategy, which would require a reliable real-time forecast. Forecasting
tropical storms using Numerical Weather Prediction (NWP) models is a challenging task,
as the models depend on several factors, ranging from initial and boundary atmospheric
conditions to model configurations, and the chaotic nature of the atmosphere is challenging
to model accurately [15]. Despite some remaining challenges, the forecasting of tropical
storms has improved over the years [16]. To overcome the challenges of forecasting tropi-
cal storms, different techniques have been studied, such as data assimilation, the use of
high-resolution models, improvements in modeling physics, and the use of ensemble mod-
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eling [16–18]. Besides studying the challenges, researchers have explored the performance
of tropical storm forecasts and found that the forecast skill for the same model varies from
year-to-year [19], basin to basin [20], and storm to storm [21]. In addition, an evaluation of
tropical cyclone Sandy’s forecast has shown that the sea surface temperature (SST) anomaly
had affected the storm track slightly, but the intensity of the storm was affected greatly [22].
The National Hurricane Center (NHC) provides official forecasts of tracks and intensity for
each storm using many forecast models as guidance [23] and publishes post-storm reports
containing comprehensive information about each storm.

Improvement of the TS forecast could support better preparedness and reduced losses.
One such disaster preparedness measure is the issuing of electric power outage predictions
for the electric utility (such as the predictions issued using the Outage Prediction Model
(OPM) by the Eversource Energy Center at the University of Connecticut), which directly
depends on the performance of weather forecasts [24,25]. The OPM uses machine learning
algorithms and relies on WRF-forecasted weather variables, which are produced in-house
to accommodate the necessary high spatial resolution and 5-day forecasting window.
Therefore, in this study, we have investigated the real-time forecasting skill for tropical
storms, concentrating on the NE US region. We started this investigation with the storm
that caused the second most damage, TS Isaias. Even though TS Irene caused the largest
devastation, the data are more than a decade older and weather forecasting has advanced
significantly since then, especially the initial and boundary conditions. In the second part
of this research, we investigated the other three storms in order to test the consistency
of our findings from TS Isaias. The overall objectives of this study were to (a) assess the
real-time forecasting skill for TS that have impacted the NE US; (b) present the limitations
and successes of a deterministic forecast system; and (c) identify model configuration
options that improve storm track and intensity predictions.

2. Materials and Methods
2.1. WRF Model Configuration

The Weather Research and Forecasting (WRF) model, version 4.2, was set up with
two domains using the two-way nesting option. A 12 km-by-12 km grid spacing was used
for the outer domain, which covers the Eastern US, while the inner domain covers the NE
US with a 4 km-by-4 km grid spacing (D01, D02 in Figure 1i). The need for high spatial
resolution and forecast lead times of up to five days before the storm makes landfall is
dictated by the needs of the power outage forecast system. This is the main reason to issue
weather forecasts in-house, instead of relying on federal datasets [26].
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Figure 1. (i) WRF gridded domains; (ii) Surface weather stations used for the wind evaluation (nested
grid-D02); and (iii) Surface weather stations used for the precipitation evaluation (nested grid-D02).

We focused on the inner domain to evaluate the model’s performance in forecasting
TS. The model includes 51 vertical levels, with a pressure top of 5 mbar and a maximum
vertical layer thickness of 1050 m. We tested the utilization of 75 instead of 51 vertical
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levels, following the configuration of HWRF, as used by the National Hurricane Center,
and the model results were very similar. In particular, the minimum MSLP was better
captured with the 51 vertical levels, and we opted to continue our model simulations with
such vertical structure (also taking into account the computational time taken to run the
model four times daily). Terrain data were created from the 30-arc-second USGS Global
Multi-Resolution Terrain Elevation Data (GMTED2010).

We assessed the model’s sensitivity to (a) initial conditions, (b) physics options,
(c) forecast cycle, and (d) spin-up time. For initial conditions, we used the Global Forecast-
ing System (GFS) 0.5-by-0.5-degree forecast and the North American Mesoscale Forecast
System (NAM) 12-by-12 km2 forecast.

For physics options, we evaluated the tropical physics suite and a customized physics
option (Table 1). The tropical physics suite is an available and approved suite for WRF
by the National Center for Atmospheric Research (NCAR) [27]. The physics options in
this suite are taken from the NCAR real-time forecasts and evaluations of the tracks and
intensities of hurricanes [28]. It has been found that the forecasts of the tracks, intensities
and precipitation levels of hurricanes near the tropics using the tropical suite physics option
with the Model for Prediction Across Scales (MPAS) can distinguish the hurricane better
than the GFS forecast [29]. Despite the differences between MPAS and WRF as to the use
of grid structure or horizontal coordinate system, they share many similar dynamics and
numeric options, such as non-hydrostatic approximation, similar physics parameterizations,
a common time-integration scheme, and similar transport options [30]. Consequently, the
results due to the change to tropical suite physics options bear relation. In addition, the
choice of the cumulus scheme is important to simulate hurricane intensity by controlling
low-level circulation, and the new Tiedtke cumulus scheme with the cumulus momentum
transport can considerably affect the performance of tropical storm forecasting [31,32]. The
set of schemes in the customized physics option was chosen based on our in-house real-time
WRF forecast configuration. The comparison between the two sets of physics options is
listed in Table 1. The model with NAM forecast initialization and customized physics
is named WRF/NAM/cus, which was the default configuration of our in-house WRF
operational forecast at the time of the storm. The model with GFS forecast initialization and
customized physics is named WRF/GFS/cus, and the model with GFS forecast initialization
and tropical suite physics is named WRF/GFS/trop (Table 2).

Table 1. Details of the WRF model configuration.

Physics Options Tropical Suite Customized

Microphysics WSM 6-class graupel [33] Thompson et al. 2008 [34]

Cumulus New Tiedtke scheme (TD) [35] New Grell scheme (G3) [36]

Longwave Radiation Rapid Radiative Transfer Model [37] Rapid Radiative Transfer Model

Shortwave Radiation Rapid Radiative Transfer Model [38] Goddard Shortwave Model [39]

Boundary layer YSU scheme [40] YSU scheme

Land Surface Unified Noah land-surface [41] Unified Noah land-surface

Surface Layer Scheme MM5 [42] MM5

The impacts of the forecast cycle and spin-up time have been tested only for TS Isaias.
For the impact of the forecast cycle, we tested initializations from GFS and NAM at 00 UTC
and 06 UTC on 4 August 2020. For the impact of WRF spin-up time, we tested 6 h and 12 h.
This means that we evaluated WRF outputs 6 h and 12 h after the model’s start time. WRF’s
start time was 4 August, 00 UTC or 06 UTC. All model evaluations were conducted for the
following duration: 4 August, 12 UTC to 6 August, 12 UTC. Table 2 shows a summary of
the WRF sensitivity tests that are analyzed and compared in Section 3.



Remote Sens. 2023, 15, 3219 5 of 25

Table 2. WRF setup for sensitivity tests for TS Isaias.

Test Name Initialization and Physics Isaias (4 August 2020)
Forecast Cycle and WRF Start Time

WRF/NAM/cus
Default

NAM initialization
customized physics NAM_00 UTC/WRF_00 UTC (12 h spin up)

WRF/GFS/cus GFS initialization
customized physics

a. GFS_00 UTC/WRF_00 UTC (12 h spin up)
b. GFS_00 UTC/WRF_06 UTC (6 h spin up)
c. GFS_06 UTC/WRF_06 UTC (6 h spin up)

WRF/GFS/trop GFS initialization tropical suite GFS_00 UTC/WRF_00 UTC (12 h spin up)

The impacts of the forecast cycle and spin-up time have been tested only for TS Isaias.
For the impact of the forecast cycle, we tested initializations from GFS and NAM at 00 UTC
and 06 UTC on 4 August 2020. For the impact of WRF spin-up time, we tested 6 h and 12 h.
This means that we evaluated WRF outputs 6 h and 12 h after the model’s start time. WRF’s
start time was 4 August, 00 UTC or 06 UTC. All model evaluations were conducted for the
following duration: 4 August, 12 UTC to 6 August, 12 UTC. Table 2 shows a summary of
the WRF sensitivity tests that are analyzed and compared in Section 3.

The comparison of (1) NAM/WRF/cus and GFS/WRF/cus revealed the influence
of the GFS vs. NAM initialization; (2) GFS/WRF/cus and GFS/WRF/trop revealed the
influence of the physics options; (3) GFS/WRF/cus (a) and GFS/WRF/cus (b) revealed the
influence of the WRF start time and spin-up; and (4) GFS/WRF/cus (b) and GFS/WRF/cus
(c) revealed the influence of the GFS forecast cycle.

For TSs Irene, Henri and Elsa, we conducted sensitivity tests for initial conditions
and physics options utilizing NAM/WRF/cus, GFS/WRF/cus and GFS/WRF/trop. The
forecast cycle of GFS or NAM and the start-end time of the WRF model in all three
configurations are identical for each storm, and are given in Table 3.

Table 3. Details of the WRF setup for TSs Irene, Henri and Elsa.

Henri Elsa Irene

Forecast cycle
(NAM or GFS) 21 August 2021 (00 UTC) 8 July 2021 (00 UTC) 27 August 2011 (12 UTC)

WRF start time 21 August 2021 (18 UTC) 8 July 2021 (00 UTC) 27 August 2011 (12 UTC)

WRF end time 24 August 2021 (00 UTC) 10 July 2021 (12 UTC) 30 August 2011 (00 UTC)

The statistical metrics that have been employed for the evaluation include mean bias
(bias), correlation coefficient (CC), Kling–Gupta Efficiency (KGE), root–mean–square error
(RMSE), centered root–mean–square error (CRMSE), and mean absolute error (MAE), and
the equations are shown in the Appendix A (Equations (A1)–(A6)). The bias indicates
the systematic model error, while CRMSE indicates the random component of the error.
KGE combines the three components of model errors, which are CC and the ratios of
mean and standard deviation, and evaluates the performance in a robust way [43]. For
all statistical metrics, a 95th-percentile bootstrap confidence interval is created, which is
the range between the 2.5th quantile value and the 97.5th quantile value of the metrics
estimated using 10,000 bootstrap samples. The distance between the model-forecasted
storm location and the actual location at a particular time has been calculated using the
great circle distance with the formula shown in Equation (A7).

2.2. Observed Data

We used hourly observed wind speed and wind gusts at a 10 m height from the Inte-
grated Surface Database (ISD) for 127 available stations in the inner domain (Figure 1ii) [44].
The wind gust from the WRF output was derived from the parameterization provided
by the Unified Post Processor (UPP). The storm track and intensity were collected from
the NHC report of Isaias and from bulletins published during the storm. The information
included the latitude, longitude, and wind speed at the center of the storm.
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The National Centers for Environmental Prediction (NCEP) stage IV quantitative
precipitation estimates were used to evaluate the accumulated precipitation forecasted by
WRF. Stage IV QPE is a combination of gauge data and radar reflectivity and is subject
to gauge correction and quality control in each River Forecast Center domain, using the
muti-sensor precipitation estimator algorithm [45]. Accumulated 6-hour stage IV data
were re-gridded from its native 4 km polar stereographic projection to the WRF projection
(Lambert conformal conic projection) and grid spacing (4 km) using bilinear interpolation.

In addition, the daily accumulated precipitation at individual stations (Figure 1iii) was
obtained from the Global Historical Climatological Network—Daily (GHCND) archive to
evaluate the forecasted accumulated precipitation by the WRF model [46].

3. Results
3.1. Tropical Storm Isaias
3.1.1. Sensitivity of Initial and Boundary Conditions

WRF/NAM with customized physics forecasted minimum mean sea level pressure
(MSLP) over the inner domain of near 995 mbar for a longer period than the actual measured
MSLP (Figure 2i). The actual storm entered the domain at 17 UTC on 4 August with a
central pressure of 994 mbar, which remained the same for approximately 4 h.
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Figure 2. Forecast of tropical storm Isaias, focusing on the time series of minimum MSLP in the
center of the storm (top row), the location of the storm (bottom row), and comparisons of model
configurations. (i,ii,iv,v) WRF/NAM/cus (magenta), WRF/GFS/cus (blue) and WRF/GFS/trop
(red) (initializations/physics; Table 2); (iii,vi) WRF/GFS/cus a (blue), b (red) and c (green) (forecast
cycle, WRF start time, spin-up time; Table 2). The observed MSLP location and values are denoted
with an asterisk ‘*’.

The pressure started increasing from 21 UTC, while the forecast of the storm by
WRF/NAM/cus reached a central pressure of the same magnitude at the same time but
stayed at that magnitude for 13 h. The forecast by WRF/GFS/cus followed the trend of
observed minimum MSLP with time. Between 17 UTC to 20 UTC, the observed central
pressure of the storm remained at 994 mbar while the forecast by WRF/GFS/cus was
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between 995 to 994 mbar and followed the magnitude of the observed minimum MSLP
afterward. As the only difference between these two models was the initialization data, the
model GFS initialization could reproduce the magnitude of the storm’s central pressure
accurately compared to the model with the NAM initialization.

The location of the storm (storm track) forecasted by WRF/NAM/cus and WRF/GFS/cus
showed deviation towards the east and south of the actual storm path (Figure 2iv). The
forecasted location by WRF/NAM/cus may seem closer to the actual path, but both models
were, on average, 125 and 120 km away from the observed storm location. WRF/GFS/cus
certainly captured the timeline of the minimum MSLP better than WRF/NAM/cus.

The forecasted 10 m wind speed within both model configurations can reproduce
the observed wind speed with good accuracy and show high CC and low error metrics
(Figure 3i,ii). WRF/GFS/cus shows slightly lower bias and errors (GFS/WRF). The UPP
parameterization estimates wind gust potential, which is usually higher than the actual
wind gust, as also highlighted for the tropical storm forecasts herein. Again, WRF/GFS/cus
is showing improved performance for wind gusts over WRF/NAM/cus, but the ovestima-
tion is still present (Figure 3v,vi).

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 26 
 

 

WRF start time, spin-up time; Table 2). The observed MSLP location and values are denoted with 
an asterisk ‘*’. 

The pressure started increasing from 21 UTC, while the forecast of the storm by 
WRF/NAM/cus reached a central pressure of the same magnitude at the same time but 
stayed at that magnitude for 13 h. The forecast by WRF/GFS/cus followed the trend of 
observed minimum MSLP with time. Between 17 UTC to 20 UTC, the observed central 
pressure of the storm remained at 994 mbar while the forecast by WRF/GFS/cus was be-
tween 995 to 994 mbar and followed the magnitude of the observed minimum MSLP af-
terward. As the only difference between these two models was the initialization data, the 
model GFS initialization could reproduce the magnitude of the storm’s central pressure 
accurately compared to the model with the NAM initialization. 

The location of the storm (storm track) forecasted by WRF/NAM/cus and 
WRF/GFS/cus showed deviation towards the east and south of the actual storm path (Fig-
ure 2iv). The forecasted location by WRF/NAM/cus may seem closer to the actual path, 
but both models were, on average, 125 and 120 km away from the observed storm loca-
tion. WRF/GFS/cus certainly captured the timeline of the minimum MSLP better than 
WRF/NAM/cus. 

The forecasted 10 m wind speed within both model configurations can reproduce the 
observed wind speed with good accuracy and show high CC and low error metrics (Fig-
ure 3i,ii). WRF/GFS/cus shows slightly lower bias and errors (GFS/WRF). The UPP param-
eterization estimates wind gust potential, which is usually higher than the actual wind 
gust, as also highlighted for the tropical storm forecasts herein. Again, WRF/GFS/cus is 
showing improved performance for wind gusts over WRF/NAM/cus, but the ovestima-
tion is still present (Figure 3v,vi).  

 
Figure 3. Evaluation of wind speed (top row) and wind gust (bottom row) in the inner domain from 
the output of (i,iv) WRF/NAM/cus, (ii,v) WRF/GFS/cus and (iii,vi) WRF/GFS/trop. The solid line 

Figure 3. Evaluation of wind speed (top row) and wind gust (bottom row) in the inner domain from
the output of (i,iv) WRF/NAM/cus, (ii,v) WRF/GFS/cus and (iii,vi) WRF/GFS/trop. The solid
line designates a 1:1 relationship; the dashed line designates the linear relationship between the two
variables described by the y = f(x) formula.

The bias (systematic error) of 10 m wind speed and wind gust at different sur-
face stations was lower for WRF/GFS/cus, and the difference is more noticeable in the
northern part of the domain (Figure 4i,ii). Wind gust error appears more variable, with
WRF/GFS/cus exhibiting over and under-prediction (Figure 4iv,v) that cancel out and give
a lower overall bias seen in the scatter plot of Figure 3.
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The overall error and the random component of the model error (RMSE, CRMSE)
have shown that the model performance for wind speed was not influenced by different
initializations; therefore, that factor is not shown here. On the other hand, wind gust
performance improved with WRF/GFS/cus, as compared to WRF/NAM/cus in most
stations in the domain (Figure 5i,ii,iv,v).
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Especially for the random component of the wind gust error, the improvement
achieved by changing initial conditions is certainly visible (Figure 5i,ii). CRMSE decreased
in several stations, which were located in Pennsylvania, Connecticut, New York City,
Vermont and New Hampshire.
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Accumulated precipitation from 12 UTC 4 August 2020, to 12 UTC 6 August 2020
(48 h) from stage IV showed a wide band of precipitation following the path of the storm,
ranging mostly from 50 to 100 mm, in agreement with GHCND data. To both the east and
the west of this band, including the state of Connecticut, the amount of precipitation was
small, according to both stage IV and GHCND data (Figure 6i).
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Figure 6. Accumulated precipitation from 1200 UTC 4 August to 1200 UTC 6 August 2020, in the
inner domain from (i) stage IV data, and as forecasted by (ii) WRF/NAM/cus, (iii) WRF/GFS/cus
and (iv) WRF/GFS/trop. All plots include observed accumulated precipitation from point data from
the GHCND dataset. The spatial bias (WRF—stage IV) plots depict 48 h of accumulated precipitation
for (v) the WRF/NAM/cus model, (vi) the WRF/GFS/cus model and (vii) WRF/GFS/trop.

Both WRF/NAM/cus and WRF/GFS/cus over-predicted total precipitation at the east-
ern and western sides of the storm and shrank the highest precipitation band, mostly from
the west, and also showed underprediction (Figure 6ii,iii,v,vi). Nevertheless, WRF/GFS/cus
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performed better in capturing the highest accumulated rainfall band in Pennsylvania and
New York. All bulk statistical metrics are improved with the change from NAM to GFS
for initial and boundary conditions, except for the precipitation bias. The bulk precipi-
tation bias has a slight increase (Table 4, column iii) but the spatial map indicates that
WRF/GFS/cus captured the spatial pattern of precipitation better. Along with the calcula-
tion of statistical metrics and relative change of the errors, we estimated the 95th confidence
interval through bootstrapping each metric in order to define the statistical significance
of the change. When the confidence intervals do not overlap, the results are statistically
significant. The statistical significance results are shown in Figure 7.
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The conclusion from this part of the study is that using the GFS for initialization of the
WRF model is a better choice, compared to the NAM, for the forecast of the wind, MSLP,
and precipitation of tropical storm Isaias, with an average decrease of errors of 29.69% and
an average increase of CC of 8.17% (Table 3). This conclusion is further supported by the
confidence-interval ranges that reveal that WRF/GFS/cus is significantly better than the
default (WRF/NAM/cus) for all variables and metrics except precipitation bias and wind
CC (Figure 7).

3.1.2. Sensitivity of Forecast Cycles and Spin-Up Time

Comparison of WRF/GFS/cus as to 12 h and 6 h spin-up time revealed the influ-
ences of the WRF start time and spin-up; comparison of WRF/GFS/cus initialized with
two forecast cycles 6 h apart revealed the influence of the GFS forecast cycle. The fore-
casted time series of minimum MSLP by models with two different spin-up and start times
showed a significant difference, as the model started later and had shorter spin-up time; in
short, it missed capturing both the timing and magnitude of the observed minimum MSLP
(Figure 2iii). The model with the forecast cycle (GFS-06UTC) closer to the time the storm
entered the domain improved the forecast, but reached the lowest pressure of 994 mbar
two hours earlier than the actual time and stayed at that level for approximately 12 h
instead of 4 h (Figure 2iii). However, the location of the storm by this model was captured
better than it was by the model with an earlier initialization (GFS-00UTC), and it had
an average shift of 50 km from the observed location (Figure 2vi). The forecast of 10 m
wind speed and wind gusts was not improved significantly by using GFS-06UTC data as
initialization instead of the GFS-00 UTC forecast cycle of the model (Figure 8).
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Table 4. Statistical metrics for WRF model configurations of TS Isaias.

(i)
WRF/NAM/cus

default

(ii)
WRF/GFS/cus

(a)

(iii)
100(ii-i)/i

(%)

(iv)
WRF/GFS/cus

(b)

(v)
100(iv-i)/i

(%)

(vi)
WRF/GFS/cus

(c)

(vii)
100(vi-i)/i

(%)

(viii)
WRF/GFS/trop

(ix)
100(viii-i)/i

(%)

Storm track
(km) Distance 125.00 100.00 −20.00 138.00 10.40 50.00 −60.00 70.00 −44.00

Wind speed
(m/s)

CC 0.70 0.72 2.86 0.74 5.71 0.75 7.14 0.74 5.71
BIAS 1.03 0.39 −62.14 0.46 −55.34 0.73 −29.13 0.05 −95.15
RMSE 2.49 2.17 −12.85 2.17 −12.85 2.21 −11.24 2.10 −15.66

CRMSE 2.27 2.14 −5.73 2.12 −6.61 2.08 −8.37 2.10 −7.49

Wind gust
(m/s)

CC 0.58 0.65 12.07 0.64 10.34 0.69 18.97 0.66 13.79
BIAS 2.17 0.67 −69.12 1.22 −43.78 2.15 −0.92 0.97 −55.30
RMSE 5.45 4.48 −17.80 4.97 −8.81 4.87 −10.64 4.54 −16.70

CRMSE 5.00 4.43 −11.40 4.82 −3.60 4.38 −12.40 4.44 −11.20

Precipitation
(mm)

CC 0.73 0.80 9.59 0.83 13.70 0.70 −4.11 0.83 13.70
BIAS −4.72 −5.50 16.53 −7.53 59.53 −11.80 150.00 −6.40 35.59
RMSE 29.25 25.91 −11.42 25.34 −13.37 31.47 7.59 24.83 −15.11

CRMSE 28.86 25.31 −12.30 24.19 −16.18 29.17 1.07 24.00 −16.84

Minimum
MSLP (mb)

BIAS −0.9 0 −100 1.4 −255.56 −0.5 −44.44 0.4 −144.44
MAE 1.6 0.8 −50 2.6 62.50 2.2 37.50 0.9 −43.75

Average∆(errors);
no CC −29.69 −23.64 1.58 −35.84

Average∆(CC) 8.17 9.92 7.33 11.07

Change due to
initial

conditions

Change due to
start time and
initialization

Change due to
forecast cycle

and
initialization

Change due to
physics and

initialization
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Figure 8. Evaluation of (i–iii) wind speed and (iv–vi) wind gust in the inner domain from the output
of WRF/GFS/cus a through c (forecast cycle, WRF start time, spin-up time; Table 2). The solid
line designates a 1:1 relationship; the dashed line designates the linear relationship between the
two variables described by the y = f(x) formula.

Moreover, the over-prediction of wind gusts in Connecticut increased when we moved
from higher to lower spin-up time and from earlier to later forecast cycle initialization.
The increased bias of wind gusts was also noticeable in northern Massachusetts and
New Hampshire with a 6 h spin-up compared to the 12 h spin-up time (Figure 9i,ii). The
wind gust bias increased in the model initialized with a closer forecast cycle when the effect
of different GFS forecast cycle initialization in the overall domain were compared. The
same pattern was noticed in the other two error metrics (Figure 9iv–ix), except for the areas
of New Jersey and Connecticut, where the random component of error decreased according
to the model initialized with a GFS 06UTC forecast cycle (Figure 9viii–ix), and therefore,
the combined error decreased as well.

Overall, there is no major influence of the WRF’s start time/spin-up and GFS forecast
cycle apparent in the temporally and spatially paired observed–forecasted wind speeds and
gusts. The influence is noticed more in the track and the minimum MSLP. The minimum
MSLP is reproduced very well with WRF/GFS/cus initialized with the 00 UTC forecast
cycle and a 12 h spin-up time, but not with other models. This translates into a disadvanta-
geous configuration when WRF starts 6hrs later or a later GFS cycle is used (06UTC instead
of 00UTC). The track shows an opposite signal, one in which the later GFS cycle and WRF
start times show locations of the storm center closer to the observations. The overall bulk
statistics suggest that the model initialized with 00 UTC forecast cycle and 12 h spin-up
time has a lower average error than the other two models (Table 4 columns iii, v–vi). Every
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percent change of a model configuration is estimated with regard to WRF/NAM/cus, as
this was the default WRF configuration at the time of the storm.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 26 
 

 

and New Hampshire with a 6 h spin-up compared to the 12 h spin-up time (Figure 9i,ii). 
The wind gust bias increased in the model initialized with a closer forecast cycle when the 
effect of different GFS forecast cycle initialization in the overall domain were compared. 
The same pattern was noticed in the other two error metrics (Figure 9iv–ix), except for the 
areas of New Jersey and Connecticut, where the random component of error decreased 
according to the model initialized with a GFS 06UTC forecast cycle (Figure 9viii–ix), and 
therefore, the combined error decreased as well. 

 
Figure 9. (i–iii) Mean Bias; (iv–vi) RMSE; and (vii–ix) CRMSE spatial maps of wind gust at 10 m in 
the inner domain from the output of WRF/GFS/cus a through c (forecast cycle, WRF start time, spin-
up time; Table 2). 

Overall, there is no major influence of the WRF’s start time/spin-up and GFS forecast 
cycle apparent in the temporally and spatially paired observed–forecasted wind speeds 
and gusts. The influence is noticed more in the track and the minimum MSLP. The mini-
mum MSLP is reproduced very well with WRF/GFS/cus initialized with the 00 UTC fore-
cast cycle and a 12 h spin-up time, but not with other models. This translates into a disad-
vantageous configuration when WRF starts 6hrs later or a later GFS cycle is used (06UTC 
instead of 00UTC). The track shows an opposite signal, one in which the later GFS cycle 
and WRF start times show locations of the storm center closer to the observations. The 
overall bulk statistics suggest that the model initialized with 00 UTC forecast cycle and 12 
h spin-up time has a lower average error than the other two models (Table 4 columns iii, 
v–vi). Every percent change of a model configuration is estimated with regard to 
WRF/NAM/cus, as this was the default WRF configuration at the time of the storm.  

3.1.3. Sensitivity of Physics Options 
For the next set of sensitivity tests, we chose the GFS model’s 4 August 00 UTC fore-

cast cycle data for initial and boundary conditions for a 60 h WRF simulation with 12 h 
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spin-up time; Table 2).

3.1.3. Sensitivity of Physics Options

For the next set of sensitivity tests, we chose the GFS model’s 4 August 00 UTC forecast
cycle data for initial and boundary conditions for a 60 h WRF simulation with 12 h spin-up
time, based on the findings presented in the previous sections. The forecasted time series of
minimum MSLP, using two different physics options with WRF/GFS, has shown a similar
magnitude and followed a similar trend to the observed one (Figure 2ii). The model with
tropical physics reached a low MSLP very close to the observed one of 994 mbar (995 mbar).
The location of the storm forecasted by WRF/GFS/trop reduced the locational bias in both
the southward and eastward directions (Figure 2v) and reduced the shift of the storm track
by 30 km on average compared to WRF/GFS/cus.

The comparison of forecasted and observed wind speed shows similar performance
for both physics options, though WRF/GFS/trop reduced the over-prediction for the high
wind speeds compared to WRF/GFS/cus (Figure 3ii,iii). The performance of the 10 m
wind gust forecast is similar to that of the wind speed evaluation for these two models.
Although there is a reduction in wind gust over-prediction for high values, an increased
over-prediction in mid-range wind gusts is also noticed in WRF/GFS/trop (Figure 3iv,v).

Spatial error metrics for wind speed and wind gust (averaged over time in each station)
for models with two different physics options showed over-prediction of wind speed in
the northern part of the domain by both models, and some reduction of bias was noticed
in the southern part of Connecticut by WRF/GFS/trop (Figure 4iii,iv). Overall, positive
wind gust bias appears on the eastern side and negative wind gust bias on the western
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side of the domain by both models. However, WRF/GFS/trop has reduced the wind gust
bias in Connecticut and increased it in the southern portion of the domain near New Jersey
and part of Pennsylvania, compared to WRF/GFS/cus (Figure 5iii,iv). The RMSE of wind
speed at 10 m showed small values by both models except in three stations, where the error
was reduced by approximately 2 m/s by WRF/GFS/trop compared to WRF/GFS/cus
(Figure 5). The very low RMSE of wind gusts at 10m was noticed in many stations on
the northern side of the domain; however, wind gust RMSE decreased in the Connecticut
stations and increased in the New Jersey stations.

The accumulated precipitation forecasted by WRF/GFS/trop showed a more explicit
band compared to WRF/GFS/cus (Figure 6iv,vii). WRF/GFS/trop avoided high precipita-
tion on both sides of the precipitation band in the northern side of the domain, but could
not overcome the interposed difficulties in order to forecast low precipitation in the eastern
side of the domain, including Connecticut and Massachusetts.

Overall, for Isaias, WRF/GFS/trop has a better performance compared to WRF/NAM/cus
and WRF/GFS/cus across all variables that are investigated in this study. The average
percentage error was decreased by using tropical physics to 36%, as compared to cus-
tomized physics at 29%, and the average change in CC was increased by 11% for the
model with tropical physics, as compared to 8% for the model with customized physics
(Table 4, columns iii and viii). The storm track was improved, and precipitation was some-
what improved, as compared to the other configurations. The minimum MSLP and wind
speed/gust predictions from WRF/GFS/trop are similar to those from WRF/GFS/cus,
which indicates that the different physics options improved the location values, but did
not influence the intensity values of the storm greatly. The 95% confidence-interval plots
of the error metrics do not show significantly different results from using two different
physics sets, except for wind speed bias (Figure 7iii). However, confidence interval ranges
reveal WRF/GFS/trop as being significantly better than the default (WRF/NAM/cus) for
all variables and metrics except precipitation bias (Figure 7).

Based on the reasons mentioned above, our recommendation is to consider simulations
using the WRF model with GFS initialization and the tropical physics suite in future tropical
storm forecasts for the NE US.

3.2. Tropical Storms Henri, Elsa and Irene

In order to test the consistency of the results found in the sensitivity tests of tropical
storm Isaias, we repeated the process for TSs Irene, Henri and Elsa. However, considering
the impacts on Isaias’s performance, the consistency test has been limited to carrying
out the sensitivity of initialization and physics options. We decided to test the model
performance from three aspects, which are: storm track location and intensity, wind speed,
and precipitation.

3.2.1. Storm Track Evaluation

For TS Elsa and TS Henri, it is evident that the WRF/GFS model has captured the
minimum MSLP better than the model with WRF/NAM (Figure 10iv,v). TS Henri and TS
Elsa reduced the minimum MSLP bias by almost 10 mbar and 4 mbar, respectively, with the
WRF/GFS as compared to WRF/NAM, which suggests that storms with GFS initialization
are captured more accurately. On the other hand, the minimum MSLP of TS Irene with
NAM initializations closely followed the observed minimum MSLP of the storm, whereas
the models with GFS initialization had higher errors.

Models with the tropical suite physics option forecasted higher minimum MSLP
than did the customized physics for all the storms, which improved the forecast for
Irene and Henri by reducing the MAE by 1.5 mbar and 2.5 mbar, respectively. How-
ever, it increased MAE by 3.5 mbar for TS Elsa. For TS Elsa and TS Henri, the shift of
the WRF/GFS/trop-predicted storm tracks reduced by 38 km and 29 km, respectively,
compared to the NAM/WRF/cus. All model configurations for the three TSs followed the
location of the storm closely (Figure 10i–iii).
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Figure 10. Forecasts for (i,iv) TS Elsa, (ii,v) TS Henri and (iii,vi) TS Irene, focusing on the time series
of minimum MSLP in the center of the storm (bottom row), location of the storm (top row), and
comparisons of WRF/NAM/cus (magenta), WRF/GFS/cus (blue) and WRF/GFS/trop (red) models’
configurations. The observed MSLP location and values are denoted by an asterisk ‘*’.

3.2.2. Precipitation Evaluation

During TS Irene, the maximum precipitation of 100 to 300 mm occurred in the mid-
dle of the domain from south to north (Figure 11i, from stage IV and GHCND data).
WRF/NAM/cus and WRF/GFS/cus showed overprediction of precipitation in the high
ranges, whereas WRF/GFS_ trop reduced the overprediction. For Irene, all the performance
evaluation metrics except CC were significantly improved by WRF/GFS/trop over the
WRF/NAM/cus model, according to the 95% confidence interval and using bootstrapping
(Figure 12i–v).

For TS Elsa, the highest levels within the 48 h of accumulated precipitation occurred
on the eastern side of the domain, including Connecticut (Figure 11iv). Similar to Irene, in
the case of Elsa, WRF/NAM/cus shows overprediction of the accumulated precipitation,
which is reduced by WRF/GFS/cus and further reduced by WRF/GFS/trop. Although
WRF/GFS/trop underpredicts the high band of precipitation in Connecticut, it captures
the precipitation in the northeast region of the domain. However, WRF/GFS/cus has
captured the high precipitation near Connecticut and the Long Island area
(Figure 11v–viii). For TS Elsa, all the performance evaluation metrics except KGE and
CRMSE are significantly improved by WRF/GFS/trop over the WRF/NAM/cus
model, according to the 95% confidence interval and using 10,000 bootstrapping samples
(Figure 12vi–x).
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lation coefficient, (iii,viii,xiii) bias, (iv,ix,xiv) RMSE and (v,x,xv) CRMSE for 48 h of accumulated
precipitation (in mm) during TS Irene (1st row), TS Elsa (2nd row) and TS Henri (3rd row), as
forecasted by WRF/NAM/cus, WRF/GFS/cus and WRF/GFS/trop.

TS Henri had low to zero precipitation in the western and northern portions of the
domain and maximum levels near Long Island and New Jersey (Figure 11ix). Both NAM
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and GFS initializations show overprediction of low precipitation and were unable to
forecast the high band of precipitation in the correct location. WRF/GFS/cus reduced the
overprediction on the western side of the domain and captured part of the high band of
precipitation. However, WRF/GFS/cus underpredicted precipitation in the southern side
of the domain (Figure 11ix–xii). For Henri, all the performance evaluation matrics have
been significantly improved by WRF/GFS/cus over the WRF/NAM/cus model, according
to the 95% confidence interval (Figure 12xi–xv). To summarize, the forecasts for the three
storms improved with the tropical suite physics option, similarly to the results from Isaias.

3.2.3. Wind Evaluation

For both Elsa and Henri, the models with GFS initialization have significantly reduced
the overprediction of wind speed at 10 m., as compared to the models with NAM initiation.
For instance, bias has dropped by 42% and 34%, respectively. The wind forecast was
improved even further with the use of the tropical suite physics option for these two storms
(Figure 13v,vi,viii,ix).
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However, for TS Irene, the WRF/NAM/cus has a better wind forecast than does the
WRF/GFS/cus (Figure 13i,ii). Although WRF/GFS/trop improved the wind forecast over
the WRF/GFS/cus, the model with NAM initialization has a better wind forecast for this
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particular storm (Figure 13iii), as it happened back in 2011, before major improvements
of the GFS model. The KGE, bias and RMSE of wind speed and wind gust at 10 m also
suggest that WRF/NAM/cus has significantly better performance than the other two
model configurations, whereas CC and CRMSE of wind are indifferent (Figure 12i–v).

For TS Elsa, all the error metrics suggest that WRF/GFS/cus has reduced wind forecast
error from WRF/NAM/cus and WRF/GFS/trop has reduced it further. KGE for both wind
speed and wind gust follow the same pattern as bias, RMSE and CRMSE, but CC remains
the same (Figure 14vi–x). For Henri, all the performance metrics show that models with GFS
initialization have a better wind forecast, as compared to NAM. However, WRF/GFS/cus
and WRF/GFS/trop have almost the same performance except WRF/GFS/trop reduced
bias of wind speed and wind gust and RMSE of wind gust significantly (Figure 14xi–xv).
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To summarize, Henri and Elsa have improved performance with the model initialized
with GFS and simulated with the tropical suite physics option, similarly to the method
used for Isaias. However, Irene’s performance is not so evident and conclusive, as it has
used an older GFS model version to initialize WRF.

4. Discussion

We have explored different initialization datasets, physics options and model configu-
rations with the goal of improving the real-time deterministic forecast of tropical storms
using the WRF model. We conducted sensitivity tests of initial and boundary conditions,
forecast cycles, spin-up time and physics options for Isaias, Irene, Elsa and Henri to explore
the consistency of the findings.

Isaias’s storm track and minimum MSLP has been captured better by the WRF model
with GFS rather than NAM initialization. There are few plausible explanations for the
difference in model behavior made just by changing the initialization data. One could be
the presence of an upper-level jet stream that helps the storm to propagate toward its path.
According to the 300 hPa observed map from NOAA’s Storm Prediction Center (SPC) [47],
the position of the jet stream at the 300 hPa layer appears to stretch from the southern
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border of Pennsylvania to the northeast at 12 UTC on 4 August. The WRF/GFS/cus model
forecasted the position of the jet stream with more accuracy than did the WRF/NAM/cus,
as the stretch of the jet stream is forecasted from upstate New York to the north by the
later model. The shorter and slightly weaker jet stream could be a reason for the slow
propagation of Isaias by the WRF/NAM/cus model. Later that day, the WRF/NAM/cus
forecasted a band of severe winds in the same layer with a direction toward the north, which
is not apparent at the same location on the SPC map [48] or predicted by WRF/GFS/cus.
This band of severe winds may have contributed to the storm track’s deviation towards the
north in this model, and at the same time sustained the minimum MSLP for longer than
observed. The forecasted warmer storm core may be another factor. The WRF/NAM/cus
model predicts that the storm core will be warmer than it is in the WRF/GFS/cus model
during the storm’s transition from tropical to extra-tropical. This discrepancy might have
been transmitted from NAM and GFS data (maps of 2 m temperature from NAM and GFS
show a difference of a few degrees at the location of the storm core). This might be another
element influencing the WRF/NAM/cus model’s capacity to maintain a lower minimal
MSLP for a longer time.

The model’s initial state affects the storm track and minimum MSLP, which in turn
affects the corresponding wind speed and wind gust. Compared to the other model
configurations, the over-prediction of WS and WG by WRF/NAM/cus is higher, which
may be related to the model’s projection of a more severe storm. The overestimation of
wind on the eastern side may be connected to the fact that tropical storms in the northern
hemisphere are thought to produce higher winds on the right front quadrant of the storm.
However, it should be noted that the WG predicted by WRF is actually the gust wind speed
potential calculated by UPP, which is intended to over-predict [49]. For this reason, over
prediction of WG is common for all models.

We have used two spin-up times to predict Isaias with the WRF/GFS/cus model, 6 h
and 12 h, and the model with the longer spin-up time had less error in terms of the storm’s
trajectory and intensity. This result indicates that, for this particular storm, the model
needed more than 6 h to develop the physical conditions and produce a near-accurate
forecast. Isaias, initialized with a later forecast cycle, reduced the error of the storm track
significantly and captured it more accurately than did all the other models. Although
the minimum MSLP was also captured with less error by WRF/GFS/cus (c) compared
to WRF/GFS/cus (b), it had poorer performance than did the WRF/GFS/cus (a). It is
most likely that the reason behind that lies within the differences in spin-up times between
models. Overall, the influence of changing the forecast cycle and the spin-up time is not
much noticeable for wind forecasts.

The time series of minimum MSLP is one of the indicators of the strength of the storm,
and it remained almost identical when the physics option was changed from customized
to tropical, but the track improved substantially. The difference between the two physics
options comes from the cumulus convection, microphysical processes, and radiation in-
teractions. Among these differences, the use of different cumulus schemes is the most
notable one, as it has been seen that small changes in the cumulus scheme significantly
affect the tracks and intensities of the storms [50]. Different cumulus schemes represent
the depth and motion of the vortex differently, and thus, differently influence the storm
track’s direction and intensity [51]. In addition, the shallow convection component of the
cumulus scheme has an influence on temperature, moisture and wind, as well as impacts
upon the storm track [52]. Although both G3 (used in WRF/GFS/cus) and TD (used in
WRF/GFS/trop) cumulus parameterization use shallow convection, these two schemes
represent it differently and G3 is highly sensitive to shallow convection. According to
a recent study, a model utilizing G3 produces a less realistic picture of storm structures
such as larger storms or a larger storm eye and distorts the motion and steering field of
tropical storms. As a result of these circumstances, the storm track’s position is affected,
causing a minor deviation in the track’s location [53]. In addition to the cumulus scheme,
the shortwave radiation and microphysics schemes play crucial roles in capturing the
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dynamics that influence storm propagation and intensity [54]. The shortwave radiation
scheme calculates the atmospheric distribution of incoming solar radiation and supplies the
storm with the required energy input. Meanwhile, the storm’s vertical motion and moisture
distribution is influenced by the thermodynamic structure, which has an impact on the
storm’s intensity and is captured by the microphysics scheme. The effectiveness of wind
forecasts is directly impacted by these schemes since they jointly contribute to the thorough
simulation of storm behavior in terms of location and severity. As the WRF/GFS/trop has
captured the location of the storm more accurately, especially in the southern portion of the
domain, it may be responsible for the wind bias reduction seen in the southern part.

The 48 h of accumulated precipitation of Isaias was under-predicted at the higher
band of precipitation and over-predicted at the lower end values by all models, and no
significant change of bias was noticed. However, there is a reduction of random errors
from WRF/NAM/cus to WRF/GFS/cus and it is noticeable that the WRF/GFS/trop
model has forecasted the precipitation pattern more closely to stage IV. The change in
precipitation pattern and magnitudes of precipitation can be explained by the use of
different microphysics schemes (WSMD6 and Thompson) implemented in the two physics
options [55], besides the other changes that led to the capture of the storm’s intensity and
track differently. We also want to mention that, near the boundary of the model domain,
specifically at the north-east and south-west corners, zero or very low values of precipitation
have were noticed by WRF/NAM/cus and WRF/GFS/cus (Figure 6ii,iii). According to our
tests, these values were inherited from the convective precipitation scheme, and with the
changes in cumulus parameterization in WRF/GFS/trop, the problem has been resolved
(Figure 6iv). The weak assumption of sub-grid cloud transport made by the G3 cumulus
parameterization could be a reason for the boundary problems, and this is the scheme used
in our customized physics configurations (all models except WRF/GFS /trop) [56].

The sensitivity test of initialization data and physics options have been explored for
TSs Irene, Elsa, and Henri to test the consistency of Isaias’ results. For Elsa and Henri,
WRF/GFS/cus has overall better performance than WRF/NAM/cus; one possible reason
for this could be that the synoptic scale of these storms has been captured more effectively
by the global model (GFS) than the regional model (NAM), similarly to results from Isaias.
However, Irene did not exhibit similar behavior when we changed the initialization from
NAM to GFS. To investigate the reason, we need to focus on the time difference of almost
a decade between Irene and the other three storms studied here. In these years (from
2011 to 2020), the GFS model went through four significant updates [57]. The last of these
four changes that took place in 2019 involved changing the dynamical core from spectral
to finite-volume cubed-sphere (FV3), replacing Zhao–Carr microphysics with the more
sophisticated GFDL microphysics, modifying the convective parameterization scheme to
reduce excessive cloud top cooling, replacing GTOPO30 terrain data with the more precise
GMTED2010, and other changes [58]. Additionally, a significant number of changes were
made to the model’s Global Data Assimilation System (GDAS), including upgrading the
near sea surface temperature scheme and adding new observations [58,59]. According to
the GFSv15 upgrades presentation [58], this update of the GFS model improved the precip-
itation forecast [60], provided wind speed closer to observed values, slightly improved the
minimum and maximum 2 m temperature, and, most importantly, captured the intensity
and track of tropical storms, more closely resembling the best tracks than did earlier ver-
sions [61,62]. On the other hand, in these years, the only major updates for NAM happened
in 2017, and included changing the convective scheme (Betts–Miller–Janjic) to improve
precipitation bias and the microphysics scheme (New Ferrier–Aligo) to improve stratiform
precipitation, assimilation of new observation types, more frequent calls of physics schemes,
and other changes [63]. As the updates of GFS are more extensive compared to NAM, using
the newer version of GFS as initialization could be a reason for the improved forecasts of
the particular TSs discussed in this study. However, in Irene’s case, it has been noticed that
the older version of GFS is not more beneficial than the older version of NAM. Irrespective



Remote Sens. 2023, 15, 3219 21 of 25

of the storms studied here, when we have changed the model physics from the customized
option to the tropical option, it has always improved the forecast of the storms.

5. Summary and Conclusions

We have investigated WRF’s real-time forecast skill for tropical storms that have
impacted the NE US, presented the limitations and successes of a deterministic forecast
system, and identified model configuration options that improve the forecast of the storm
track and intensity. The storm intensity is signified by the minimum MSLP and the
maximum wind speed, whereas the track is denoted by the location of the minimum MSLP
as the storm travels across the region.

For Isaias, all model configurations were able to capture the lowest surface pres-
sure of 994 mbar in the domain at 18 UTC, on 4 August. The default configuration
(WRF/NAM/cus) forecasted the same intensity but stayed at that level for 6 h longer
than the storm did. Wind speed forecast is acceptable with WRF/NAM/cus, with a bulk
bias of ~1 m/s and RMSE ~ 2.5 m/s, but wind gust is largely over-predicted, which is
expected due to the parameterization of wind gust potential that is meant to represent
maximum gust. In addition, total precipitation is not represented accurately in space and
magnitude with our default WRF configuration. Such indications of forecast skill prompted
us to explore different initializations, spin-up times and forecast cycles, as well as physics
options, to optimize the deterministic model performance for TS Isaias.

The forecast skill (e.g., wind, MSLP, precipitation) of Isaias was mostly improved by
the change of initial and boundary conditions from NAM to GFS, possibly because of the
synoptic scale of the storm, which is better captured by a global model like GFS. Sensitivity
tests of various WRF spin-up times and GFS forecast cycles did not impact the model
performance significantly. The model configuration initialized with near-time GFS forecast
cycle data (WRF/GFS/cus c) did not perform better in capturing the intensity of the storm
but the forecasted storm track provided satisfactory results.

The wind speed of tropical storm Isaias is captured well, with overall bias ranges from
0 to 1 m/s and RMSE around 2 m/s by all WRF configurations. However, the improve-
ment made in the forecasted wind speed by changing the initialization (WRF/GFS/cus)
and physics options (WRF/GFS/trop) over the default (WRF/NAM/cus) is statistically
significant for all variables and error metrics, with the exception of precipitation bias. Wind
gust forecast was improved the most by WRF/GFS/cus, with a decrease of 69% bias and
17.8% RMSE over WRF/NAM/cus. Changing the physics option to tropical did not show
any significant improvement in wind gusts over the model with customized physics,
although it has decreased the over-prediction of high winds.

All model configurations followed the spatial pattern of the observed accumulated
precipitation, except for the over-prediction in the eastern side of the domain, which goes
up to 40 mm in some locations. The higher magnitude of precipitation is well forecasted by
WRF/GFS/trop and WRF/GFS/cus, compared to WRF/NAM/cus, in the southern side
of the domain. Storm track (by distance) and minimum MSLP were also improved by the
selection of GFS initialization and tropical suite physics options.

The overall error metrics and statistical significance tests through bootstrapping sug-
gest that the forecast of TS Isaias could be improved by using GFS for initial and boundary
conditions and the tropical suite physics options. Such a configuration was able to drive
the average error reduction to 36% and increase the correlation by 11%. Even though
precipitation bias was not statistically different among the WRF configurations, the ran-
dom component of the error was, which is an important sign of how the different WRF
configurations could also impact accumulated precipitation.

To check the consistency of the result found from Isaias’s sensitivity tests, we have
simulated three additional TSs and investigated their results. For TS Henri and TS Elsa,
due to the change of initialization from NAM to GFS, the overall wind forecasting error
decreased by 20% and 27%, respectively. Moreover, when the model physics changed from
customized physics to the tropical suite physics option, the wind forecasting error of TS
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Henri further decreased by 6% and that for TS Elsa decreased by 39%. The precipitation
forecast of TS Henri was improved by changing the model’s initialization from GFS to
NAM, reducing overall error by 30%; by changing the physics option and initialization, the
error was reduced by 51%. Similar to Henri, Elsa shows a similar trend of decreasing errors,
from WRF/NAM to WRF/GFS by 12%, and from WRF/NAM/cus to WRF/GFS/trop
by 48%. The average shift of the storm track of Elsa and Henri from WRF/NAM/cus to
WRF/GFS/trop was reduced by 38 km and 28 km, respectively, and the minimum MSLP
forecast of these storms was improved by reducing MAE by multiple folds.

For TS Irene, the forecasts of wind, and MSLP did not exhibit a statistically significant
difference between different model initialization/physics, as it showed for Henri, Elsa, and
Isaias. For precipitation, however, WRF/GFS/trop was significantly better than the rest for
KGE, bias, RMSE and CRMSE. These results for Irene must be filtered by the fact that the
GFS has gone through several version changes since 2011, which has affected the overall
results and their consistency with the Isaias, Elsa and Henri forecasts. If we concentrate on
the GFS initialization, WRF/GFS/trop improved the forecasts of all variables by reducing
the overall error by 14.5%. Error reduction in WRF/GFS/trop was homogenous for all four
storms, which is likely the result of using TD as cumulus parameterization (compared to
G3 used in WRF/GFS/cus).

The variability in the models’ forecasting skills for these tropical storms also points to
the challenges and shortcomings of deterministic weather prediction. When there is a need
for a deterministic future forecast of a tropical storm impacting the NE US, our suggestion
is to consider the latest GFS model version for initial and boundary conditions, as well as
the tropical suite physics option.
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Appendix A

Considering observed values as X, predicted values as Y, mean observed values as
X_m, mean predicted values as Y_m, and the total number of values as N, the equations of
statistical metrics are shown below. In addition, X_std and Y_std represent the standard
deviation of observed and predicted values in these equations.

Bias = Nˆ(−1) ∑(Y − X), (A1)

CC = (Nˆ(−1) ×∑[(X − X_m) × (Y − Y_m)])/
√

(Nˆ(−1) ×∑(X − X_m) ˆ2 × Nˆ(−1) ×∑(Y − Y_m)ˆ2) (A2)

KGE = 1 −
√

((CC − 1)ˆ2) + (Y_std/X_std − 1)ˆ2 + (Y_m/X_m − 1)ˆ2) (A3)

RMSE =
√

(Nˆ(−1) ∑(X − Y)ˆ2) (A4)

CRMSE =
√

(RMSEˆ2 − Biasˆ2) (A5)

MAE = Nˆ(−1) ∑absolute(Y − X), (A6)
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The great circle distance d between two points with coordinates {lat1, lon1} and
{lat2, lon2} is given by

d = 2 × asin ×
√

((sin((lat1 − lat2)/2))ˆ2+ cos(lat1) × cos(lat2) × (sin((lon1 − lon2)/2))ˆ2), (A7)

Multiplying d by the earth’s radius (6371 km), we find the distance between observed
and predicted storm locations; before applying the formula, the latitude and longitudes are
converted into radians by multiplying with pi/180.
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