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Abstract: The interior structure of Phobos has been the subject of debate in recent years, with
the moment of inertia being a determining factor. To study this structure, we modeled Phobos
with a two-layer structure and calculated its mean density and moment of inertia using updated
gravity coefficients of degree-2 and forced libration amplitudes. By minimizing the misfit between
modeled and derived moment of inertia, and observed and modeled mean density, we determined
the frequency distribution for estimated parameters, including the core radius rc, core density ρc, and
density ρm of the outer layer. Our results indicate that the optimized core radius is around 8.2 km
for our models, along with a core density compromise of approximately 2500 kg·m−3, and an outer
layer density of around 1400 kg·m−3. These values have remarkable sensitivity to the misfit function,
implying a higher density likely inside Phobos compared to the outer layer. Given that the large core
density was associated with ice content, it suggested that the fractional ice content in the outer layer
is approximately 11% with a rock density of 2200 kg·m−3, while the content in the core is lower at
2.4% with a rock density of 3000 kg·m−3. The methodology introduced in this study can be further
used to study the interior structure of irregularly shaped asteroids.

Keywords: moment of inertia; mean density; two-layer interior structure; irregular shape; Phobos

1. Introduction

Phobos is a natural satellite of Mars and is the larger of the two Martian satellites,
with Deimos being the smaller one. Phobos has an irregularly shaped surface with a mean
radius close to 11 km, as reported by Willner et al. [1]. Phobos’ surface is heavily cratered,
with many craters spread over its surface, likely suggesting its feature of a relatively old
satellite [2]. The dominant feature of the body is Stickney, which is the largest crater on
the moon with a diameter of approximately 9.5 km [3]. The origin of Phobos and its
composition are not yet fully understood [4,5]. It likely originated from a recycling process
in which the progenitors from the impacting process perhaps were destroyed into a Roche
interior ring and re-accreted several times [6]. To understand the formation of Phobos, it is
crucial to examine its interior structure. By analyzing its structure, we can gain insight into
its origin and evolutionary history.

While radar data can provide some information on the interior structure of Phobos, a
direct exploration of the moon is crucial to accurately determine its moment of inertia. The
moment of inertia is closely related to the density distribution inside Phobos. However,
there has been no direct measurement of Phobos, except for a few measurements obtained
during flybys of orbiters approaching Mars. As a result, the interior structure of Phobos
remains an open issue. To determine the origin of Phobos, the Japan Aerospace Exploration
Agency (JAXA) plans to carry out a direct survey of the Martian Moons eXploration (MMX)
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mission in 2024 [7,8]. Prior to the MMX mission, numerous studies attempted to detect the
interior structure of Phobos [1,4,9–12]. Recently, Le Maistre et al. [13] investigated the likely
interior structure of Phobos by analyzing its tidal response to Mars, while Dmitrovskii
et al. [14] attempted to study this subject by analyzing the tidal bulge height.

In addition to the research mentioned above, another way to explore the interior
structure of Phobos is to consider its mean density and moment of inertia. This approach
was used in the past by Sohl et al. [15] to determine the composition and structure of the
Martian interior. Their method involved modeling both the moment of inertia and bulk
density of the nearly spherical Mars. By comparing the difference between the observed
and modeled moment of inertia and the misfit between the observed and modeled mean
density, they were able to estimate the density distribution as well as the interior structure
of Mars. Yan et al. [16] used a similar method to identify the size and composition of
the lunar core. Based on the precession rate from InSight [17], we recently used a similar
method to investigate the potential size and density of the Martian inner core [18]. Similarly,
this method could be applied to small celestial bodies by estimating the mean density and
moment of inertia and comparing them with modeled values. However, it should be noted
that this approach is quite challenging for small celestial bodies with irregular shapes, such
as asteroids and moons of planets. Most small bodies in the real world are irregularly
shaped and do not achieve quasi-hydrostatic equilibrium. Therefore, the method proposed
by Sohl et al. [15] needs to be updated to include the case of irregular shapes.

We thus deduced an expression to calculate the moment of inertia and mean density for
bodies with irregular shapes. Using the updated method, we estimated the likely structure
of Phobos by considering the recent degree-2 gravity coefficients as well as the forced
libration amplitude of Phobos. The updated gravity coefficients of degree-2 were derived
from MEX Doppler-tracking data by Yang et al. [19]. The forced libration amplitudes of
Phobos were updated in recent studies by Burmeister et al. [12] and Lainey et al. [11].
We used these updated values of degree-2 gravity coefficients and libration amplitudes
to deduce the moment of inertia for Phobos. By comparing this deduced value and our
modeled moments of inertia, we can gain insight into the distribution of mass and the
interior structure of Phobos. Due to the lack of information on Phobos’ interior structure, it
has been previously assumed to be homogeneous. However, other models have proposed
a multilayer structure based on density and forced libration observations [10] or a rubble
pile composition that includes voids and/or water ice [1,19–21].

To validate our method, the interior structure of Phobos was modeled here as a
two-layered structure with varying densities. The positive density gradient in our study
indicates that the density of the core was greater than that of the outer layer. Conversely,
the negative gradient suggests that the density of the core was lower than that of the
outer layer. If Phobos had multiple layers inside, then the density distribution inside the
moon would be continuous, and the estimated densities of the two-layer model would be
represented as mean values. Additionally, an approximate zero density gradient indicates
a homogeneous interior structure within Phobos. The two-layer model discussed here
is thus applicable in cases where a density gradient exists and can account for the case
where Phobos has a continuous density distribution. This paper is structured as follows. In
Section 2, we present two models, each consisting of two layers. In Section 3, we describe
our methodology of the moment of inertia and misfit function. In Sections 4 and 5, we
present the results and discussion. Finally, Section 6 summarizes the conclusions.

2. Shape of Phobos and Its Two-Layer Model

The Phobos shape model was first derived as an ellipsoidal model by Thomas in
1989 [22]. Then, Simonelli et al. [23] generated a shape model with 2 × 2 degree grid
spacing. Using image data from the European Mars Express Mission, Willner et al. [10]
derived a shape model expanded with a spherical harmonic function close to degree
and order 17. Subsequently, Willner et al. [1] used stereo images from Mars Express and
Viking Orbiter to derive a global digital terrain model (DTM) with 100 m/pixel resolution.
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This DTM is widely used in Phobos gravity forward modeling and surface properties
research [13,19,24,25]. The DTM derived by Willner et al. [1], which is available online [26],
is shown in Figure 1. Phobos is tidally locked to Mars, which means that the same side of
Phobos always faces Mars. This side is known as the sub-Mars side, which is shown in
Figure 1a. The leading side of Phobos is the side that faces forward in its orbit around Mars,
in the direction of its movement. This side of Phobos is displayed in Figure 1b.
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Recent studies on the interior structure of Phobos have considered the possibility that
the density of its interior may vary with depth [13,14,27]. Studies have also suggested
that a two-layer model, with a solid core and an outer layer composed of rock and ice,
is appropriate to explain the gravity coefficients of low degrees [21,28]. We opted for a
two-layer model when estimating Phobos’ internal structure for several reasons. Firstly,
the limited constraint information available for Phobos makes multi-layer models highly
uncertain. Secondly, given the small volume of Phobos, it is unlikely that large-scale
differentiation processes occurred in its interior. Finally, we accounted for Phobos’ irregular
shape when calculating its mean moment of inertia. Models with more than three layers
would increase complexity and hinder the estimation of model parameters. Therefore,
based on these considerations, we only used a two-layer model to estimate Phobos’ mean
moment of inertia. The two-layer models are shown in Figure 2. Our two-layer model
assumed that Phobos is composed of an inner solid core with a density of ρc, and an outer
layer that is likely a mixture of rock and ice with a density of ρm. The black areas in the
diagrams represent the solid cores, while the areas between the red outer shapes and the
black areas represent the outer layers. Figure 2a shows Model-I with a spherical core,
which is commonly considered a simplified internal structure of celestial bodies. Figure 2b
displays Model-II with an irregularly shaped core that has a shape similar to the surface of
Phobos. This model considers the core’s irregular shape to result from impacts or other
geological processes. We used rc here as the radius of the core of Model-I in Figure 2a
and considered the same sign as the mean radius of the core of Model-II in Figure 2b. It
should be noted that the difference between the core density ρc and the density of the outer
layer ρm cannot fully prove the differentiation of Phobos. An alternative possibility is that
Phobos has a continuous density distribution, where the density gradually changes from
the core to the outer layer. In the case of a continuous density distribution, the estimated
density of the core ρc and the density ρm of the outer layer would be mean values, and the
corresponding radius of the core rc would also be a mean value. This means that there
would not be a sharp boundary between the core and the outer layer, but instead a gradual
transition zone.
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Figure 2. The two-layer model of Phobos. The red shape signifies its irregular outer shape and the
black sphere denotes its interior core with a density ρc. The area between the red outer shape and
the black sphere represents the outer layer with a density ρm. (a) shows Model-I with a spherical
core that has a radius of rc close to 8.2 km, and (b) displays Model-II with an irregularly shaped core
with a mean radius of rc close to 8.2 km. The shape of the core shown in subfigure (b) resembles the
surface of Phobos.

3. Theory and Method

To explore the interior structure, it is needed to derive the moment of inertia with
respect to gravity coefficients. According to previous studies [13,27,29], we can obtain the
relations as follows:

A
MR2 =

I
MR2 +

C2,0

3
+ 2C2,2,

B
MR2 =

I
MR2 +

C2,0

3
− 2C2,2

C
MR2 =

I
MR2 − 2C2,0

3
, I =

A + B + C
3

(1)

where A, B, and C are the main moments of inertia with A ≤ B ≤ C, and their mean
value is represented by I. M and R represent the mass and the mean radius of Phobos,
respectively. C2,0 and C2,2 denote the unnormalized gravity coefficients of degree-2, which
were provided by recent studies [19]. Even with only Equation (1), it is yet impossible to
determine the mean moment of inertia. The relative moment of inertia γ can be considered,
which is associated with the forced libration amplitude θA. According to the study of
Willner et al. [10], the relations are written as follows:

γ =
B − A

C
, γ =

1

3
(

1 − 2e
θA

) (2)

where e represents the orbital eccentricity of Phobos. The related parameters are shown
in Table 1. According to Equations (1) and (2), the derived mean moment of inertia factor
I/MR2 is written as follows:

I
MR2 =

2
3

C2,0 + 12C2,2

(
1 − 2e

θA

)
(3)
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To detect the likely structure, we also need to calculate the modeled moment of inertia

Imod as well as the modeled bulk density
−
ρmod of Phobos. For Model-I in Figure 2a, we can

derive the expression as follows:

Imod = ρm
π∫
0

2π∫
0

rp∫
0

r4 sin3 θdrdφdθ − ρm
π∫
0

2π∫
0

rc∫
0

r4 sin3 θdrdφdθ

+ ρc
π∫
0

2π∫
0

rc∫
0

r4 sin3 θdrdφdθ

(4)

ρmod = ρm + (ρc − ρm)
4πr3

c
3V

(5)

where rp is the radius of a certain point on the surface of Phobos. θ and ϕ denote the
colatitude and longitude of the point. The expression for Model-II in Figure 2b can be
written as follows:

Imod = ρm
π∫
0

2π∫
0

rp∫
0

r4 sin3 θdrdφdθ − ρm
π∫
0

2π∫
0

rc
R rp∫
0

r4 sin3 θdrdφdθ

+ ρc
π∫
0

2π∫
0

rc
R rp∫
0

r4 sin3 θdrdφdθ

(6)

ρmod = ρm + (ρc − ρm)
( rc

R

)3
(7)

Table 1. Values of the related parameters of Phobos.

Number Parameters Values

1 Mass M [19] (1.060261 ± 0.001124) × 1016 kg
2 Volume V [1] 5742 ± 35 km3

3 Mean radius R [1] ~11.1 km
4 Mean density

−
ρ [19] 1846 ± 11 kg·m−3

5 Orbital eccentricity e [30] 0.01511◦

6 Libration amplitude θA

−1.09◦ ± 0.10◦ observed by Oberst et al. [31]
−1.143◦ ± 0.025◦ observed by

Burmeister et al. [12]
−1.09◦ ± 0.01◦ from Phobos ephemeris [11]

7 Unnormalized gravity
coefficients of degree-2 [19]

C2,0 = −0.1378 ± 0.0348,
C2,2 = 0.0166 ± 0.0153

8 Core radius rc 0–10 km
9 Core density ρc 1000–3000 kg·m−3

10 The outer layer density ρm 1000–3000 kg·m−3

It can be found that the estimation of Imod in Equations (4) and (6) can be quite complex
due to the integrals. Regarding specific values of ρm and ρc, they remain constant and can
be extracted directly from the integrals. We can first store the integral for certain densities.

Here, we calculate the integral with Phobos mean density
−
ρ as follows:

I0 = ρ

π∫
0

2π∫
0

rp∫
0

r4 sin3 θdrdφdθ (8)

Then, Equations (4) and (6) can be written as follows:

Imod =
ρm

ρ
I0 + (ρc − ρm)

8
15

πr5
c (9)
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Imod =

[
ρm

ρ
+

ρc − ρm

ρ

( rc

R

)5
]

I0 (10)

Considering Equations (5)–(10), we used the joint inversion of mean density and mean
moment of inertia to calculate the misfit function f as follows:

f =

√(
ρmod − ρ

)2
+ (Imod − I)2 (11)

The appropriate parameters can be found by minimizing the misfit values according
to Equation (11). Using Equations (5)–(11), the influence of the estimated parameter x on
the misfit function f can be assessed according to the sensitivity function S(f, x), which is
written as follows:

S( f , x) =
∆ f / f
∆x/x

=
∂ f
∂x

x
f

(12)

The estimated parameter x includes the core radius rc, the core density ρc, and the
outer layer density ρm. The best values for these parameters are those that result in misfit
values close to zero, as a close-to-zero misfit indicates a good fit between the model and
observed data. In cases where there is noise in the measured parameters, it may not be
possible to achieve misfit values close to zero. In this situation, a threshold value of f < 0.1
was used as the inversion condition. The frequency distribution of these parameters can
provide useful information about their optimized values [15,16].

To constrain the interior structure of Phobos, the estimated parameters (e.g., rc, ρc, and
ρm) were sampled using an equal probability distribution. The frequency distribution of
these parameters was obtained using the same threshold f < 0.1. By analyzing the frequency
distribution, the interior structure of Phobos can be better understood and constrained. It
is important to note that Equation (8) is nonlinear, which can make parameter estimation
challenging. The particle swarm optimization (PSO) method simulates the social behavior
of birds, bees, or schools of fish, and performs well in solving nonlinear problems with
multiple parameters [32]. We considered the PSO method to estimate the optimized
parameters of Phobos.

4. Results

For Model-I shown in Figure 2a, utilizes Equations (3), (5), (9), and (11) to estimate
optimized parameters through a joint inversion of mean density and mean moment of iner-
tia. Similarly, Equations (3), (7), (10), and (11) were considered to perform the inversion for
Model-II in Figure 2b. Our study involved multiple experiments and comparisons, which
showed that the frequency distribution of more than 1500 particles remained consistent.
We further tested the case of more than 1000 iterations and confirmed that the resulting
frequency distribution was the same as the case of 1000 iterations. We thus considered the
PSO method with a population size of 1500 particles and 1000 iterations in our study. To
ensure the stability of the frequency distribution, the PSO calculation was performed close
to 10,000 times. By repeating the PSO calculation multiple times to reduce the impact of
random noise on the results, we can obtain a more reliable estimation for the optimized
parameters.

We used the fixed values in Table 1 to calculate the moment of inertia by using
Equation (3), and obtained the frequency distribution of different parameters. The libration
amplitudes provided by Oberst et al. [31] and Lainey et al. [11] are capable of generating
normally distributed parameters, while the libration amplitudes provided by Burmeister
et al. [11] cannot. The outcomes derived from the libration amplitudes provided by Oberst
et al. [31] and Lainey et al. [11] are comparable due to the similar values of libration
amplitudes. Therefore, we present the outcomes obtained by using the libration amplitudes
provided by Lainey et al. [11] in Figures 3 and 4.
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ranges from 1000 to 1427 kg⋅m−3, with a likely value of 1340 kg⋅m−3. The core density in 
Figure 3c centers around 2423 kg⋅m−3, varying from 2127 to 2985 kg⋅m−3. Figure 4c indi-
cated that the core density is between 2425 and 2990 kg⋅m−3, with an optimized value near 
2573 kg⋅m−3. These estimated parameters are also listed in Table 2. 

Table 2. The optimized parameters inversed for Phobos and their sensitivities to the misfit func-
tion. 

Target rc (km) ρm (kg⋅m−3) ρc (kg⋅m−3) 
Estimated parameters for Model-I 8.2 1.31.7 1439 339

75  2423 296
562 

Estimated parameters for Model-II 8.2 1.01.1 1340 340
87  2573 148

417 
Sensitivities S1(f, x) of various optimized parameters 

for Model-I 
−4.6 −6.2 −2.3 

Figure 4. Frequency distribution of Model-II. (a) shows the frequency distribution for the core radius,
(b) displays the frequency distribution for the core density, and (c) exhibits the frequency distribution
for the density of the outer layer.

Figures 3 and 4 describe the frequency distributions of various parameters for the two
models, Model-I and Model-II. In Figures 3a and 4a, the core radius rc is the parameter
being analyzed. It is found that the radius mainly centers around 8.2 km and fluctuates
from approximately 7 to 10 km. Figures 3b and 4b display the frequency distributions for
the outer-layer density, denoted as ρm. In Figure 3b, the density ranges from 1127 to 1452
kg·m−3, with an optimized value of 1439 kg·m−3. Meanwhile, in Figure 4b, the density
ranges from 1000 to 1427 kg·m−3, with a likely value of 1340 kg·m−3. The core density
in Figure 3c centers around 2423 kg·m−3, varying from 2127 to 2985 kg·m−3. Figure 4c
indicated that the core density is between 2425 and 2990 kg·m−3, with an optimized value
near 2573 kg·m−3. These estimated parameters are also listed in Table 2.

Table 2. The optimized parameters inversed for Phobos and their sensitivities to the misfit function.

Target rc (km) ρm (kg·m−3) ρc (kg·m−3)

Estimated parameters for
Model-I 8.2+1.7

−1.3 1439+75
−339 2423+562

−296

Estimated parameters for
Model-II 8.2+1.1

−1.0 1340+87
−340 2573+417

−148

Sensitivities S1(f, x) of various
optimized parameters for

Model-I
−4.6 −6.2 −2.3

Sensitivities S2(f, x) of various
optimized parameters for

Model-II
−5.8 −4.5 −2.4
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If the estimated parameters are not sensitive to the misfit function, their optimized
values will be meaningless. Therefore, we used Equation (12) to estimate the sensitivities
for these estimated parameters based on the optimized values listed in Table 2. The results
indicate that changes in the parameters could affect the misfit function, with a sensitivity of
approximately −4.6 for the core radius for Model-I and −5.8 for Model-II. The outer layer
density also has a sensitivity of around −6.2 for Model-I and close to −4.5 for Model-II.
Both models have similar sensitivities for the core density, with values of −2.3 for Model-I
and −2.4 for Model-II. Additionally, the core density has the lowest absolute value of
sensitivity among all the parameters. However, a 1% increase in core density for Model-II
would decrease the sensitivity of S2(f, ρc) by 2.4%. Overall, the estimated parameters are
sensitive to changes in the misfit function. These inversed parameters are thus reliable in
this study.

5. Discussion

Based on the optimized parameters in Table 1, we proposed a set of estimated pa-
rameter values. The core of Phobos is likely to have a size of approximately 8.2 km with
a corresponding density of around 2500 kg·m−3. Additionally, the remaining density of
the outer layer is close to 1400 kg·m−3. Our results nearly agree with a previous study by
Willner et al. [10], in which they constructed a two-layer model with a 5 km thick outer
layer with a density of 1600 kg·m−3 and found the remaining core with a bulk density close
to 2800 kg·m−3. Our results also indicate a similar distribution of increased density as the
model proposed by Dmitrovskii et al. [14], which presents two possible scenarios: one with
a positive density gradient, and the other with discrete layers exhibiting increasing density
with depth. In addition, even though the study of Guo et al. [21] demonstrated that Phobos’
core density was lower than that of its outer layer, they also discovered instances where the
core density (ρc = 2200 kg·m−3) was greater than that the outer layer (ρm = 1810 kg·m−3).
Our findings suggest that an increasing interior density with depth is a likely configuration
for Phobos.

Regarding the origin of Phobos, a giant impact [33,34] resulting in primitive ring-
moon recycling evolution [35] has been proposed. The water ice content is likely related
to the process of re-accretion. Using the optimized radius and densities in this study,
we speculated the fractional water ice content. It should be noted that the densities
of the core and outer layer represent the average values for the corresponding layers.
Moreover, they are the bulk densities for the respective layers. The regolith density of
Phobos was observed to be approximately 1600 kg·m−3 [36], but the thickness of the
regolith remains undetermined [21]. The numerical study demonstrated the regolith
thickness to be close to tens of kilometers [20]. Considering that our models indicate an
outer layer thickness of approximately 3 km and the regolith was formed due to small-
impact erosion followed by re-accretion, it is likely that the rock density in the outer
layer exceeds the observed regolith density of 1600 kg·m−3. Assuming an outer layer
porosity of 30% [37] and a density of 930 kg·m−3 for water ice, we used a potential rock
density of 2200 kg·m−3 to estimate the fractional water ice content, which was found to be
approximately 11%. The mean value of rock density and the estimated content of water
ice are close to previous studies [38,39]. Additionally, we used the potential rock density
of carbonaceous compositions (~3000 kg·m−3) and a lower porosity of 15% than the outer
layer to estimate the water ice content in the core. It was found that the fractional water
ice content is around 2.4%, which is significantly lower than that of the outer layer. This
result shows that the distribution of bulk density aligns with the likely formation of Phobos,
providing a valuable reference for examining the interior structure of small bodies with
irregular shapes.

6. Conclusions

The interior structure of Phobos has been a topic of debate in recent years, with the
moment of inertia playing a crucial role in determining the density distribution inside the
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moon. New gravity coefficients of degree-2 were derived for Phobos from MEX Doppler-
tracking data, along with updated forced libration amplitudes. Using the low-degree
coefficients of gravity and the forced libration amplitudes, we determined the moment of
inertia for Phobos. Before estimating its interior structure, two models with a two-layer
interior structure were introduced, one consisting of a spherical core (Model-I) and another
with an irregularly shaped surface similar to Phobos’ surface (Model-II). The estimated
parameters for these models included the core radius rc, the core density ρc, and the density
ρm of the outer layer. Based on these parameters, we derived the modeled moment of
inertia and mean densities for the two models.

To speculate on the potential structure of Phobos, we considered the estimated param-
eters to be normally distributed and employed a joint inversion of mean density and mean
moment of inertia using the PSO method. By minimizing the misfit between the derived
and modeled moment of inertia as well as the observed and modeled mean density of
Phobos, we obtained the frequency distribution for the estimated parameters. The results
showed that the optimized radius of the core was around 8.2 km for both models, with a
compromised core density of approximately 2500 kg·m−3 and an outer layer density of
around 1400 kg·m−3.

We also tested the sensitivity of the estimated parameters on the misfit function and
found that they were reliable. Finally, using the compromised values, we speculated on the
possible water ice content of Phobos. The results indicated a fractional water ice content
in the outer layer of approximately 11% with a rock density of 2200 kg·m−3, while the
content in the core was lower at 2.4% with a rock density of 3000 kg·m−3. Compared with
previous studies of similar methods, our methodology takes into account the irregular
shape of celestial bodies. Consequently, our models are more suitable for estimating the
internal structure of small celestial bodies by leveraging the mean moment of inertia and
mean density. This work can serve as a reference for constraining the interior structure of
irregularly shaped asteroids.
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