
Citation: Yuan, Y.; Bai, H.; Wu, P.;

Guo, H.; Deng, T.; Qin, W. An

Intelligent Detection Method for

Small and Weak Objects in Space.

Remote Sens. 2023, 15, 3169. https://

doi.org/10.3390/rs15123169

Academic Editors: Yang Yang, Sanat

K. Biswas and Xiaofeng Wu

Received: 30 March 2023

Revised: 13 June 2023

Accepted: 14 June 2023

Published: 18 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

An Intelligent Detection Method for Small and Weak Objects
in Space
Yuman Yuan 1 , Hongyang Bai 1,* , Panfeng Wu 2,3, Hongwei Guo 1, Tianyu Deng 1 and Weiwei Qin 4

1 School of Energy and Power Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China; yym@njust.edu.cn (Y.Y.); njustghw@njust.edu.cn (H.G.); dty@njust.edu.cn (T.D.)

2 Harbin Institute of Technology, Harbin 150006, China; 21b918144@stu.hit.edu.cn
3 Shandong Aerospace Electronics Technology Research Institute, Yantai 264670, China
4 Xi’an Research Institute of High-Tech, Xi’an 710025, China; qww1982@nudt.edu.cn
* Correspondence: hongyang@njust.edu.cn

Abstract: In the case of a boom in space resource development, space debris will increase dramatically
and cause serious problems for the spacecraft in orbit. To address this problem, a novel context
sensing-YOLOv5 (CS-YOLOv5) is proposed for small and weak space object detection, which could
realize the extraction of local context information and the enhancement and fusion of spatial infor-
mation. To enhance the expression ability of feature information and the identification ability of the
network, we propose the cross-layer context fusion module (CCFM) through multiple branches in
parallel to learn the context information of different scales. At the same time, to map the small-scale
features sequentially to the features of the previous layer, we design the adaptive weighting module
(AWM) to assist the CCFM in further enhancing the expression of features. Additionally, to solve the
problem that the spatial information of small objects is easily lost, we designed the spatial information
enhancement module (SIEM) to adaptively learn the weak spatial information of small objects that
need to be protected. To further enhance the generalization ability of CS-YOLOv5, we propose a
contrast mosaic data augmentation to enrich the diversity of the sample. Extensive experiments
are conducted on self-built datasets, which strongly prove the effectiveness of our method in space
object detection.

Keywords: space object; object detection; feature fusion; data augmentation; convolutional neural
networks (CNNs)

1. Introduction

With the continuous development of science and technology, the exploration of the
space environment is gradually deepening. Satellites are widely used as infrastructure
for modern communications, navigation, surveillance, and reconnaissance. Therefore, the
number of satellites in space has increased dramatically, and a large quantity of space debris
and abandoned satellites have posed a serious threat to the security and stability of the
space environment. Figure 1 shows the growth curve of space debris quantities over time
and the total mass of all space objects in Earth orbit statistically exceeding 10,400 tons [1].
Therefore, the space object monitoring system has gradually become a hot direction in many
countries. The application of traditional telescopes in accurate positioning and continuous
tracking of natural celestial bodies such as stars and planets has been very mature [2], but
the movement of near-earth space objects such as artificial satellites, debris, and meteorites
are different from natural celestial bodies, which makes the traditional space monitoring
system unable to achieve effective performance. Currently, as an important information
source of space situational awareness, image sensor provides a solid data foundation for
space-based optical detection. It has intuitive, all-weather, and all-directional advantages,
such as ORS-5 and SBSS-1 of the United States. Therefore, space-based optical detection
system has been widely used in monitoring abandoned satellite debris, space threat object
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warning, space collision avoidance, satellite integrity monitoring, space debris warning,
and so on.
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will gradually diminish during multiple downsampling operations performed by the net-
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densely packed and small objects, leading to false and missed detection. Some typical ex-
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Traditional methods for object detection primarily focus on feature extraction (enhanc-
ing feature expression and resistance to distortion) and feature classification (improving
classification accuracy and speed). Consequently, researchers have proposed various forms
of features and classifiers, including SIFT [3], Hough [4], AdaBoost [5], DPM [6], etc.
However, traditional object detection methods using hard-crafted features suffer from the
following three drawbacks: (a) the designed features are low-level features and insufficient
in expressing objects adequately; (b) the designed features are poorly distinguishable,
leading to high classification error rates; (c) the designed features are specific, making
it challenging to select a single feature for detection of multiple types of targets in vari-
ous complex scenarios. Convolution neural networks (CNNs) have gradually emerged
and been applied in various object detection fields, resulting in the mainstream method
of current object detection. Therefore, it is of great significance to research space object
detection based on deep learning and provide spacecraft and satellites with the ability to
autonomously identify surrounding objects to avoid space collisions.

As mentioned above, CNNs have been widely used in various fields. However, there
have been relatively few studies on space object detection and many deficiencies. Firstly,
space-based optical imaging equipment captures a wide field of view with long imaging
distances, resulting in small-sized objects in the images. The features of these small objects
will gradually diminish during multiple downsampling operations performed by the
network. Secondly, space images are affected by stray light from the Earth, resulting in
low contrast of objects in backlight environments. The feature of weak objects may be
submerged by the background features during the detection process. Thirdly, there may be a
large-scale difference between different scale objects in space images, accompanied by dense
phenomena. It becomes challenging for the network to distinguish the features of densely
packed and small objects, leading to false and missed detection. Some typical examples of
space images are shown in Figure 2. In addition to the aforementioned difficulties, there
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is a scarcity of spatial data samples available for collection, resulting in insufficient prior
information for the network to learn, which further affects detection accuracy.
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To solve the above problems, we propose the context sensing-YOLOv5 (CS-YOLOv5)
based on YOLOv5 [7] for space object detection. This network incorporates a cross-layer
context fusion module, adaptive weighting module, and spatial information enhancement
module to aid in the effective detection of weak and small objects in space. CS-YOLOv5
overcomes the difficulties of the small-scale and low contrast of objects in space object
detection, enabling the extraction of local context information and the enhancement and
fusion of spatial information. To tackle the problem of small-sized objects and objects
with large-scale changes in the spatial images, we propose cross-layer context fusion
modules (CCFM). By utilizing multiple parallel branches, the feature map is convoluted
at different scales to learn the context information of different scales, thereby enhancing
the feature representation of small objects. Within the CCFM, we incorporate an attention
mechanism to propose an adaptive weighting module (AWM), which maps the small-
scale features to upper-layer features, enhances the expression of effective information,
suppresses the interference of useless information to the object features, and enhances
the features of different scales. Aiming at the problem that the spatial information of
small objects is easily lost, we propose a spatial information enhancement module (SIEM),
which comprehensively learns the relative spatial relationships in different channels and
orientations. To further improve the detection and generalization ability of CS-YOLOv5
for space objects, we propose a data augmentation method called contrast mosaic, which
enhances the diversity and complexity of data while avoiding overfitting.

Due to the high cost of obtaining spatial image samples and the limited availability of
datasets, synthetic datasets are currently the default approach for deep learning methods
in space object detection tasks. For example, SPEED+ is the first dataset for vision-only
spacecraft pose estimation and relative navigation, proposed by Stanford Uni Simone
D’Amico’s group [8]. It addresses the domain gap between synthetic training images and
Hardware-In-the-Loop (HIL) test images. However, the images in this dataset primarily
consist of single objects in backlight scenes. In addition to studying low-contrast objects,
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this paper emphasizes densely distributed small objects. To meet the research needs, we
constructed the near-earth space object (NSO) dataset, in which three types of objects,
including debris, satellites, and meteorolites, are combined with the real Earth and starry
sky as backgrounds. We simulate various object attitudes in space to ensure that the dataset
samples closely resemble real scenes. The NSO dataset consists of 233,687 instances across
10,574 images. Extensive experiments have been conducted on the NSO dataset, and the
results show that the detection and recognition ability of CS-YOLOv5 is superior to the
comparison method mentioned in this paper. The experimental results also verify the
effectiveness of the proposed improved methods in this paper for the problems needed to
be solved, which can cope with the difficulties existing in space object detection, such as
backlight environment, small scale, and huge difference of scale.

This paper has some main contributions, as follows:
We constructed the space dataset named NSO to solve the problem that data samples

are difficult to obtain, including 10,574 samples annotated independently in COCO and
YOLO format.

We propose CS-YOLOv5 for completing the space target detection task, which takes
the YOLOv5 as the baseline to better detect small and weak objects in space.

We propose an augmentation strategy named contrast mosaic to enhance data com-
plexity and diversity, which can make the network model applicable to more complex and
difficult scenarios.

In CS-YOLOv5, we design the cross-layer context fusion module (CCFM) to extract the
feature expression of multiple scales through parallel branches and integrate the context
information to improve the detection performance of small objects.

In the CCFM, we design the adaptive weighting module (AWM) in combination with
the attention mechanism to map the small-scale features sequentially to the features of the
previous layer, which can further enhance the expression of features.

In CS-YOLOv5, we propose the spatial information enhancement module enable our
model to not only enrich the multi-scale context information but also adaptively learn the
weak spatial information of small objects that need to be protected, which can equalize
the input features and extracts vertically and horizontally related features to small objects,
capturing multi-directional spatial information.

We conduct extensive comparative experiments to verify that our method achieves
higher detection accuracy on the NSO datasets. Ablation experiments confirmed that all
parts of our method positively affect the improvement of the detection result.

2. Related Work
2.1. Data Augmentation

The essence of the data augmentation method is to expand the dataset and improve
data quality by applying basic image processing operations such as flipping and adding
noise to existing limited data so that the data can generate value equivalent to a larger
amount of data. The SMOTE algorithm proposed by Chawla et al. [9] synthesizes new
samples for small sample categories to solve the problem of sample imbalance. SMOTE
maps the extracted image features to the feature space and selects a few adjacent samples
after determining the sampling magnification. It randomly selects a connection line from
them and randomly selects a point on the line as a new sample point, repeating this process
until the sample is balanced. The Mixup proposed by Zhang et al. [10] performs basic data
augmentation operations on two extracted images and concatenates the pixels to form a
new sample in the form of averaging. Mixup can change the nonlinear relationship between
each pixel of the data sample, blur the boundary of sample classification, and enhance the
complexity of the training sample. The Cutmix proposed by Yun et al. [11] erases a portion
of the pixel information on the image by covering it with a rectangular mask and then adds
other sample information randomly in the erased region. The sample pairing proposed by
Inoue et al. [12] usually randomly selects two pictures from the training set, performs basic
data augmentation operations (such as random flipping, etc.), respectively, averages the
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pixels, and finally superimposes and synthesizes a new sample. It can significantly improve
the classification accuracy of all test datasets. The copy enhancement method proposed by
Kisantal et al. [13] copies and pastes small objects in the picture to increase the proportion
of small objects in the dataset. To cope with the limited performance of the detector during
training, the mosaic data augmentation method was proposed in YOLOv4 [14]—mosaic
data augmentation splices together four pictures, each with its corresponding ground truth
box. After splicing the four pictures, a new picture and its corresponding ground truth
box are obtained. This new picture is then passed into the neural network for learning.
It is equivalent to learning four pictures at a time. Due to objective reasons, the sample
data collected in the space is not complete enough. To provide the model with sufficient
data for learning and to improve the impact of small object size and low contrast on
the detection accuracy, we propose contrasting a mosaic based on Mosaic. It performs
histogram equalization, copy-paste, and flip operations on a sample image, respectively,
and finally splices these four images to obtain a new image, effectively improving the
diversity of datasets.

2.2. Multi-Scale Object Detection

In 2012, AlexNet, an important achievement of CNNs, successfully led people into
the era of deep learning. As researchers continue to study deep learning technology,
more and more object detection models appear in the public eye, mainly divided into two
categories: the one-stage object detection model and the two-stage object detection model.
Two-stage detectors such as R-CNN [15], Fast R-CNN [16], Faster R-CNN [17], and Mask
R-CNN [18] have higher detection accuracy, but due to the large number of candidate areas,
the detection speed is slow, making them unsuitable for practical application scenarios.

The You Only Look Once (YOLO) [19] series and single-shot multi-box detector
(SSD) [20] represent typical single-stage object detection algorithms. Based on YOLOv1,
Redmon et al. have continued to improve and propose the YOLOv2 [21] and YOLOv3 [22]
detection algorithms. There are many normalization efforts in YOLOv2, including batch nor-
malization (BN) technology and the introduction of an anchor frame mechanism. YOLOv3
employs darknet-53 as the backbone network, utilizes three different sizes of anchor boxes,
and applies the Sigmoid function in the logical classifier to constrain the output between
0 and 1, enabling faster inference in YOLOv3. Rochkovskiy et al. added some practical
techniques to the traditional YOLO and proposed the YOLOv4 algorithm, which replaces
the ReLU activation function in the backbone network with the Mish activation function.
Compared to the ReLU activation, the Mish function produces smoother images, achieving
a better balance between detection speed and accuracy.

In the field of object detection, detecting small objects poses challenges in extracting
effective feature information due to their limited pixel occupancy. Researchers have studied
a series of methods to improve the performance of small object detection through network
structure, training strategies, and data processing.

Tsung-Yi Lin et al. proposed the feature pyramid network (FPN) [23], which performs
top-to-bottom upsampling on the features extracted from the bottom-up backbone network
and merges the features extracted from the backbone network with the upsampled features
to enhance the richness of feature details. the path aggregation network (PANet) proposed
by Liu et al. [24] adds a bottom-up direction enhancement to FPN, allowing the top-level
feature map to incorporate spatial information from the lower layers. Tan proposed the
bidirectional feature pyramid network (BiFPN) [25] feature fusion network, combining
top-down and bottom-up feature extraction processes into BiFPN layer. Additionally, in
feature fusion, the weights are increased to control the proportion of different layers, and
the input features are fully fused through multiple stacking BiFPN layer.

The attention mechanism module enhances the perception ability of features in both
spatial and channel dimensions by weighting the useful information of the input fea-
tures. The Squeeze-and-Excitation network (SENet) attention mechanism proposed by Jie
et al. [26] squeezes and excites the channel information extracted from the input features to
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obtain channel weights and then weights the input features. The Convolutional Block Atten-
tion Module (CBAM) attention mechanism module proposed by Sanghyun Woo et al. [27]
weights the input features through the serial spatial attention module and the channel
attention module, enhancing the utilization of spatial and channel information in the input
features. The Coordinate Attention (CA) attention mechanism module was proposed by
Qibin Hou et al. [28], which carries out a pooling operation to keep the position information
of the input features, mines the attention information of the features, and activates the input
features by obtaining mixed attention weights. Cheng et al. [29] proposed a rotationally
invariant convolutional neural network called Rotation Invariant Convolutional Neural
Networks (RICNN) to better detect small objects in remote sensing images. Liu et al. [30]
proposed the Receptive Field Block Net (RFB-Net) combined with a multi-branch recep-
tive field convolution module, using dilated convolution to further enhance the detection
ability of small objects. Li et al. [31] constructed the enhanced feature pyramid network
(eFPN) structure to reduce interference from the background on object detection in aerial
images, improving detection accuracy. However, the context is not tightly connected,
which can easily lead to information loss. Aiming at object aggregation in aerial images,
Guo et al. [32] proposed the orientation perception feature fusion method to deal with the
aggregation problem. Due to the complex network structure, more computing resources
are needed. To improve object detection accuracy in UAV images, more detailed features
need to be utilized, Wang et al. [33] used the inception lateral connection network (ILCN)
structure based on feature pyramids to handle the scale changes of objects in aerial images.
Tang et al. [34] proposed a remote sensing ship detection model N-YOLO, which, combined
with a noise level classifier, achieves high-precision identification and incorporates an object
potential area extraction module for more accurate positioning. Zhang et al. [35] proposed
a reference-based method that uses the rich texture information of higher-solution reference
images to compensate for the lack of detail in low-resolution images. Li et al. [36] achieved
excellent performance in infrared target detection by extending and iterating the shallow
CSP module of the feature extraction network and introducing multiple detection heads.
Lu et al. [37] proposed an object detection method based on adaptive feature fusion and
illumination-invariant feature extraction. Additionally, they introduced an adaptive cross-
scale feature fusion model to ensure the consistency of the constructed feature pyramid.
Song et al. [38] proposed a multi-source deep learning object detection network based on
the fusion of millimeter wave radar and vision by adding input channels and feature fusion
channels to YOLOv5. They established two backbone networks for feature extraction,
performed feature fusion at intermediate layers, and conducted detection as the final step.

Inspired by the mechanism of human perception, the attention mechanism is employed
in object detection to focus and select useful information for the task. Although the existing
research has achieved some achievements in the detection task of small objects, there are
still problems of insufficient information extraction and fusion when dealing with weak
and small space objects. In response to the above problems, we consider the existence
of weak space objects in specific space scenes, so we combine the contextual information
of objects and use the relationship between fragments and other objects or backgrounds
to provide more effective information for detecting space objects. At the same time, we
combine the attention mechanism to enable the network to focus on important information
and reduce the interference of inaccurate information.

2.3. Space Object Detection

Due to the problems of small and dense objects, large scale differences, and low object
contrast affected by stray light in space object images, detecting and tracking space objects
using optical images remains a challenge in many space surveillance systems. Traditional
space object detection methods perform well on single objects in simple backgrounds, but
they may suffer from severe false alarms and missed detections in complex backgrounds,
such as template matching, morphological operations, thresholding methods, and optical
flow. Currently, space object detection methods are gradually moving toward deep learning.
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Edward et al. [39] addressed the issue of limited feature extraction in traditional meth-
ods by proposing a star-galaxy classification framework that includes eight convolutional
layers. This framework directly utilizes deep convolutional neural networks (ConvNets)
on reduced and calibrated pixel values. Wu et al. [40] tackled the problem of low detection
efficiency in traditional methods by proposing an artificial intelligence method for space ob-
ject recognition called the two-stage convolutional neural network (T-SCNN). The T-SCNN
consists of two stages: object locating and object recognition. Xiang et al. [41] introduced a
fast spatial debris detection method based on grid learning. The image is divided into a
grid of 14× 14 cells, and a grid-based fast neural network (FGBNN) is used to locate spatial
debris within the grid. Wang et al. [42] improved the feature extraction structure based on
the YOLOv3 network. Integrating shallow and deep features can enhance the network’s
detection capability for objects of different scales. Qualitative and quantitative experimental
results demonstrate that the improved YOLOv3 network can accurately and effectively
detect key components of space solar power plants. Jiang et al. [43] proposed a space object
detection algorithm based on invariant star topological information, utilizing the relatively
constant topological relationships between consecutive frames of celestial bodies. They
quantized the invariant information into internal angle descriptors and designed a strategy
to separate objects from celestial bodies. However, there is currently limited research on
space object detection, and performance remains poor in complex scene detection tasks.
Therefore, this study combines existing knowledge and object features to design a detection
network that accurately detects space objects.

3. Proposed Method
3.1. Context Sensing-YOLOv5

Considering the simplicity and high efficiency, we adopt the YOLOv5 framework as
a baseline. Yolov5 is mainly composed of input, backbone, neck, and head. This method
first enhances the image at the input terminal and subsequently extracts feature maps
of different scales from the backbone through structures such as focus and CSPDarknet.
These feature maps are then fused in the neck, ensuring that each scale’s feature map
contains strong semantic and positional information. Finally, the feature maps are sent to
the head for prediction. The CS-YOLOv5 we proposed mainly improves its neck and data
enhancement parts; the overall framework is shown in Figure 3.

As shown in Figure 3, we add the CCFM between the backbone and the neck, which re-
alizes the full fusion of different scopes of information through two parallel main branches.
At the same time, in the CCFM, we design the AWM combined with the attention mecha-
nism to efficiently fuse feature maps of various scales, thereby enhancing the information
of each scale feature. Finally, we add the SIEM module between the neck and the head,
which equalizes the input features and extracts vertically and horizontally related features
to small objects, capturing multi-directional spatial environmental information.

3.2. Cross-Layer Context Fusion Module

To solve the problem that the model can perceive limited information when detecting
small objects, we propose the CCFM, as shown in Figure 4. The CCFM obtains more
semantic information from the feature map through two parallel branches and effectively
mixes features of different scales to establish the relationship between the information of
different scales.

As shown in Figure 4, the three-layer feature map (C4, C6, C9) extracted by Backbone
from the input image will be enhanced by CCFM. The input CCFM features will obtain
local and multi-scale semantic information through two different operations, respectively.
The following formula can describe the approximate:

x1 = Conv3×3(C), (1)

x4 = Conv3×3(Conv3×3(Conv5×5(C))), (2)



Remote Sens. 2023, 15, 3169 8 of 20

o1 = AWM [x1, o2], (3)

where x1 and o2 represent the feature map obtained by the first branch and the second
branch, respectively; Convn×n(·) represents the convolution operation; n × n represents the
size of the convolution kernel; AWM [·] represents that the adaptive weighting module
processes the feature map.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

Focus

CBS

CSP1_1

CBS

CSP1_3

CBS

SPP

CBS

CBS

CSP1_2

Upsample

Cat

CBS

Upsample

Cat SIEM Conv

CBS

Cat

SIEM Conv

CBS

Cat

SIEM Conv
Y1

20×20×25
5

Y2
40×40×255

Y3
80×80×255

CBS

Conv

Batch
Norm

SiLU

=

Res
Unit
Res
Unit
Res
Unit
Res
Unit = CBS CBS Add

CSP2_1

CSP2_
1

CSP2_1

CSP2_1

CSP2_1 CBS=
CBS

Cat CBS

CBS

CSP1_x CBS= Res
Unit
Res
Unit
Res
Unit
Res
Unit

CBS
Cat CBS

x*ResUnit

640×640×3

Backbone

Neck Head

CCFM

CCFM

CCFMCSP1_1

SPP

Cat

CBS

=

CBS

Max
pooling

Max
pooling

Max
pooling

Max
pooling

Focus

Slice

Cat

CBS

Slice Slice Slice

=

C1

C0

C2

C3

C4

C5

C6

C7

C8

C9
C10

C13

C18

C11

C12

C14 C15

C16

C17

C20
C19 C21

C22

C23

C24

C25

C26

C27

C29

C28

P3

P2

P1

Cross-layer Context Fusion Module
(Adaptive Weighting Module is 

embedded in this module)

CCFM

SIEM

Spatial Information
 Enhancement Module

 
Figure 3. The framework of the proposed CS-YOLOv5. 

As shown in Figure 3, we add the CCFM between the backbone and the neck, which 
realizes the full fusion of different scopes of information through two parallel main 
branches. At the same time, in the CCFM, we design the AWM combined with the atten-
tion mechanism to efficiently fuse feature maps of various scales, thereby enhancing the 
information of each scale feature. Finally, we add the SIEM module between the neck and 
the head, which equalizes the input features and extracts vertically and horizontally re-
lated features to small objects, capturing multi-directional spatial environmental infor-
mation. 

3.2. Cross-Layer Context Fusion Module 
To solve the problem that the model can perceive limited information when detecting 

small objects, we propose the CCFM, as shown in Figure 4. The CCFM obtains more se-
mantic information from the feature map through two parallel branches and effectively 
mixes features of different scales to establish the relationship between the information of 
different scales. 

  

Figure 3. The framework of the proposed CS-YOLOv5.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

A
W
M

A
W
M

Conv 3×3

Conv 5×5

Conv 3×3

Conv 1×1

A
W
M

x1

x2

x3

x4

o3

o2

o1

W×H×C
W×H×C

 
Figure 4. The framework of the cross-layer context fusion module. 

As shown in Figure 4, the three-layer feature map (C4, C6, C9) extracted by Backbone 
from the input image will be enhanced by CCFM. The input CCFM features will obtain 
local and multi-scale semantic information through two different operations, respectively. 
The following formula can describe the approximate: 

x1 = Conv3×3(C), (1)

x4 = Conv3×3(Conv3×3(Conv5×5(C))), (2)

o1 = AWM [x1, o2], (3)

where x1 and o2 represent the feature map obtained by the first branch and the second 
branch, respectively; Convn×n(∙) represents the convolution operation; n × n represents the 
size of the convolution kernel; AWM [∙] represents that the adaptive weighting module 
processes the feature map. 

The branch responsible for extracting local information uses a 3 × 3 convolution to 
obtain favorable information about the small object. The second branch is designed con-
cerning FPN, integrating three different scale features and reducing the imbalance among 
multi-scale features. This branch is divided into three smaller branches, and each branch 
models the features through a convolution layer. The convolution kernel sizes are five, 
three, and one from shallow to deep, with the step size being two. Through the AWM, 
this branch fuses the feature information of the output of each convolution kernel from 
smallest to largest. The AWM can nonlinearly fuse the representation information of the 
same feature and different scales and obtain richer multi-scale semantic information. Fi-
nally, the outputs of these two branches are fused by the AWM. The cross-layer context 
fusion module realizes the integration of context information of different scales and 
strengthens the nonlinear correlation between local information and multi-scale infor-
mation to improve the detection performance of small space objects. 

3.3. Adaptive Weighting Module 
Aiming to address the issue of feature dilution caused by multiple upsampling dur-

ing the feature fusion process and the impact of redundant information generated during 
the fusion process on the detection accuracy, we propose an adaptive weighting module, 
which can assist the network in effectively detecting dense and small objects. The struc-
ture of the AWM, as shown in Figure 5, combines the attention mechanism with sub-pixel 
convolution to achieve pixel-wise enhancement of feature maps. 

Figure 4. The framework of the cross-layer context fusion module.



Remote Sens. 2023, 15, 3169 9 of 20

The branch responsible for extracting local information uses a 3 × 3 convolution
to obtain favorable information about the small object. The second branch is designed
concerning FPN, integrating three different scale features and reducing the imbalance
among multi-scale features. This branch is divided into three smaller branches, and each
branch models the features through a convolution layer. The convolution kernel sizes are
five, three, and one from shallow to deep, with the step size being two. Through the AWM,
this branch fuses the feature information of the output of each convolution kernel from
smallest to largest. The AWM can nonlinearly fuse the representation information of the
same feature and different scales and obtain richer multi-scale semantic information. Finally,
the outputs of these two branches are fused by the AWM. The cross-layer context fusion
module realizes the integration of context information of different scales and strengthens
the nonlinear correlation between local information and multi-scale information to improve
the detection performance of small space objects.

3.3. Adaptive Weighting Module

Aiming to address the issue of feature dilution caused by multiple upsampling during
the feature fusion process and the impact of redundant information generated during the
fusion process on the detection accuracy, we propose an adaptive weighting module, which
can assist the network in effectively detecting dense and small objects. The structure of the
AWM, as shown in Figure 5, combines the attention mechanism with sub-pixel convolution
to achieve pixel-wise enhancement of feature maps.
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During the feature fusion process, if the feature maps of different sizes are simply
concatenated, the inaccurate spatial position information from the small-scale feature map
will inevitably be introduced into the large-scale feature map, reducing the accuracy of
spatial position information in the large-scale feature map and negatively impacting small
object detection. To avoid the interference of high-level coarse-grained location information
on the underlying fine-grained location information, we designed a weighting module
focusing on semantic information, namely an adaptive weighting module. This module
maps the information of small-scale features to the features of the previous scale through
the attention mechanism, effectively utilizing the valuable information of each scale feature.

As shown in Figure 5, we input two adjacent feature maps from different layers in
this module. We perform operations such as sub-pixel convolution on the small-scale
coarse-grained feature map to obtain features that match the size of the large-scale fine-
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grained feature maps. Sub-pixels are tiny pixels that exist between two actual pixels.
Sub-pixel convolution can maximize the use of tiny pixels around a pixel on the image to
achieve more refined interpolation calculation. Next, we apply adaptive max pooling and
adaptive average pooling on this feature map in the W and H dimensions, respectively,
to compress the feature map. Then, we pass the compressed feature maps through fully
connected layers, the ReLU activation function, and another fully connected layer, followed
by element-wise addition. This process automatically captures the interdependencies
between the maximum and average features within the channels and spatial dimensions.
Finally, the obtained feature is passed through the Sigmoid activation function to obtain the
final channel attention. The channel attention is multiplied with the original feature map to
assign different weights to each channel of the feature map, achieving a weighted fusion
of features from different scales and obtaining the final output. The adaptive weighting
module (AWM) can map the small-scale feature map to the feature map of the previous scale
while avoiding feature dilution caused by multiple upsampling operations and enhancing
the texture features of small objects.

3.4. Spatial Information Enhancement Module

To solve the problem that the spatial information of small objects is easily lost in the
process of multiple convolutions, we proposed the SIEM to strengthen the learning of
spatial information from both horizontal and vertical directions. The structure is shown
in Figure 6.
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As shown in Figure 6, the SIEM contains two main branches and a skip connection,
and each branch contains two branches and a skip connection. The feature maps of three
scales (C20, C24, and C28) generated by the top-down pathway feature fusion are sent to
the SIEM. The input feature map is equally divided on the channel to obtain feature maps
Ci_1 and Ci_2:

Ci ∈ RW×H×2C → Ci_1 ∈ RW×H×C, (4)

Ci ∈ RW×H×2C → Ci_2 ∈ RW×H×C, (5)

where W and H represent the scale of a feature map; C represents the channel number of a
feature map;→ represents the operation of equalizing the feature map by channel.
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To make full use of the characteristic information learned at each stage and enhance
the interaction of information in different directions and channels, a series strategy is added
between different branches based on parallel connection; that is, the output and original
features of one branch are taken as the input of another branch at the same time. This way
can ensure that the network can fully use the different feature information in the horizontal
and vertical directions and increase the diversity of features.

Split and Fuse. Ci_1 and Ci_2 will pass through two branches, respectively. The
first branch can map the spatial relative information in the horizontal direction. First,
1× 1 convolution is used to reduce the number of channels. Then 1× 3 convolution is used
to perform one-dimensional row-dimensional convolution and enhance the relationship
between feature points in horizontal space. The output of the first branch is spliced with
Ci_1 or Ci_2 in the channel direction as the input of the second branch. The second branch
can map the spatial relative information in the vertical direction. This branch is similar to
the first branch, only replacing the 1 × 3 convolution kernel with the 3 × 1 convolution
kernel to perform one-dimensional column-dimensional convolution and enhance the
relationship between feature points in vertical space. Finally, the outputs of the two
branches are spliced, and the information obtained by the branches is fused through a skip
connection. We concatenate the outputs of the two main branches and then fuse all the
information through a skip connection. The SIEM adaptively learns and fuses the feature
information of the two directions of the object to transmit spatial information conducive to
small object detection.

3.5. Contrast Mosaic Data Augment

Due to objective reasons, the collected sample data in space is incomplete. Meanwhile,
we have noticed that the scale of debris in space is small, and the contrast is low due to the
influence of the Earth and the sun as backgrounds. To provide the model with sufficient
data for learning and to improve the impact of small object size and low contrast on the
detection accuracy, we proposed a contrasting mosaic based on Mosaic. The process is
shown in Figure 7.
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Figure 7. The process of contrast mosaic data augment.

We randomly select an image from the dataset and, respectively, apply three different
operations: histogram equalization, copy-paste, and turnover. Histogram equalization can
enhance image contrast and improve the distinguishability of small objects in a backlight
environment. We use copy-paste to segment, capture and paste small objects randomly
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to enhance the proportion of small and medium objects in the image. Finally, we choose
how to turn over to transform the original image. By combining the images generated from
these three operations with the original image using data augmentation techniques, we
effectively improve the diversity of the dataset without altering the original object scales.
Contrast mosaic mixes four training images so that the trained model can achieve the
best detection effect for targets in different complex environments or scales, improving
the detector’s robustness. A few samples generated by the contrast mosaic are shown
in Figure 8.
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4. Results
4.1. Datasets

We evaluate our proposed method on the NSO dataset that we have simulated against
a real spatial background and briefly introduce it as follows.

To solve the problem of hard obtaining the real space object dataset, we construct
a space target simulation system, which can simulate the images obtained by observing
space target objects from different continuously changing perspectives under different
angles. The system mainly comprises a perspective motion modeling module, a scene
rendering module, and an image post-processing module. The quality of the simulated
images produced by this system is very high, which can provide a good data foundation for
the research of space-based observation equipment detection, space-based target detection,
identification, and analysis technology. We simulated the space environment of three
types of objects: debris, satellites, and meteorites, by using the space object simulation
system. To obtain data that better meets our requirements, we densely arranged the debris
in space and adjusted the distance between the objects and observation points to change
the object size. Then, we recorded the simulation process of the object’s flight around the
Earth from different observation angles. The farther the object is from the observation
point, the smaller its size. To ensure high similarity between adjacent images, we extracted
frames from recorded videos at intervals of 0.5 s. The resulting data sample contains
233,687 instances of 3 object categories in 10,574 images with a resolution of 2560 × 1440.
Some samples of the NSO dataset are shown in Figure 9. The red frame is a magnified
display of the aggregated objects.

The number distribution of the three categories of objects is shown in Figure 10. The
NSO dataset contains 84,742 small objects (area < 1024), 108,610 medium-scale objects
(1024 < area < 9216) and 40,335 large objects (area > 9216). The average area ratio of the
debris in the image is 0.45%, the satellite is 7.25%, and the meteorolite is 0.46%. The NSO
dataset is divided into training, validation, and test sets according to a proportion of 8:1:1.
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4.2. Implementation Details

Extensive experiments are implemented on Ubuntu16.04, the GPU adopts Nvidia
GeForce GTX 1080Ti, and the CPU adopts Intel Core i7-11700K@3.80 GHz. The simulation
experiment uses Pytorch 1.7.0, the development environment is Python 3.7, and the CUDA
version is 10.2. In the course of training, we use pre-trained weights trained on the MS
COCO dataset to initialize the parameters of the network. During the experiment this paper
uses MMdetection [44] for the experiment. In the stage of training, stochastic gradient
descent (SGD) is used as the optimizer, the batch size is 2, the original learning rate is 0.002,
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the momentum is 0.9, the weight decay is 0.0001, and each group of models is trained for
12 cycles.

4.3. Metrics

Two commonly used metrics, average precision (AP) and mean average precision
(mAP), are used to evaluate the performance of CS-YOLOv5 in this paper. The relevant
calculation formula is:

AP =

1∫
0

PdR, (6)

mAP =

N
∑

i=1
APi

N
, (7)

where P and R represent precision and recall, respectively; N represents the number of
detection categories. Average precision is related to precision and recall. Precision refers
to the ratio between the number of positive samples correctly predicted in the prediction
dataset and the number of positive samples predicted by the model. Recall rate refers to the
ratio between the number of positive samples predicted correctly and the number of actual
positive samples in the forecast dataset.

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

where TP is the number of positive samples predicted to be positive, which is the number
of detection frames with the intersection of union (IoU) ≥ 0.5. FP is the number of negative
samples predicted as positive samples, which is the number of detection frames with IoU
< 0.5, or the number of redundant detection boxes that detect the same object. FN is the
number of predicted positive samples as negative samples. Mean Average Precision is the
average of AP with IoU thresholds between 50% and 95% in COCO-style, and AP50 (AP for
IoU threshold 50%), AP75 (AP for IoU threshold 75%), APS (AP for small objects), APM (AP
for medium objects) and APL (AP for large objects) are used to illustrate the results.

4.4. Ablation Experiments

In this section, we will conduct extensive experiments to verify the gain effect of the
data augmentation method and feature fusion modules on the model proposed in this
paper. Additionally, we will discuss the results in detail as follows.

To verify the improvement of models by the contrast mosaic data augmentation
method, extensive experiments are conducted on seven state-of-the-art methods and our
method for comparison, including YOLOv5, ATSS [45], FSAF [46], FCOS [47], TOOD [48],
RetinaNet [49], VFNet [50] and CS-YOLOv5. The experimental result is shown in Table 1;
the better results are marked in bold.

It can be seen from the results that all methods have different degrees of map enhance-
ment after using data augmentation. In addition, the APS of these methods is significantly
improved, leading to a gain from 5.0% to 12.3%, which indicates that contrast mosaic can
achieve a balanced improvement for the network to detect space objects. For example,
we selected YOLOv5 as the baseline in this paper; the contrast mosaic data augmentation
brings a 3.4% gain to its mAP. Compared with other networks, this gain increases at a
moderate level. In addition, the APS of the YOLOv5 achieves the best result of all meth-
ods. At the same time, the APM and APL also obtain the best results among all methods.
In addition to the existing comparison model, we use the proposed model to verify the
validity of the contrast mosaic data augmentation method. As shown in Table 1, the mAP of
our method reaches 69.6%, and the AP50, AP75, APS, APM, and APL all have improvement.
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Experimental results show that the method proposed in this paper can increase the number
and diversity of training samples and improve the generalization ability and robustness of
the model through three different processing of the original dataset and then splicing the
three generated images with the original images.

Table 1. Ablation experiment of the contrast mosaic on the NSO dataset.

Methods Backbone Contrast Mosaic
AP (%), IoU AP (%), Area

0.5:0.95 0.5 0.75 S M L

YOLOv5 CSPDarknet-53
- 62.9 87.0 74.4 36.2 51.3 72.9√

66.3 89.5 75.6 47.4 76.8 87.7

ATSS ResNet-50
- 61.1 86.2 72.0 30.3 59.2 76.3√

64.3 88.7 76.5 42.6 73.6 85.5

FSAF ResNet-50
- 51.8 78.4 63.5 30.1 51.7 63.6√

60.6 84.5 69.0 40.3 68.8 78.4

FCOS ResNet-50
- 57.1 84.8 65.8 26.7 56.4 74.3√

63.1 90.9 73.7 33.5 71.1 78.8

TOOD ResNet-50
- 64.3 88.6 74.6 36.2 55.6 75.7√

65.8 90.4 77.2 46.8 76.1 87.5

RetinaNet ResNet-50
- 51.9 77.1 67.6 30.1 55.0 63.5√

59.1 84.9 71.3 35.1 69.2 78.7

VFNet ResNet-50
- 56.9 84.9 64.3 32.6 55.9 64.9√

62.4 87.5 73.8 40.4 65.8 71.2

CS-YOLOv5 CSPDarknet-53
- 67.8 91.6 79.4 48.8 68.1 79.5√

69.6 93.8 80.7 56.3 82.5 89.6

We conduct extensive experiments on the NSO dataset to verify the effectiveness of
each improvement in CS-YOLOv5. We choose YOLOv5 as the baseline and added the
CCFM, AWM, and SIEM to compare the performance changes. When using CCFM without
AWM, we replace the AWM with simple interpolated upsampling. The experimental result
is shown in Table 2; the best results are marked in bold. At the same time, FPS is used as
the evaluation standard of model speed.

Table 2. Ablation experiment of the components on the NSO dataset.

Methods CCFM AWM SIEM mAP AP50 AP75 APS APM APL FPS

YOLOv5 - - - 62.9 87.0 76.4 36.2 51.3 72.9 58.8
Ours

√
- - 64.7 89.4 78.5 38.4 60.2 76.0 56.3

Ours
√ √

- 65.5 89.9 79.6 41.0 65.4 78.1 54.9
Ours - -

√
65.3 88.8 78.2 42.2 65.6 76.7 55.4

Ours
√ √ √

67.8 91.6 79.4 48.8 68.1 79.5 48.4

According to the experimental results shown in Table 2, the CCFM improves the
mAP of the baseline by 1.8% and the APS by 2.2%. In addition, other metrics also gained
varying degrees of improvement. This confirms that the CCFM effectively integrates
multi-scale information of the same feature layer conducive to detecting small objects; this
improvement is reasonable. After adding the AWM to the baseline and CCFM, the mAP
and the APS are significantly improved relative to the baseline, leading to a gain of 2.6%
and 6.0%. At the same time, the APM and APL also increased by 14.1% and 5.2%, achieving
relatively large gains. These results show that using this module to transfer semantic
information between feature maps of different sizes by computing attention can effectively
improve the detection performance of small objects, and improve the detection performance
of large and medium-scale objects, to improve the overall performance. It proves the
indispensability of the AWM. When only the SIEM is added to the baseline model, the
network improved mAP less significantly than the CCFM and the AWM simultaneously,
but it performed better in APS than the other two modules. For mAP and APS, the SIEM
improves the baseline by 2.4% and 6.0%, respectively. The SIEM can enrich the texture
information of space objects and avoid excessive information loss in the process of feature
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transfer, thereby improving the detection ability of small objects. When all three modules
are inserted into the baseline, all indicators achieve the best results. The mAP and APS
increased by 4.9% and 12.6%, respectively. When the three modules work together, the effect
is better than any module working alone. After experimental verification, the corresponding
improvement measures proposed in this paper for the difficulties in space weak and small
object detection tasks can improve the detection performance of the baseline model in all
aspects. Regarding detection speed, YOLOv5 has an FPS of 58.8, while CS-YOLOv5 has
a lower FPS than YOLOv5, but it still has real-time detection capability. In summary, the
method proposed in this paper can achieve accurate and fast detection of weak space and
small objects. Meanwhile, we calculated the indirect cost required to improve the model,
and the results are shown in Table 3. Params represent the parameter quantity of the model,
which can measure the model’s size. GFLOPS is the amount of calculation that can measure
the complexity of the model. CS-YOLOv5 increases the parameter count by 9272061M and
the calculations by 11.1GFLOPS compared to the baseline model. Although the proposed
model adds some computational cost, the performance is effectively improved.

Table 3. Result of indirect cost statistics.

Methods FPS Params GFLOPS

YOLOv5 58.8 7,056,607 16.3
CS-YOLOv5 48.4 16,328,668 27.4

4.5. Performance Results

We compare our proposed CS-YOLOv5 with nine state-of-the-art methods, such as
YOLOv5, ATSS, FSAF, FCOS, TOOD, RetinaNet, VFNet, GFL [51], and PAA [52]. The
comparison model and CS-YOLOv5 were trained under the same environment and dataset.
To reflect the effectiveness of the proposed methods and reduce the impact on detection
performance due to the difference in the backbone, the comparison methods involved in
this paper, except CS-YOLOv5 and YOLOv5, use ResNet-50 as the backbone, which is more
objective. The experimental result is shown in Table 4; the best results are marked in bold.

Table 4. Performance evaluation of different methods on the NSO dataset.

Method Backbone mAP AP50 AP75 APS APM APL

YOLOv5 CSPDarknet-53 62.9 87.0 74.4 36.2 51.3 72.9
ATSS ResNet-50 61.1 86.2 72.0 30.3 59.2 76.3
FSAF ResNet-50 51.8 78.4 63.5 30.1 51.7 63.6
FCOS ResNet-50 57.1 84.8 65.8 26.7 56.4 74.3
TOOD ResNet-50 64.3 88.6 74.6 36.2 55.6 75.7

RetinaNet ResNet-50 51.9 77.1 67.6 30.1 55.0 63.5
VFNet ResNet-50 56.9 84.9 64.3 32.6 55.9 64.9
GFL ResNet-50 63.7 88.4 72.5 36.0 54.4 76.0
PAA ResNet-50 59.1 84.9 66.3 33.1 51.2 78.7

CS-YOLOv5 CSPDarknet-53 67.8 91.6 79.4 48.8 68.1 79.5

It can be seen from Table 4 that the mAP of the CS-YOLOv5 on the NSO dataset is
67.8%, which is 4.9% higher than YOLOv5. Compared with the above competing methods,
the results of metrics of our method have significant advantages, especially the APS shows
a 12.6 percent improvement compared with the baseline model. In addition, the APM and
APL of CS-YOLOv5 increased by 16.8% and 5.6%, respectively. Therefore, the proposed
method can handle complex spatial environments and multi-scale objects, achieving good
detection performance. Some examples of the detection results on the NSO dataset are
shown in Figure 11.
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5. Discussion

This paper proposed several improvements based on YOLO to detect weak and
small objects in space. The proposed CS-YOLOv5 can achieve high-precision detection
of space-weak and small objects, low-contrast objects, clustered objects, and multi-scale
objects. Compared to several state-of-the-art methods, the results of this research have
been improved. The research is currently stuck in the simulation and verification stage,
but in space, the models are mostly deployed on onboard devices with limited resources
and computing power. Therefore, the models need to have small size and fast speed
characteristics while achieving a certain degree of accuracy. Hence, the next research stage
will focus on building a lightweight model to make the detection process fast and accurate.

6. Conclusions

In this paper, we propose a context sensing-YOLOv5 optimized for small and weak
debris in space. The proposed method is applied to the YOLOv5 to solve the problems
of small and weak object detection in space. First, a cross-layer context fusion module is
proposed to realize the integration of context information of different scales and strengthens
the nonlinear correlation between local information and multi-scale information. Secondly,
an adaptive weighting module based on the attention module is proposed to transfer
information from a small to a large scale. This can avoid the feature dilution problem
caused by multiple upsampling and enhance the texture features of small objects. Thirdly,
a spatial information enhancement module is proposed to take different convolution
measures for different channels to obtain detailed information in different directions. We
propose an augmentation strategy named contrast mosaic to enhance data complexity and
diversity, which can make the network model applicable to more complex and difficult
scenarios. We conduct ablation experiments on the NSO dataset to verify the effectiveness
of each improvement in CS-YOLOv5. Our experiment results show that CS-YOLOv5
performs better than the other object detection methods compared in this paper and can
satisfy the requirements of spatial objection detection in different situations, such as dense
distribution, extremely small scale, and large-scale difference.
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