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Abstract: As an important technology in 3D vision, point-cloud registration has broad development
prospects in the fields of space-based remote sensing, photogrammetry, robotics, and so on. Of the
available algorithms, the Iterative Closest Point (ICP) algorithm has been used as the classic algorithm
for solving point cloud registration. However, with the point cloud data being under the influence
of noise, outliers, overlapping values, and other issues, the performance of the ICP algorithm will
be affected to varying degrees. This paper proposes a global structure and adaptive weight aware
ICP algorithm (GSAW-ICP) for image registration. Specifically, we first proposed a global structure
mathematical model based on the reconstruction of local surfaces using both the rotation of normal
vectors and the change in curvature, so as to better describe the deformation of the object. The
model was optimized for the convergence strategy, so that it had a wider convergence domain and
a better convergence effect than either of the original point-to-point or point-to-point constrained
models. Secondly, for outliers and overlapping values, the GSAW-ICP algorithm was able to assign
appropriate weights, so as to optimize both the noise and outlier interference of the overall system.
Our proposed algorithm was extensively tested on noisy, anomalous, and real datasets, and the
proposed method was proven to have a better performance than other state-of-the-art algorithms.

Keywords: iterative closest point; robust registration; adaptive weight loss metric; global structure;
remote sensing image registration

1. Introduction

Point cloud registration (PCR) is an important fundamental 3D vision technique,
with wide applications in robotics, photogrammetry, and remote sensing contexts, such as
simultaneous localization and mapping (SLAM), scene perception, and 3D modeling [1].
The Iterative Closest Point (ICP) algorithm has recently shown great promise in the field of
remote sensing image registration [2]. This innovative technique allows for the accurate
alignment of multiple images, even when they have significant geometric differences or
changes in perspective. Current point cloud acquisition devices mainly focus on how to
capture part of an object on a single frame. Therefore, overlapping frames should be taken
from different positions to cover the entire object or scene. Point cloud registration is a
technique to merge this sequence into a panorama.

ICP [3] is an approach to the standard point cloud registration problem, comprising
four main steps, including: initial matching, which selects a point cloud as the reference
point cloud, and performs preliminary point-to-point matching between the point cloud to
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be matched and the reference point cloud; weighting strategy, which calculates weights
based on the distance from each point to the nearest neighbor point, and uses a weighted
least squares method for registration; termination condition, which stops the iteration
once the error between the current two iterations is less than the preset threshold, and
then outputs the registration result; and optional steps, wherein subsequent optimization
processing can also be carried out, after the registration step. The above four steps are
carried out alternately until the optimal local alignment is achieved. At present, the
improvement methods of most ICP algorithms are reflected in the following two aspects:
the first is that the convergence area of the ICP algorithm is small, and the convergence
speed is slow; the second lies in the sensitivity of the ICP algorithm to outliers, missing
data, and partially overlapping regions [4]. This may lead to the incorrect alignment of
the ICP algorithm, and an overlapping alignment of some areas in the presence of outliers.
The classic ICP algorithm [5] proposes a linear convergence speed, which leads to the slow
convergence speed of the algorithm. The point-to-plane mapping relationship improves
upon the original ICP algorithm [3], but the function-zero point set of its point-to-plane
metric is only a plane patch. The above process exposes the problem of a small convergence
domain. Other registration methods have achieved faster convergence. For example,
Chen Y et al. [6] proposed a Point-Plane ICP method, which achieved the alignment by
minimizing the distance from the point to the plane, while Pottmann H et al. [7] minimized
the local quadratic approximation of the squared distance function. Another problem with
the ICP algorithm is that, when looking for the best alignment relationship, alignment
accuracy can be affected by things such as noise, outliers, and partially overlapping values.
The above problems occur frequently in the course of recent research. In response to
the above problems, Li ], et al. [8] proposed a new symmetrical point-to-plane distance
measurement method, whose function-zero set was a local second-order set surface. It had
a wider convergence domain and faster convergence than point-to-point metrics, point-to-
plane metrics, and even primitive symmetric metrics. Zhang J, et al. [9] introduced a robust
error metric based on Welsch functions, and efficiently minimized it with the MM algorithm
with Anderson acceleration. The robust ICP algorithm [10] had certain variant advantages
compared to the sparse ICP algorithm [11], to a certain extent. This process was manifested
by introducing a robust cost function (instead of loss) to enhance the alignment step.

In this paper, we have proposed a novel and simple method to solve point cloud
registration. Compared with the classic ICP algorithm, this study intended to optimize
it from the perspective of the following characteristics. Our method was dedicated to
optimizing the constraint conditions in order to achieve better convergence performance
and faster convergence speed. For partially overlapping area points, we hoped to opti-
mize error discrimination by introducing an adaptive robust loss algorithm. This paper
mainly selected representative laser points for matching, and we built a global structure
mathematical model based on reconstructing local surfaces. To overcome the problem of a
small convergence domain in ICP algorithm, the model took into account the curvature
and the normal vectors (i.e., rotation, translation), without increasing the complexity of
the algorithm. The metric mathematical model of the local surface was adopted, because
the function-zero point set of the point-to-plane metric was a local second-order surface.
Algorithms that introduced adaptive robust losses bridged the gap between the nonrobust
£2 cost and the robust M estimates. This loss was optimized based on a dynamic policy,
making it robust to varying degrees, as well as iterative as a function.

The contributions of this paper can be summarized as follow:

(1) This paper introduced a novel ICP variant, GSAW-ICP, incorporating a mathematical
model of the global structure to account for the effects of deformation on both the
normal vectors and the curvature of the object. The paper has also proposed two
innovative metrics: (OAKV) Overlap Area Knockout Value, and (GT) Ground truth
interior points, which were used to optimize the convergence strategy.

(2) This paper introduced a loss measurement method based on the adaptive weight
adjustment. The method was able to assign appropriate weights to outliers and
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overlapping values, as well as optimize the system performance under noise and
outlier interference. The method improved the robustness of GSAW-ICP’s ability to
estimate the gap between the ¢2 cost and the robust M.

(3) This paper presented a simulation and testing of the proposed method on the EPFL
dataset and a reality measured dataset, before comparing it with the state-of-the-art
algorithms. The paper has been organized as follows: Section 2 reviews the related
work and the recent improvements of the ICP algorithm; Section 3 describes the
solution process of GSAW-ICP and the mathematical model of the global structure;
Section 4 explains the convergence criterion and the update iteration of GSAW-ICP,
in addition to providing a feasibility analysis of the algorithm; Section 5 reports the
experimental results and analysis for GSAW-ICP; and Section 6 concludes the paper.
Figure 1 shows the technical flow chart of this paper, where the blue arrows indicate
the method flow, and the yellow arrows highlight the novel contributions we made.
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Figure 1. GSAW-ICP algorithm flow chart.

2. Related Work

The ICP (Iterative Closest Point) algorithm is a widely used technique for aligning
two 3D point clouds, and has been studied extensively in the field of computer vision and
robotics. Some variations to this algorithm are as follows. Adaptive weighted ICP algorithm
based on local features: the traditional ICP algorithm often requires global optimization,
resulting in huge amount of calculation. This new method limits the matching to the search
radius based on local descriptors, and uses a weighted strategy based on a sparse matrix
update to achieve fast, accurate, and robust point cloud registration. Adaptive Weighted
ICP Algorithm Combining Deep Learning: by extracting the local features of point clouds
using deep learning technology, and combining adaptive weighted ICP algorithms for
point cloud registration, this method can cope with complex point cloud shape changes and
noise interference, greatly improving the efficiency and accuracy of point cloud registration.
The adaptive weighted ICP algorithm based on hierarchical strategy divides the point cloud
into multiple levels for registration, and uses high-level information to guide low-level
registration, achieving fast and accurate registration. Adaptive weighted ICP algorithm
combined with other algorithms: Matching with other algorithms, such as SIFT, SURF,
etc., improves the efficiency and accuracy of point cloud registration. However, several
challenges still exist in the current state of research. One of the main issues is the sensitivity
of ICP to initial alignment, which can lead to suboptimal results or convergence to a
local minimum. Various methods have been proposed to overcome this problem, such
as using feature-based correspondences or incorporating priors on the transformation.
A 3D extension of image matching, feature-based registration likewise involves the two
phases of feature matching and geometric estimation [12]. In feature matching, the 3D
extension initially realizes via feature detectors [13], such as KeypointNet, MeshDoG, and
USIP, before passing through intrinsic shape features (ISS) [14-16]. The important points
are given high discrimination by encoding each one into a small feature vector based on
the descriptors, and examining its local surface histograms (FPFH) [17], 3DMatch [18],
3DSmoothNet [19], FCGF [20], and SpinNet [21]. Finally, pairwise similarity [22] and
chi-square test [23] calculations are used to determine the one-on-one correspondence.
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Another challenge is the computational complexity of ICP, especially for large-scale
point clouds. Although several optimizations have been proposed, such as hierarchical
or parallelized implementations, the scalability of ICP remains a limitation for practical
applications. A significant amount of work has reportedly been undertaken to increase
the robustness of classical ICP in order to solve this issue. In their pruning technique,
Chetverikov et al. [24] suggested preserving selected point pairs with the shortest distances,
while discarding other data after each iteration. The rigid registration problem was pre-
sented by Granger and Pennec [25] as a maximum-likelihood estimation, and was resolved
using the EM algorithm. To lessen the effect of noise and outliers, another probability
technique (based on Gaussian mixture representation [26]) has been employed.

Furthermore, ICP assumes that the correspondences between the two point clouds are
one-to-one, which may not be true in some scenarios, such as in cases of partial overlap
or occlusion. Several extensions of ICP have been proposed to handle such cases, such
as nonrigid registration or using probabilistic models, but they are still an active area
of research. Several approaches for handling extremely high outliers have recently been
put forth. For instance, making sure that outlier removal (GORE), which is reliable for
99% of outliers, finds the genuine upper and lower boundaries of outlier based on the
disagreements between the following two. In such cases, we would aim to transform the
efficiency index complexity from o(2N), which exhibits a certain level of complexity, to
polynomial complexity o(N?), through the utilization of two innovative concepts, namely
the correspondence matrix and the augmented correspondence matrix. These novel notions
enable us to establish stringent boundaries, which can accurately capture the computational
characteristics of the problem at hand. A weighted g-norm estimation uses either trun-
cated least-squares (TLS) [27], single point RANSAC [28], or an improved M-like robust
estimation to address the scaling, rotation, and translation estimation subproblems of the
7-DoF/6-DoF registration issue [29], in order to condense the parameter space. Despite the
good performance, the alignment accuracy of these methods is not as good as the point-
based alignment. As a result, feature-based registration is frequently referred to as coarse
registration, which leaves point-based registration a good initialization refinement method.

The most popular technique for geometric estimation is the rigid estimate of trans-
formed random sampling results (RANSAC), with six degrees of freedom (DoF) based on
robust fitting technology [30] and its derivatives. The model fitting and random sampling
steps are alternated during the threshold convergence. However, the computing complexity
of the the RANSAC-type approaches grows exponentially with the rate of exceptions. The
3D feature matching algorithm is substantially more challenging than the Scale Invariant
Feature Transform (SIFT) and Radiation-variation Insensitive Feature Transform (RIFT)
algorithms; because 3D feature matching algorithms can better solve problems, such as
uneven density, lack of texture and noise. As a result, there are many outliers in the initial
response set (often >95%). In this situation, it could take tens of minutes (or possibly hours)
for RANSAC type approaches to arrive at a rough solution, which makes them impractical.

To address these challenges, recent studies have proposed novel approaches to ICP,
such as using learning-based methods, or integrating semantic information. For example,
deep-learning-based approaches have been used to learn robust features or to predict cor-
respondences between the two point clouds. Another approach is to incorporate semantic
information, such as object-level or category-level knowledge, to guide the alignment process.

Overall, while ICP has been a fundamental technique in 3D point cloud processing,
there are still many challenges and opportunities for further research and innovation. Based
on the discussion of the above problems, this paper has summarized the shortcomings of
the above methods. When dealing with point cloud registration of remote sensing images,
there will be more disturbances, such as outliers and overlapping values in the space.
These problems will lead to a reduction in registration accuracy, which will further affect
the detection rate of the overall spatial information. For objects whose shape needs to
be determined in advance, if ground objects have a fixed shape (such as airplanes, ships,
houses, etc.) then the accuracy of remote sensing images can still be guaranteed. In the
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case of significant deviations, such as in woodland, the characteristics of dense and sparse
textures vary. Furthermore, extensive research has been conducted on employing the
ICP algorithm in the context of multisensor data fusion. This application involves the
alignment of data acquired from distinct sensors, such as optical and radar sensors. This
can potentially improve the accuracy of remote sensing applications, such as land cover
classification and change detection. Based on the findings of the above problems, when
designing the ICP point cloud registration method for remote sensing applications, this
paper fully considers the judgment of the method’s convergence area caused by the object’s
deformation. At the same time, the designed method should have a good adaptive weight
iteration process to adapt to the processing of outliers and overlapping values in complex
spatial remote sensing scenarios.

3. Classical ICP Revisition

The problem of calibrating two point clouds is to find the rotation and translation that
maximize the overlap between the two clouds. In this chapter, the classic ICP [3] algorithm
will be introduced.

3.1. Iterative Nearest Point

The fundamental tenet of the ICP algorithm is that the original point cloud P and the
target point cloud Q must match within specific bounds. Finding the nearest neighbor
point (p;, q;) is the first step in determining the best matching parameters R and ¢ in order
to produce the best error function. The following limitations apply:

E(R1) =) llai— (Rpi + )| )
i=1

where p; is the point from the source point cloud P, g; is the point corresponding to Q in the
target point cloud p; to be matched, R is the rotation matrix, and ¢ is the translation vector.
ICP has developed a wide range of versions that vary in the information matrix w;; or
the heuristics used to detect correspondences, enhancing their resilience and performance
over time. This issue can be simplified to the original ICP formulation with a condensed
Euclidean metric between related points, using wj; as the identity. One must choose an
wjj such that the point-to-plane metric is minimized, and that its eigenvalues along the
normal direction are all zero. The acquisition of the original point set, identification of the
related point set, computation of the transformation matrix, and comparison of whether the
distance between the two points is larger than the threshold are the important components
of the algorithm:

19§ T Pl > e @

As illustrated in Figure 2, the two sets of solution point clouds should totally overlap.
Space remote sensing involves a lot of noise interference, overlapping scan point values,
and missing values. These issues may result in corresponding mismatching, as well as
having a significant impact on the success or failure of alignment. As a result of the corre-
sponding noise and mismatching, the two correspondences are not the same point in the
corresponding space, though the algorithm will treat them as such. As a result, Equation (1)
does not always hold, leading to the introduction of the corresponding minimization ob-
jective function, which is followed by the solution of the associated rotation matrix and
translation vector problem.

Figure 2. Ideal case of point cloud alignment.
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In two sets of point sets, P = {x1,---,x,} and Q = {y1,---,y,} provided by R,
under specific restrictions. To determine the ideal matching parameters R and ¢ so as to
produce the ideal error function, as well as locate the nearest neighbor point (p;, g;), the
following constraint equation can be used:

a
. . 2
min (minyco |Rx; + ¢~ y[)2 + L) (R) ®)
7 i=1

where I, (+) is the indicator function formula of the special orthogonal group so(d). The
definition of I;,(4 () is Equation (4), and minyeql|Rx; +t —y|| is the distance from the
transformation point Rx; + f to the target set Q. The translation vector t and rotation matrix
R are both listed as parameters for this function.

0,ifRTR = Ianddet(R) = 1
~+o00, otherwise

Iso(d) (R) = { 4)

where [ is a matrix of R3*3 and det(-) is a determinant of a matrix.

3.2. Iterative Nearest Point

When choosing point sets for feature distance determination, the ICP algorithm and
some ICP improved algorithms use representative point sets rather than point sets that
are randomly chosen. This can reduce the amount of calculation to some extent, while
also reducing the outlier (uneven distribution) of point sets that is brought on by the offset.
However, the above problem suffers from a small convergence domain, as well as from
a poor robustness of the algorithm. The total registration effect and model effect will be
impacted by this. We discovered through investigation that the point cloud concealed the
true surface. These structured points might have been chosen as representative points.
The aforementioned example locations possessed improved normal vectors and curvature,
contributing to a more effective constraint on the model. Smaller dots were observed to
exhibit higher curvature. Moreover, the structured points fulfilled the smaller convergence
domain constraints imposed by the model. The selecting process should accommodate
the points’ balance and observability. If the aforementioned conditions are not taken into
account, it is crucial to consider the observability of the point cloud image in both direction
X and direction Y. Neglecting this aspect can lead to a change in the resulting outcome.
We built a mathematical model of the global structure with the following definitions:

= ):PiEPk Wi(x)((x (_ ?1) ) 7’) ®)

1% (x

Weight A is defined as:
Wi(x) = e lx=pill*/i2 (6)

The hidden surface of point cloud set P was represented by IPk(x) = 0, while its
subimage was made up of data from the previous n frame, and its point p; normal vector
was represented by n;. The hidden surface of the point cloud set Py was located at a distance
of I’ (x) from point x in space R®. The purpose of weight W;(x) was to only choose a
portion close to point x, such that Formula (5) could be used to reconstruct the surface. The
weight W;(x) gradually decreased as the distance from point x on the surface increased.
The projection y; of matching solution point x; on the surface was:

X; = Rx; + LY, =X — 17 (fi)ﬁi 7
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For a new frame of point cloud data Sy, solve the transformation matrix by minimizing

the following function:
— 2
Y, ((Rxi+t—yi) n;) ®)

x,ESk

A fresh frame of data was represented by S;1, I’k(x;) was the distance from the
surface to point x; in the current frame S, and Zi was the normal vector of the point closest
to point x; in frame Py. The benefit of GSAW-ICP was that it could produce robust results
without the necessity for feature extraction and point cloud segmentation. When a solid
beginning value was assured, it had strong accuracy and convergence. GSAW-ICP fully
utilized the point cloud structure information, eliminating the original ICP technique that
is prone to running into the local optimal problem, as opposed to merely reflecting on the
point-to-point and point-to-plane distance limitations in the constraints.

3.3. Point Cloud Alignment Process

The point cloud centralization phase, which involves determining the locations of the
centers of two sets of point clouds, must be carried out using the original ICP algorithm.
All of the point pairs included in the calculation are from the set C, meaning that C is the
total number of related points.

Ho = |C| anI/‘P f ZE )

Aligning the coordinate system’s origin requires subtracting each point’s matching
point cloud center and unifying the coordinate system.

Q' = {ai— o} = {43} P' = {p;— e} = {V} (10)
The goal function is then solved using an orthogonal Procrustes method Formula (11):

E(Rt)= ¥ g —Rp;—t|?
(ij)eC

| X||p = V/trace(XTX) = /lezj
L

(11)

where the first item to the right of the equal sign indicates that the point cloud is extracted
from Q and organized in matrix form, the points in the P matrix are transformed by the
rotation matrix R, and both the rotation matrix R and the error function E(R, t) only take
into account the rotation matrix R. equal to the difference between is:

E'R)=[g'y 4] =R[F'y ]I (12)

The 2-norm calculates the square of the value, which is then solved using SVD. The
F-norm determines the difference between corresponding points. Make the covariance
matrix by computing;:

w= Y 7] (13)
(i,j)eC

Singular values, which are regarded as the representative values of the matrix, can be
utilized to represent the information contained in the matrix when using SVD to compress
image data. The singular value represents more information the greater it is. Therefore,
you simply need to restore the top few greatest single numbers in order to restore the data
itself. Find the target point graphically as shown in Figure 3.
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Figure 3. Find the target point graphically.

We’ve used a graphic to illustrate this relationship. It is typically impossible to identify
the appropriate relative rotation and translation in one step without knowing the correct
correspondence. As a result, it is important to assume that two unknown pieces of data are
related and to iterate constantly. In Figure 4, the alignment diagram is displayed.

Figure 4. Iterative alignment schematic.

The error is taken to be limitless throughout the process of finding a solution. Deter-
mine the point that corresponds to the error that exceeds the specified threshold, compute
R and t using SVD, apply R and ¢ to the point that has to be aligned, compute the error
function, and iterate continuously. End the iteration when there is no longer any change in
the relationship. By adjusting the construction error function’s difference, we were able to
decrease the number of sampling points, and by sampling the normal vector space, we can
guarantee the upward continuity of the normal vector, better preserve regions with evident
curvature changes, and smooth out regions with sparse features.

The number of sampling points was high where the curvature varies in Figure 5,
which could help to ensure that the object’s properties were not lost. Here, the benefits of
GSAW-ICP were further illustrated. For areas with significant changes in curvature, normal
vector space sampling was more aligned. By examining whether this portion of the area
formed a full figure and the thickness of the associated item, we were able to determine the
impact of the algorithm on the circular area, in accordance with Figure 6.

Uniform sampling Normal vector sampling

Figure 5. Schematic diagram of uniform sampling and normal vector sampling.

Figure 6. Schematic diagram of initial value iteration.
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The point set to be matched was intersected with the GSAW-ICP, which was projected
along the point normal vector. The schematic diagram of normal vector projection is shown
in Figure 7. Smooth structural entities produced slightly better convergence results than
other ICP techniques. Due to curvature constraints weights, the convergence outcomes for
noise or complicated structures (overlapping points and outliers) will be determined, in
order to achieve the optimization impact.

? ™ Input point
[‘ Corresponding point

Figure 7. Schematic diagram of normal vector projection.

GSAW-ICP could recognize anomalous spots and adaptively set the threshold. The
threshold was set to blue correlation in Figure 8 because the blue value was less than the
red value. The selection was rejected when the feature restrictions between nearby point
pairs were considerably different, as seen in Figure 9.

/

Figure 8. Schematic diagram of exception handling.

Figure 9. Schematic diagram of large differences in feature constraints.

4. Loss Metrics for Adaptive Weight Adjustment

We have primarily introduced a loss metric method that made use of adaptive weight
modification in this section. In the experimental dataset, the method efficiently and adap-
tively modified the corresponding weights for anomalous, overlapping, and noisy data.
The first subsection explains the justification and problem statement for developing adap-
tive weight measurements. We explain how the rotation matrix R, the translation vector
t, and the iterative update for adaptive weight adjustment were derived in the second
subsection. The viability of the suggested strategy is examined in Section 3 of this chapter.
Designing an adaptive weight metric that is effective and robust to the various forms of
data in the experimental dataset is the main objective of this section.

4.1. Dealing with Outliers

Given that the ¢/, distance is used as a criterion, classical ICP may produce results with
outliers and partially overlapping mismatches. In this part, we suggest the GSAW-ICP
algorithm, an adaptive weight-based robust ICP algorithm. GSAW-ICP can automatically
perform sparse learning to fix the weights of related point samples by using adaptive
neighborhood weight learning, increasing the robustness of the ICP algorithm.

GSAW-ICP has two phases, similar to conventional ICP. Finding the correlation be-
tween the source point set and the target point set, where c, (i) is the starting point and z is
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the current iteration number, is the first stage. The first step’s problem is the same as the
basic ICP problem, which can be stated as follows:

co(i) = argmin || (Re_1pi+ £=1) = gy |2 +1% () i~
stcx(i) €1,2,...,Ng,i=1,---,Np
The K-D tree algorithm approach or an effective closest point search method can be
used to solve the aforementioned formula. Robust rigid body transformation calculations
are the major focus of GSAW-ICP. The corresponding formula is represented as follows:

L(R, t,w) = argmin (wi | (Rpi +£) = qe(py 11>+ || wi H2>
: (15)
n
st. Y wi=1,0<w; <1,RTR = I;,det(R) =1
i=1

It

4.2. Update Iterative Process

In this section, we suggest an iterative method to maximize the objective function
Formulation (15) presented in the formulation above. For the rotation matrix R, the
translation vector ¢, and the adaptive weight vector w, we have provided the derivation of
the update iteration process for the above parameters.

e  Update the rotation matrix:
When fixing t and w, remember that Formula (14) only has one term. Given that

Formula (14) and R are connected, we can write it as follows:

.
| Rxi—yi |> = (Rxi—yi) (Rxi—y;) = (x]R" =y ) (Rx; — ;)
=x/ R"Rx; —y!Rx; —x/ RTy; +y/ y; (16)
=x/xi—y/ Rx; —x/ RTyi + y/ yi.

T

where x. R"y; is a scalar. Therefore, the following results can be obtained:

x RTyi =y R, (17)
Rewrite Equation (17) as follows:
| Rxj —yi > =xx =2y Ry +y/yi (18)

We removed the unnecessary expression of R by substituting Formula (18) for Formula (14),
and this approach had no impact on the minimization solution when the formula was pushed.

n
R = argmin ) —2wy; Rx; +y || w; |2
= (19)
= argmin ) w;y, Rx;.
i=1

According to the properties of the rotation matrix, the form of the Formula (20) is:
n
Y wiy Rx; = tr(WYTRX) - tr(RXWYT> (20)
i=1

Among them, W = diag(wy, wy, ..., wy). S = XWYT is the weighted covariance
matrix in this instance. Singular value decomposition should then be applied to S, to yield:

s=uy v’ (21)
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Substituting Equation (21) into Equation (20) gives:
tr (RXWYT) = tr(RS) = tr (ZVTRU> (22)

The matrix M = V' RU is orthogonal because, according to Formula (22), R, U, and
V are all orthogonal matrices. M confirms that the matrix’s rows and columns are all
orthogonal vectors, then |m;j| < 1. Representing the diagonal elements of the singular
value matrix as 01,09, ...,0; > 0, we can derive:

d d
tr(ZVTRLI> — (M) = Y oimy < Yo (23)
i=1 i=1
The best solution of Formula (19) can be obtained when m;; = 1, as demonstrated
using Formula (23).
M=I=V'RU=R=vU" (24)

Ris an orthogonal matrix that can be utilized as a rotation matrix or a reflection matrix
in Formula (24). By applying the following conditional Formula (25), we can tell them
apart.

T _ . . .
{det(VU ) = —1, R is the reflection matrix 25)

det(VU') = +1, R is the rotation matrix

R might be a rotation or reflection matrix if the two point clouds are coplanar but
not collinear; these possibilities will be covered and examined later. The following form
D = diag(1,1,det(VU")) can be used to express it for processing, and the rotation matrix
can be calculated as follows:

R=vDU', (26)

e  Update the translation vector:

When R and w are fixed, the partial derivative of t in Formula (15) is:

n n n 27
= 2t(.z wi> +2R<' wipi) —2 ) wife(p) @)
i=1 i=1 i=1
Taking the partial derivative of Formula (27) as 0, we can obtain:
o Limi WiPi o Y Widi
t=7—-Rp,p === 4= 55 28
q—Rp,p Y w; q Y w; (28)
e  Update the adaptive weight vector:
The ith point cloud pair’s registration error is expressed as follows:
ei =[| (Rpi+t) — g II? (29)

Solving w is comparable to optimizing the following issue when R and ¢ are fixed:
- 2
min wiei +v || wi || (30)
0<w;<l,w'1=1;2
After algebraic operation, we can obtain:

. 1 e
min 2 [ w+ 2 13 (31)

0<w;<l,wl1=
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The constraint problem’s Lagrangian function is thus defined as follows (31):
_1 € 2 T T
L(w, A, o) = 5 | w+ 2 153 A(w 1) oc'w (32)

where A € Rand ¢ € R are the respective scalar and vector components of the Lagrange
coefficient. Since the constraints include inequality constraints, KKT (Karush-Kuhn-Tucker
Conditions) conditions must be met in order to solve the constraints using the Lagrange
multiplier method. The following KKT requirements are met by Formula (32):
dL(w,A0)
d(w)
w; 20 (33)
o > 0
w;io; = 0

:O:>wi+%—/\—c7i:0

Differentiating w; and setting it to zero, we obtain:
Wi =A+0;— - (34)

It is noteworthy that we can reach the best solution of w; under the KKT condition
w;io; = 0:

e
w; = max </\ - 2;,0) (35)

w should be bound by k nonzero components because our registration approach tends
to learn a sparse weight vector w to totally remove the detrimental influence of excessively
noisy data. Without loss of generality, we assume alignment errors e; < e,...,< ey, in
ascending order. We have wy > 0 and w1 = 0, since w only has k nonzero components.
The expression that results is as follows:

we>0 =A-5E>0 2%
W S0 = A= %L <0 (36)

The expression of parameter k can be determined if parameter A is set as its upper
bound, in accordance with Formula (36), and the corresponding constraint conditions are
represented asw ' = 1:

%( —“)—1#)\—1 1+iﬁ (37)
i=1 2v) N =27

Then, the result of integrating Formulas (36) and (37) can be deduced:

*ek -5 Z e <7 < €k+1 Z e (38)

The parameter 7 is set as its upper bound in order to obtain the best solution with
exactly k nonzero terms w;:

k
Y= *ek+1 Z € (39)
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We can directly solve w; using the following strategy, substituting the parameters A
and v from Formula (37) into Formula (40):

Ck+1—Ci i<k
k 7 -
w; = { ka1 (40)
0,i >k

This technique successfully distinguishes outliers from noise, as illustrated in
Formula (40); when i < k, the weight corresponding to the bigger alignment error is
allocated to a smaller value. It has been demonstrated that the GSAW-ICP method can
effectively manage noise and outliers from a theoretical perspective. When i > k, we
can reduce extreme noise point pairs by setting the value of w; to zero, such that only k
point pairs with the smallest alignment fault are taken into account for registration. With
regard to space remote sensing photos, the aforementioned method’s design may effectively
address the issues of outlier, noise, and outlier processing.

4.3. Update Iterative Process

The accuracy and robustness of registration are to be improved, in addition to im-
proving the processing of noise, outliers, and overlapping values in spatial remote sensing
images, using the novel ICP algorithm (GSAW-ICP) that has been proposed in this study.
We performed a feasibility analysis for the GSAW-ICP algorithm’s primary improvements,
with the following results:

To describe a curvature- and normal-vector-based model, the rigid body transforma-
tion model (which has typically been used in traditional ICP methods) was predicated on
the idea that the relative positional relationship between the target point cloud and the
reference point cloud never changes. Although the item may be bent, stretched, or other
forms of deformation in actual applications, these deformations frequently influenced the
accuracy and robustness of registration. The curvature- and normal-vector-based model
we have presented takes object deformation into account, which could more accurately
characterize the deformation relationship between the target point cloud and the refer-
ence point cloud, increasing registration accuracy. Related Evidence Section 4.2 provides
theoretical justifications.

On the use of an adaptive weight adjustment in a loss metric model, by excluding
comparable points with significant mistakes or positional biases, some ICP variations
achieved resilience. However, numerous studies have demonstrated that these techniques
are challenging to fine-tune for successful outcomes. These techniques might also have
made it more likely to become caught in local minima. In contrast, our approach employed
a dynamic threshold strategy to gradually penalize outliers. Our registration model per-
formed better in both accuracy and robustness, compared to robust ICP. This was made
possible by our adaptive, robust model, which was essential to the registration procedure.
Our method’s update iteration process had been demonstrated on a theoretical level, which
gave the algorithm solid theoretical backing, as shown in Section 4.2.

The most popular techniques for geometric estimation are the six-degrees-of-freedom
rigid-based robust fitting methodology estimates transformed random sampling results
(RANSAC) and their derivatives. Model fitting and random sampling stages alternate
during threshold convergence. However, the computing complexity of RANSAC-type
algorithms increases exponentially with the outlier rate. The 3D feature matching algorithm
is substantially more challenging to use than the SIFT and RIFT algorithms; the causes of
this are uneven density, a lack of texture, and noise. As a result, there are many outliers in
the initial response set (usually >95%). RANSAC-type algorithms can take tens of minutes
(or even hours) to arrive to a rough solution in this situation, which makes them impractical.

With the improvements in the aforementioned two areas, our algorithm operated more
reliably and effectively while processing spatial remote sensing data. For the fourth chapter,
we conducted a substantial number of tests and comparative analyses to confirm the efficacy
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and superiority of our algorithm, in order to confirm its viability. To further demonstrate
the feasibility and academic nature of the algorithm, we also combined theoretical analysis
and model generation.

5. Experimental Results and Analysis

Herein, we have first evaluated the surface reconstruction model of GSAW-ICP’s
convergence domain and convergence rate in comparison to standard point-to-point and
point-to-surface distance metrics. Next, we assessed how GSAW-ICP manages outliers
and partial overlaps. We contrasted the GSAW-ICP method with a few more sophisticated
algorithms in terms of index comparison; RSME, K value, goodness of fit (R2), a total sum
of squares of deviation (SST), and temporal comparison were the primary topics covered.
Additionally, we creatively suggested two assessment indicators to assess the algorithm’s
overall impact: the alignment value of estimated inliers and ground truth inliers, and the
value of eliminating overlapped areas. Two new metrics have been helpful in evaluating
how well the algorithm performs. We finished up by running a simulation experiment.
We started by rendering a simple point cloud registration on the data set. The impacts
of anomalous processing were then compared for various data that contained noise and
outliers, in order to show the GSAW-ICP’s robustness. Finally, we showed the registration
effect in various scenarios using real point cloud data.

The more traditional EPFL dataset [31], the KITTI dataset [32], and self-test data
were used in our experiment. The operating system used the Intel(R) Core(TM) i7-6200U
CPU, 2.4 GHz, and 8GB RAM, together with MATLAB R2020a, Python3.8, C++, Eigen,
MATLAB point cloud data box, PCD, and other tools. The Swiss Federal Institute of
Technology produced the open EPFL dataset with the goal of offering high-quality, massive,
multidomain data resources for scholarly research. This data set included data sets from
computer vision, natural language processing, machine learning, biomedicine, physics,
and other domains, in addition to including image, text, video, and other media, as well as
biological and physical data. The broad application domain and good data quality of the
EPFL dataset were its distinguishing features. To guarantee the accuracy, completeness,
and reproducibility of the data, the data collecting and processing methodology for this
dataset closely adhered to the standards and procedures of scientific research. The dataset
also supported numerous data formats and multilingual data, giving researchers a more
practical and adaptable approach to using the data. There is also a video dataset under this
dataset, including over 4000 hours of video data. A popular computer vision dataset called
KITTI included a lot of stereo images, laser point clouds, camera calibration parameters,
and other information. This dataset, which was produced collaboratively by Germany’s
Max Planck Institute and the Karlsruhe Institute of Technology, was primarily utilized for
autonomous vehicle research. This dataset included a wide range of settings, including
urban, rural, highway, etc., with various types of roads, weather, and traffic. The KITTI
dataset was a collection of around 45,000 RGB and grayscale photographs. The shooting
angles from front to back were 0 degrees, +40 degrees, and —40 degrees, and the size of
each image was 1242 x 375 pixels. Lidar point cloud data from various road scenarios
(including point cloud coordinates, reflectivity, and labels) were included in the KITTI
collection. Tens of millions of data points with three coordinate values and a reflectance
value made up the total amount of data. Additionally, the KITTI dataset comprised the
internal and external camera calibration parameters, such as the camera’s focal length, the
location of the optical center, the rotation matrix, and the translation vector. Data from
images and point clouds could be transformed into 3D space using these parameters.

Perform point cloud registration experiments on monkey models from the EPFL statue
dataset, we first compared the registration results. In more detail, the source point cloud
was made up of the first 60% of the whole model’s points, while the target point cloud
was made up of the remaining 60%. A rigid transformation ([0°, 20°], [20°, 40°], [40°, 60°])
was applied on the target set at random, with the overlap of this pair only being about 33.
The experimental results are presented in Figure 10 to demonstrate the advantages of our



Remote Sens. 2023, 15, 3185

15 of 26

suggested model based on curvature and normal vectors over point-to-point and point-to-
plane models, as well as the rotation invariance of the GSAW-ICP algorithm. Among the
eight approaches that were examined, our GSAW-ICP obtained the best RMSE accuracy
while having a significantly shorter running time. Despite the ICP method’s excellent
robustness, the small convergence pool prevented it from achieving good registration.
No initialization data was supplied throughout this registration process. Compared to
ICP, ICP-], and its accelerated variations, symmetric ICP performed significantly better.
To eliminate outliers, it relied on distance and normalcy restrictions. It could therefore
withstand outliers and partial overlaps.
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Figure 10. The relationship between the root mean squared error of the registration effect and the
signal-to-noise ratio. From (a-d), the number of iterations increases by 10, while (a) has 50 iterations.

Table 1 shows the outcomes of our registration trials using four spatial remote sensing
point cloud data that were registered under the KITTI dataset. The name of the comparison
algorithm is listed in the first column, and the number is listed in the second. To determine
the error between the registration effect and the genuine value for each piece of data, we
calculated the central target point of the corresponding point cloud data. The distance
error in columns 4 and 5 and the error rate in the center were used to calculate the error;
the lower the value, the better. It is evident from the trials in Table 1 that the GSAW -ICP
algorithm outperformed the other four approaches in terms of distance error and center
error rate, as well as its ability to manage the registration of spatial remote sensing data.

The comparative results of the elimination values in the overlapped regions of various
algorithms are shown in Table 2. This result indicates that the elimination value of the initial
model could not satisfy the ideal model iteration of the iterative convergence technique. The
more information that could be employed in the original model, the higher the elimination
value was. The feature description was worse the less points it had. To some extent, it
served as a reflection of the quality of the constraint convergence model. The alignment
values of the interior points were estimated using various techniques, and the actual interior
points are shown in Table 3. There were discrepancies between the actual mapping and
registration procedure and the true value of the space object after the image mapping
relationship of the sensor. It was possible to determine the mapping transfer error of the
registration process by comparing the alignment of the estimated inliers output from the
registration results with the object’s ground truth, which served as an excellent example for
enhancing the model’s mapping, calibration, and registration.
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Table 1. Comparison results of initial registration center and real data center.

Dataset 1 Dataset 2 Dataset 3 Dataset 4
Algorithm  Num  Center . ppp o Center o e Center o pEr ST pic DER
Coordi- o Coordi- o Coordi- o Coordi- o
(m) (%) (m) (%) (m) (%) (m) (%)
nates nates nates nates
(2.136, (2.768, (6.309, (—1.811,
1 37.054) 0.644 5.04 42473) 3.317 15.89 50.831) 0.621 3.69 39.733) 1.082 7.89
(3.002, (2.613, (4.193, (—0.732,
ICcpP 2 35.207) 1.38 10.81 36.703) 2.002 9.59 45.645) 1.373 8.17 35.737) 3.029 22.34
(6.199, (7.632, (5.706, (2.740,
3 41.047) 0.421 3.30 47.041) 0.558 2.67 39.449) 0.337 2.01 38.105) 0.927 6.84
(1.636, (2.459, (6.304, (—2.178,
1 35.959) 1.013 7.93 41.404) 2.483 11.89 49.974) 0.336 2.00 39.789) 0.824 6.07
(3.990, (3.031, (3.565, (—0.487,
AA-ICP 2 37.417) 1116  8.74 35.781) 2.740 13.13 44.726) 0.313 1.86 35.942) 2.718 20.5
(6331, (7.264, (5.891, (2.664,
3 41.545) 0.135 1.06 16.621) 0.788 3.77 38.915) 0902 536 38.137) 0.992 7.32
(1.697, (0.166, (6.550, (—2.910,
1 35.626) 1.352  10.59 40.232) 0.144 0.69 49.360) 0.883 525 39.365) 0.230 1.69
(3.170, (3.875, (3.221, (—0.423,
Sparse ICP 2 37.434) 1.30 10.18 38.937) 0.566 2.71 45.164) 0.534 3.18 36.913) 1.962 14.47
(6.250, (7.603, (5.817, (2.735,
3 41.242) 0.227 1.78 46.798) 0.725 3.47 39.178) 0.630 3.75 38.065) 0.894 6.60
(1.487, (0.412, (6.617, (—3.056,
1 36.552) 0.411 3.22 40.083) 0.358 1.71 48.378) 1.867 11.11 39.482) 0.416 3.07
(3.839, (3.631, (3.301, (—0.273,
Robust ICP 2 36.024) 0.289 2.26 37.058) 1415 6.78 46.799) 2167  12.89 38.682) 1.476 10.89
(6.222, (6.441, (5.438, (3.226,
3 41278) 0.189 1.48 45.726) 1.850 8.86 39.942) 0.226 1.34 38.306) 1.022 7.54
(1.387, (0.312, (6.221, (—2.856,
1 36.852) 0.157 1.23 40.483) 0.156 0.75 50.131) 0306  1.82 39.012) 0.213 1.57
(3.839, (3.665, (3.157, (0.073,
GSAW-ICP 2 36.324) 0.016 0.13 38.581) 0.155 0.75 44.775) 0.179 1.07 38.182) 1.03 7.60
(6.322, (7.321, (5.677, (3.226,
3 41578) 0.150 1.17 47519 0.157 0.75 39.523) 0.258 1.53 38.506) 1.221 9.01

Table 2. Comparison of running results between GSAW-ICP and several typical registration algorithms.

Evaluation Index (Overlap Area Knockout Value)

Algorithm
Bimba Children Dragon Angle Bunny

ICP 25.3 324 27.4 28.3 33.6
ICP-/ 232 26.1 25.1 26.8 30.2
AA-ICP 27.7 24.6 26.3 27.1 39.4
Sparse ICP 21.6 17.2 20.1 22.9 243
Fast ICP 13.2 14.6 12.8 17.6 18.4
Robust ICP 16.9 16.4 13.5 15.8 19.9
Symmetric ICP 15.7 13.1 15.3 18.2 21.5
GSAW-ICP 111 10.7 12.8 15.3 18.9

Our experiments in Tables 2 and 3 found that the two new constraint variables of
(OAKYV) Overlap Area Knockout Value and (GT) Ground truth interior points exhibited
a better optimization effect on the convergence of the model. During the iteration of the
algorithm, the size of the convergence domain determined the number of elimination
values of the algorithm, and more elimination values are less effective for the description
of the model. The GSAW-ICP algorithm combined the curvature and normal vector of
the model to better filter the elimination values and achieve the purpose of improving the
alignment. In addition, the Ground truth interior points were able to play a better role in
constraining the accuracy of the eigenvalues. In the adaptive weight update phase, Ground
truth interior points played a good role in optimizing the deviation values of the model.
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Table 3. Comparison of running results between GSAW-ICP and several typical registration algorithms.

Evaluation Index (Ground Truth Interior Points)

Algorithm
Bimba Children Dragon Angle Bunny

ICP 14.62 20.31 18.28 17.24 21.27
ICP-/ 15.71 21.56 17.89 13.51 22.14
AA-ICP 18.92 23.64 23.51 20.01 26.41
Sparse ICP 16.21 21.28 20.37 18.29 22.41
Fast ICP 19.27 26.83 28.41 21.25 30.58
Robust ICP 19.89 25.89 28.22 22.18 28.89
Symmetric ICP 18.26 22.17 26.19 21.16 28.75
GSAW-ICP 19.58 27.12 27.81 2271 29.61

After the comparative analysis in Tables 2 and 3, we concluded that the GSAW-ICP
algorithm had better robustness and accuracy compared to other advanced algorithms.
Specifically reflected in the OAKYV metric, the performance of the GSAW-ICP algorithm
on different models was reduced by about 18% on average, compared to other advanced
algorithms. In terms of GT metrics, the GSAW-ICP algorithm improved by about 6% on
average. To be able to better illustrate the overall superiority of the GSAW-ICP algorithm,
we summarized a ranking system by combining the quantitative analysis in Tables 2 and 3.
Under each model, we counted the average ranking of each algorithm. Eight algorithms
were rated from one to eight according to their values, with five models under each
table. We gave each model a weight of 0.2 in order to determine the ranking of the eight
algorithms, which have been arranged as indicated in Table 4. Smaller average ranking
values meant better performance.

Table 4. Comparison of running results between GSAW-ICP and several typical registration algorithms.

Average Ranking
Algorithm
OAKV GT Mean

ICP 7.6 7.6 7.6
ICP-1 6.2 7.2 6.7
AA-ICP 7.2 5.2 6.2
Sparse ICP 5 6.2 5.6

Fast ICP 2 2 2
Robust ICP 3.2 2.2 2.7
Symmetric ICP 3.4 44 3.9
GSAW-ICP 1.2 1.8 15

The data in the above table illustrates that the GSAW-ICP algorithm ranked first overall,
compared to other algorithms, with an average ranking of 1.5 in performance metrics under
each model. This shows that our algorithm had better accuracy and robustness compared
to other algorithms. In second place was the Fast ICP algorithm, which ranked second on
average for both performance metrics, and second overall. The outcomes of the GSAW-ICP
algorithm ablation experiment have been presented in Table 5. The technical index of
the traditional ICP algorithm is in the first row of the table, and the variant index is in
the second row. The performance index of the fundamental GSAW-ICP method that we
suggested is shown in the third row of data. The loss measuring method of adding adaptive
weight adjustment to GSAW-ICP is represented by the data value in the fourth line. The
method of adding the constraint model based on surface reconstruction after adding the
loss measurement method to GSAW-ICP is represented by the data value in the fifth row. It
is clear from comparing the results that the changes we suggested were able to improve the
ICP algorithm to different degrees.
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Table 5. Comparison of running results between GSAW-ICP and several typical registration algorithms.

Evaluation Index

Algorithm
0.02ADD 0.05ADD 0.1ADD Mean
ICP 26.23 66.38 89.21 60.61
ICP-I 3251 7241 91.52 65.48
GSAW -ICP 33.27 71.62 92.86 65.92
+ARC-Welsh 35.81 75.74 93.71 68.42
+Surface 42.61 78.47 95.72 72.27

In the second portion of the experiment, while other variables stayed the same, we
compared the effects of various SNRs on the registration accuracy of various constraints
(point-to-point constraint, point-to-plane constraint, and direct transformation). The root
mean-squared error of the mean result estimate of 500 separate trials was used in this paper
to assess the findings. The range of the signal-to-noise ratio was 0 dB to 30 dB. Figure 10
depicts the link between the signal-to-noise ratio and the root mean square error of the
registration effect.

As can be seen in Figure 10, the performance of the algorithm in this paper was better
than the other three methods. For the root mean squared error of the alignment results,
the performance of the other three methods was similar and tended to be stable. For
the RMSE of distance, the RMSEs of the above three methods no longer changed with
increasing signal-to-noise ratio because they did not take into account the constraining
effect of object shape on the overall convergence. Therefore, the GSAW-ICP method had a
higher alignment accuracy compared with the other three methods.

In the third section of the experiment, while other variables remained constant, we
compared the effects of various iterations on the registration accuracy of various constraints
(point-to-point constraints, point-to-plane constraints, and direct transformation). The root
mean squared error of the mean result estimate of 500 separate trials was used in this paper
to assess the findings. The range of the signal-to-noise ratio was 0 dB to 30 dB. Figure 11
depicts the association between the number of iterations and the root mean square error of
the registration effect.
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Figure 11. The relationship between the root mean squared error of the registration effect and the

signal-to-noise ratio. From (a—d), the noise interference increases by 5 db in sequence, while (a) has a
noise interference of 0 db.
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As can be seen in Figure 11, the performance of the algorithm in this paper was better
than the other three methods. For the root mean square error of the alignment results, the
performance of the other three methods was similar and tended to be stable. The RMSE
of the aforementioned approach stopped changing as the number of repetitions increased
until it reached more than 90. The GSAW-ICP method offered a greater registration accu-
racy when compared to the other three methods. The algorithm’s ability to adjust to the
speed and effectiveness of processing spatial remote sensing images was improved with
fewer iterations.

The fourth part of the experiment was the experiment of the simulation environment.
Both 2D and 3D images were used for registration simulation testing; Figure 12 depicts
the original image. Figure 13 displays the outcomes of the experiment with the 2D image.
As a test set for studies, the original image was rotated and translated at a specific angle.
The original image was gray, and the rotated and translated image was light red. Last but
not least, we randomly chose four spots from the original image to test the registration
impact. On the images registered at various angles and directions, there were matching
points corresponding to those points. Figure 13 displays the drawing in question.

S0 100 150 200 250 300 350 400

Figure 13. Image registration under different rotation angles.

We also applied the technique and rotated the image to find the registration impact
of the remote sensing image based on Figure 12. For aerial photography, precise region-
specific registration was necessary. Our registration algorithm successfully registered the
many reference locations we chose in Figure 12, and as demonstrated in Figure 14, they
may be precisely positioned in the actual area.

In addition, we used a 3D scanner to collect real data for point cloud image registration.
In this part of the experiment, in order to verify the registration effect of the algorithm
in real scenes, three sets of real point cloud images were collected for registration. We
conducted registration experiments on the site point cloud images of the three point clouds
and the TruSlicer images of the point clouds, respectively. For the convenience of distinction,
we added the corresponding blue points as centralized representations, which have been
recorded as the original point cloud 1, 2, and 3, respectively. The results are shown in
Figures 15-17. The TruSlicer images of the three point clouds are shown in Figures 18-20.
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Schematic Diagram of Control Point Alignment Results
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Figure 14. Remote sensing registration effect detection.

Figure 15. Point cloud map of the original site 1.

Figure 16. Point cloud map of the original site 2.
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Figure 17. Point cloud map of the original site 3.

Figure 18. Raw point cloud 1TruSlicer image.

Figure 19. Raw point cloud 2TruSlicer image.
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Figure 20. Raw point cloud 3TruSlicer image.

The GSAW-ICP algorithm was used for the registration of the above point cloud
(labeled 1.2). The effect diagram of the point cloud registration of the site is shown in
Figure 21. The red dots in the figure were conveniently selected for observation and
recording. After the registration process was completed for the convenience of recording,
the figure showed the matching state of the original 1.2 blue spots. The initial 1.2 point cloud
TruSlicer picture registration is shown in Figure 22. Figure 23 shows the registration effect
of the original site point cloud 2 and site point cloud 3. Figure 24 shows the registration
results of the original TruSlicer point cloud 2 and TruSlicer point cloud 3.

Figure 21. Original 1.2 site point cloud registration map.

The above experimental plots were obtained from measurements in a real environment.
We have experimentally presented the point cloud plots 1, 2, and 3 under one graph. In
Figure 25, we can observe that the red dots used as reference points are registered together.
In Figure 26, the TruSlicer image clearly shows the alignment results of the three point
cloud maps. The red part of the figure corresponds to the part of the point cloud map 3.
The blue part of the figure corresponds to the part of the point cloud map 1. The green part
of the figure corresponds to the part of the point cloud map 2.
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Figure 22. Original 1.2 point cloud TruSlicer image registration.

Figure 23. Registration of original 2 and 3 site point cloud images.

Figure 24. Registration of original 2 and 3 point cloud TruSlicer images.
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Figure 25. Registration of original 1, 2, 3 site point cloud images.

Figure 26. Original 1, 2, 3 point cloud TruSlicer image registration.

The aforementioned tests demonstrated that our GSAW-ICP approach could success-
fully register both 2D and 3D images. In 2D alignment experiments, we verified the rotation
invariance and translation invariance of the algorithm by translating and rotating them.
The GSAW-ICP algorithm had good alignment, even after two and four times magnifi-
cation. After different degrees of rotation and translation, the GSAW-ICP algorithm was
able to correctly align the control points in the image. We compared the registration errors
and deviations of five algorithms, including the classical ICP algorithm. The registration
accuracies of these algorithms are presented in Table 1. Our proposed GSAW-ICP algorithm
exhibited smaller errors compared to the other algorithms, performing well across all four
datasets. This indicates that our algorithm achieved superior registration results. As for the
comparison of convergence performance, we can refer to Figures 10 and 11. These figures
demonstrate the convergence performance of our proposed algorithm in comparison to
other constraint-based convergence methods. The images display the RMSE and SNR of
different algorithms as a function of iteration count. From the results, we observed that our
proposed method (represented by the blue curve in the figures) demonstrated favorable
constraint-based convergence. Furthermore, to validate the rotational and translational
invariance of the algorithm, we enlarged the original image in Figure 12 by a factor of
two and four, and performed registration after rotating it by 90° and 180°. The results, as
shown in Figure 14, confirmed that our algorithm exhibited good rotational and transla-
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tional invariance. The validation of the above process helps the algorithm to be applied
in real remote sensing scenarios, and our algorithm was still able to provide more stable
results when the video sensor was exposed to airflow bumps or other impacts. Under 3D
alignment experiments, our algorithm was able to maintain high accuracy alignment in the
face of complex point cloud image structures. Figures 15-26 show the swept results of the
point cloud images in a real environment with a more complex spatial structure and many
disturbances. The GSAW-ICP algorithm was capable of achieving alignment results not
only in the planar sense, but also in the face of point cloud sets in space. Many complex
conditions may arise in the real use of space remote sensing, and in some cases sensor
fusion technology is required to increase the algorithm'’s data processing level. We believe
that the GSAW-ICP approach can handle many issues in the remote sensing environment
because it has demonstrated strong robustness and accuracy in the aforementioned studies
for a variety of diverse environments and conditions.

6. Conclusions

This paper proposed a precise and reliable registration technique based on a mathemat-
ical model of the global structure. The model accounted for the rotations and translations of
normal vectors and curvatures, resulting in a wider convergence domain and effect. GSGAW-
ICP outperformed similar advanced methods in terms of registration quality, convergence
speed, and robustness to noise, outliers, and partial overlap. The paper also introduced a
loss metric with adjustable weights that could be adapted to the point set characteristics
and reduce the impact of overlap and outliers. Furthermore, the paper provided a strategy
for the iterative update process and a theoretical support for the optimality of GSAW-ICP.
The paper conducted extensive experiments on simulated datasets and demonstrated
the superiority of GSAW-ICP in registration accuracy and outlier handling. The paper
suggested that this method could be applied to high-precision registration tasks (such as
ground-air remote sensing).
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