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Abstract: The stable detection and tracking of high-speed vehicles on the road by using LiDAR
can input accurate information for the decision-making module and improve the driving safety of
smart cars. This paper proposed a novel LiDAR-based robust vehicle detection method including
three parts: point cloud clustering, bounding box fitting and point cloud recognition. Firstly, aiming
at the problem of clustering quality degradation caused by the uneven distribution of LiDAR point
clouds and the difference in clustering radius between point cloud clusters in traditional DBSCAN
(TDBSCAN) obstacle clustering algorithms, an improved DBSCAN algorithm based on distance-
adaptive clustering radius (ADBSCAN) is designed, and a point cloud KD-Tree data structure
is constructed to speed up the traversal of the algorithm; meanwhile, the OPTICS algorithm is
introduced to enhance the performance of the proposed algorithm. Then, by adopting different
fitting strategies for vehicle contour points in various states, the adaptability of the bounding box
fitting algorithm is improved; Moreover, in view of the shortcomings of the poor robustness of the
L-shape algorithm, the principal component analysis method (PCA) is introduced to obtain stable
bounding box fitting results. Finally, considering the time-consuming and low-accuracy training of
traditional machine learning algorithms, advanced PointNet in deep learning technique is built to
send the point cloud within the bounding box of a high-confidence vehicle into PointNet to complete
vehicle recognition. Experiments based on our autonomous driving perception platform and the
KITTI dataset prove that the proposed method can stably complete vehicle target recognition and
achieve a good balance between time-consuming and accuracy.

Keywords: autonomous driving; environment perception; LiDAR; vehicle detection

1. Introduction
1.1. Background

Driverless technology of intelligent vehicles has received extensive attention and
research in recent years [1–9]. According to United Nations statistics, road accidents kill
1.3 million people and injure 50 million people worldwide every year; the emergence of
autonomous driving technology can effectively avoid some accidents and improve road
safety. Environmental perception technology is the first link of autonomous driving, and
the use of LiDAR to stably detect high-speed vehicles on the road can input accurate
information for the decision-making module and improve the driving safety of intelligent
vehicles. Therefore, ensuring stable detection of vehicle targets plays a decisive role in the
development of driverless technology.

The visual perception scheme obtains vehicle semantic information by collecting rich
RGB information and infers vehicle location information. However, under special working
conditions such as rain, snow, fog and night, the detection accuracy of the visual perception
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scheme will drop significantly or even fail; in contrast, LiDAR acquires point clouds by
emitting laser light and receiving reflected signals. Processing point cloud data can directly
obtain rich information such as the shape, position and orientation of the vehicle. In
addition, the lidar can still work normally in bad weather or at night, effectively avoiding
the algorithm failure of the camera caused by bad weather or insufficient light.

1.2. Related Research

At present, vehicle detection technology based on LiDAR is mainly divided into
vehicle detection algorithms based on point cloud segmentation and vehicle detection
algorithms based on point cloud classification [1]. The vehicle detection algorithm based
on point cloud segmentation is supported by point cloud convolutional neural networks.
By extracting features from the scattered and disordered point cloud of the input, it can
segment the ground, pedestrians, or other obstacles in the out-point cloud while obtaining
the vehicle target. The vehicle detection algorithm based on point cloud classification
is called the traditional algorithm compared with neural networks which follows three
processes: drivable area detection, point cloud clustering and point cloud classification.

Recently, some efforts of deep learning-based vehicle detection have been brought
forward in this respect. Xia et al. [5] presented an automated driving system data acquisition
and analytics platform through a deep-learning-based object detection algorithm using
LiDAR information, a late fusion scheme to leverage cooperative perception from multi-
connected automated vehicles is introduced. Liu et al. [6] proposed a novel YOLOv5-tassel
algorithm with a bidirectional feature pyramid network to detect tassels, annotation is
performed with guidance from center points derived from CenterNet to improve the
selection of the bounding boxes for tassels. Monisha et al. [7] investigated an efficient relay
node selection scheme for mission critical communication using machine learning, the
temporary database learning and control (t-DLC) unit during an emergency is attached to
minimize communication overhead in the medium. Kingston Roberts et al. [8] designed
an improved optimal energy-aware data availability approach for secure clustering and
routing in wireless sensor networks, it can increase the network lifetime by focusing on the
selection of stable routing paths and cluster heads. So et al. [9] analyzed the probability
of visibility limitation of autonomous vehicle detection performance according to various
road geometry settings, and the reliable autonomous driving system will improve traffic
safety based on the enhanced detection and recognition capability of autonomous vehicle
sensors. YOLO3D [10] uses the average value of each category label box as the size
of the 3D prior box and inputs the maximum height feature map and density feature
map into the YOLOV2 network structure for classification tasks and regression, and this
method is simple and efficient. Compared with the 2D classification task, only the height
information z, the height dimension h and the prediction of the direction θ are added.
Pixor [11] does not consider height and density features when constructing feature maps
but only considers occupancy and reflectivity. By constructing feature maps under the
top view, and then extracting features through 2D CNN. PointNet [12] is a deep learning
framework for point cloud classification and segmentation proposed by Stanford University
in 2017. Due to the irregular spatial relationship of the point cloud during classification
or segmentation, the existing image classification and segmentation framework cannot
be directly applied to the point cloud. PointNet uses the input method of the original
point cloud and extracts the point cloud by designing 1024-dimensional features, and then
it performs maximum pooling on each dimension of the features and utilizes two fully
connected layers to complete point cloud classification or segmentation after obtaining
global features. PointNet preserves the spatial characteristics of the point cloud to the
greatest extent, and it can achieve good results in the final test. Considering that voxel-
based methods can efficiently encode multi-scale feature representations and generate
high-quality 3D proposal boxes, and raw point-based methods can also preserve more
precise location information, Shi et al. [13] proposed a novel 3D object Detection framework
PV-RCNN, the method first uses 3D Voxel CNN to divide the scene into (L, W and H)
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voxels, and then utilizes the SA operation proposed in PointNet++ to aggregate voxel
features at different scales. Li et al. [14] proposed a fast and general-purpose two-stage 3D
detector LiDAR R-CNN, this method uses a common voxelization method for detection
and applies the original point cloud information to obtain a more accurate image after
removing most of the background. For the bounding box, the number of point clouds
in the classification stage is greatly reduced due to the deletion of background points.
The second-stage network can perfectly avoid the shortcomings of point-based methods
with large calculations while retaining the precise geometry of the target in the original
point cloud.

Moreover, note that VoxelNet [15] voxelizes the original point cloud for random
sampling, then uses the voxel feature encoding layer (Voxel Feature Encode) for feature
extraction, and finally the region generation network RPN (Region Proposal) is exploited
to complete the classification and segmentation. Based on VoxelNet, Yan [16] proposed a
spatially sparse convolutional network with SSD as the detection head which has improved
speed and accuracy. PointPillars can improve the point cloud representation based on
VoxelNet, which converts point clouds into fake images and then achieves target detection
through 2D convolution. Voxel rcnn [17] treats a sparse but regular 3D volume as a set of
non-empty voxel center points and utilizes an accelerated PointNet module to achieve a
new balance between accuracy and efficiency.

The vehicle detection algorithm based on point cloud segmentation needs to rely on a
large amount of training data sets, resulting in poor transferability in different scenarios
and difficulty in landing. The technical route of the vehicle detection algorithm based on
point cloud classification is to obtain the point cloud belonging to each obstacle through
ground segmentation, road boundary detection and point cloud clustering. Then, the
classifier is used to complete semantic recognition.

The grid-based point cloud clustering algorithm is simple and efficient, but the clus-
tering effect is greatly affected by the grid size, so the density-based point cloud clustering
(DBSCAN) method has gradually become mainstream [18,19]. Gao et al. [20] proposed
a method to quickly extract urban road guardrails, using multi-level filtering combined
with the improved DBSCAN clustering algorithm, which enables it to have good clustering
effects on most types of guardrails. Miao [21] used the improved DBSCAN algorithm for
image clustering and completed the position detection of the UAV through the LiDAR
time-domain cumulative image within a certain detection time. Yabroudi [22] divided the
space into different rectangles through the FOV angle of view, adopted different clustering
radii inside each rectangle and then used the DBSCAN algorithm to complete the clustering.
Wen [23] deleted the point cloud with a height within a certain range as the ground point
cloud and then proposed an improved European clustering algorithm, which calculated
and calibrated the optimal clustering threshold under different distances. The selection
of cluster radius in the density-based clustering algorithm is the main factor affecting the
quality of point cloud clustering.

The most used bounding box fitting algorithm is the L-shape algorithm [24–29]. How-
ever, the regular L-shape algorithm does not consider the bumper-only case, where the
target vehicle is directly in front of the ego vehicle. At the same time, the RANSAC algo-
rithm is widely used for line fitting in regular L-shape algorithms, which means fitting
results are random due to the nature of the RANSAC algorithm itself, this leads to inac-
curate heading estimates. Some literature solves some of the problems in the traditional
L-shape algorithm. Zhao [24] takes the angle judgment result as the premise, takes the
bumper contour point directly in front into consideration in the judgment process and
develops a stable bounding box fitting algorithm. Kim [30] focuses on the switch of vertices
in the tracking process, and the real vehicle test proves that the algorithm is effective.

After getting the bounding box of each object, further recognition of the point cloud
to obtain semantic information is the last step of the vehicle detection algorithm based
on point cloud classification. Golovinskiy [31] first extracts the global features of each
obstacle and then uses manually labeled samples to train an SVM classifier to complete
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online classification. Chen [32] extracted the border features, local point histogram features
and global cylindrical coordinate histogram features of the clustered point cloud, they
used SVM and Adaboost classifiers to train the input features, respectively and proved the
Adaboost classification by comparative experiments. The device can obtain better real-time
performance and accuracy. Junho [33] extracted the features such as area and rectangle
in the horizontal and vertical directions of the obtained point cloud, established a vehicle
recognition model and used the decision tree algorithm to train a classifier for vehicle target
recognition. Moreover, using the SVM classifier for training, Himmelsbach extracted more
specific features including object reflectivity, volume and local points. Experiments in the
literature showed that the more features extracted, the better the recognition effect.

1.3. Main Work

This paper takes point cloud clustering, bounding box fitting and point cloud clas-
sification based on deep learning as the technical route and proposes a vehicle detection
algorithm based on the combination of clustering and deep learning, the detailed technical
route is shown in Figure 1, in which we used the previous work [34] to obtain the drivable
area. In simple terms, the ground segmentation algorithm based on the Gaussian process is
used to remove the ground point cloud. Experiments with the automatic driving perception
platform and the KITTI dataset prove that the proposed clustering algorithm works well,
and the bounding box fitting algorithm has high robustness. Moreover, the established
technical framework can stably recognize vehicles on the road and achieve a good balance
between recognition accuracy and efficiency.

Remote Sens. 2023, 15, 3160 4 of 32 
 

 

After getting the bounding box of each object, further recognition of the point cloud 

to obtain semantic information is the last step of the vehicle detection algorithm based on 

point cloud classification. Golovinskiy [31] first extracts the global features of each obsta-

cle and then uses manually labeled samples to train an SVM classifier to complete online 

classification. Chen [32] extracted the border features, local point histogram features and 

global cylindrical coordinate histogram features of the clustered point cloud, they used 

SVM and Adaboost classifiers to train the input features, respectively and proved the Ada-

boost classification by comparative experiments. The device can obtain better real-time 

performance and accuracy. Junho [33] extracted the features such as area and rectangle in 

the horizontal and vertical directions of the obtained point cloud, established a vehicle 

recognition model and used the decision tree algorithm to train a classifier for vehicle 

target recognition. Moreover, using the SVM classifier for training, Himmelsbach ex-

tracted more specific features including object reflectivity, volume and local points. Ex-

periments in the literature showed that the more features extracted, the better the recog-

nition effect. 

1.3. Main Work 

This paper takes point cloud clustering, bounding box fitting and point cloud classi-

fication based on deep learning as the technical route and proposes a vehicle detection 

algorithm based on the combination of clustering and deep learning, the detailed technical 

route is shown in Figure 1, in which we used the previous work [34] to obtain the drivable 

area. In simple terms, the ground segmentation algorithm based on the Gaussian process 

is used to remove the ground point cloud. Experiments with the automatic driving per-

ception platform and the KITTI dataset prove that the proposed clustering algorithm 

works well, and the bounding box fitting algorithm has high robustness. Moreover, the 

established technical framework can stably recognize vehicles on the road and achieve a 

good balance between recognition accuracy and efficiency. 

 

Figure 1. Technical framework of proposed vehicle detection. 

2. Point Cloud Clustering and Vehicle Bounding Box Fitting Algorithm 

2.1. ADBSCAN Algorithm for Point Cloud Clustering 

In point cloud clustering, the DBSCAN algorithm is a typical density-based spatial 

clustering algorithm. The DBSCAN algorithm requires that the number of points con-

tained in a certain area in the clustering space is not less than a given threshold minPts. 

Compared with the most used K-means algorithm, the DBSCAN algorithm does not need 

to specify the number of categories in the sample in advance, and it can find clusters of 

any shape and is currently the most used point cloud clustering algorithm in the field of 

point cloud clustering. 

Figure 1. Technical framework of proposed vehicle detection.

2. Point Cloud Clustering and Vehicle Bounding Box Fitting Algorithm
2.1. ADBSCAN Algorithm for Point Cloud Clustering

In point cloud clustering, the DBSCAN algorithm is a typical density-based spatial
clustering algorithm. The DBSCAN algorithm requires that the number of points contained
in a certain area in the clustering space is not less than a given threshold minPts. Compared
with the most used K-means algorithm, the DBSCAN algorithm does not need to specify
the number of categories in the sample in advance, and it can find clusters of any shape
and is currently the most used point cloud clustering algorithm in the field of point
cloud clustering.

The principle of the DBSCAN clustering algorithm is shown in Figure 2. The algorithm
divides the candidate data points into three categories. If the ε neighborhood of sample
xi contains at least minPts sample points, that is, Nε (xi) ≥minPts, the sample point xi is
called the core point. If the number of sample points in the ε neighborhood of sample xi
is less than minPts but about other core points, the sample point xi is called a boundary
point, and finally, the points that are neither core points nor boundary points are recorded
as outliers and deleted to obtain the final clustering result.
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The traditional DBSCAN algorithm has two parameters that affect the clustering
quality, one is the cluster radius and the other is minPts, which is the minimum number of
points in a single cluster. Since the distribution of LiDAR scanning points becomes sparse
as the distance increases, the clustering radius with a fixed threshold cannot guarantee the
clustering quality. At the same time, the DBSCAN algorithm needs to traverse all unvisited
points every time to calculate the reachable distance, resulting in the high complexity of
the algorithm, and the real-time performance cannot meet the requirements.

Aiming at the above two problems, this paper first improves the clustering radius ε
selection method in the DBSCAN algorithm and proposes an adaptive clustering radius
based on distance, which enables the algorithm to automatically expand the clustering
radius at distant sparse point clouds to obtain more accurate clustering results. Then, in
the traversal stage of the DBSCAN algorithm, KD-Tree is used to organize the point cloud
data structure to speed up the search.

Figure 3 shows the plane scanning model of the LiDAR, where α represents the vertical
angle interval of the LiDAR and β represents the horizontal angle interval of the LiDAR.
When the LiDAR beam scans the surface of the same obstacle, points 1, 2, 3 and 4 are
obtained. According to the arc length formula, the distance L12 between scanning points 1
and 2 is approximately:

L12 = L1
α
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At this time, the theoretical minimum clustering radius should be L23. For the robust-
ness of the algorithm, it is appropriately expanded to

εi =
Li
√

α2 + β2

180
(

N
4
+ η). (2)

In the formula, N is the number of points contained inside when L12 is the clustering
radius, η is the expansion coefficient and η = 4 in this chapter. Through the distance
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adaptation of the cluster radius, the traditional DBSCAN algorithm can in principle adapt
to the obstacle point cloud clustering when the point cloud is sparse.

Time-consuming search is also one of the problems faced by the DBSACN algorithm.
In order to speed up the search speed of the DBSCAN algorithm, this paper uses KD-Tree
to establish a topological relationship for the point cloud. KD-Tree is a tree data structure
that stores instance points in k-dimensional space for fast retrieval. It has been widely used
in the field of multi-dimensional information search. KD-Tree is essentially a special case
of a binary space tree. Each node inside it represents a hyperplane that divides the space,
and the data of other multi-dimensional points can be divided according to the value of the
node in a certain dimension.

Figure 4 shows the KD-Tree construction process. First, it finds the median of the point
set as the hyperplane and divides the initial point set into two parts. In the remaining two
parts, it continues to find the median as the hyperplane. Each point set is divided again into
two parts until it cannot be divided again. When the KD-Tree is established, the structure
of the tree is shown in the last figure in Figure 4. The time complexity of KD-Tree is

T(n)
{

O(1) n = 1
O(n) + 2 · T([n/2]) n > 1

, (3)

T(n) = O(n · log(n)). (4)
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In summary, the process flow of the DBSCAN clustering algorithm based on the size
of the adaptive clustering radius proposed in this paper is shown in Figure 5.

2.2. Ordering Points to Identify the Clustering Structure

Ordering Points to identify the clustering structure (OPTICS) algorithm is an improved
algorithm for DBSCAN clustering, different from the DBSCAN algorithm that explicitly
generates clusters and the output of the OPTICS clustering algorithm is an augmented
cluster sorting, which represents the density-based clustering structure of each sample
point from which the clustering results based on any cluster radius ε can be obtained, so as
to overcome the poor clustering effect caused by the sparse point cloud. As the OPTICS
algorithm is rarely used, this paper mainly discusses whether it can be applied to vehicle
point cloud clustering, and then gives an evaluation of the algorithm.

Figure 6 shows the relationship between the parameters. It is generally believed that
the clustering radius of the OPTICS algorithm is infinite. The minimum sample constraint
minPts is shown in the green circle in the figure. The core distance coreDist(xp) is defined as
the distance between the core point xp and the farthest point within the minimum sample
constraint range, and the reachable distance reachDist(xq, xp) is defined as the sample The
maximum value of the distance between Dist(xq, xp) and coreDist(xp) between point xp and
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sample point xq. Therefore, the core distance of the sample point xp in Figure 6 is three,
and the reachable distance is seven. The pseudo code for clustering using the OPTICS
algorithm is shown in Algorithm 1.
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Algorithm 1 OPTICS clustering algorithm

Input: X, eps, minPts
Output: orderList
01: corepoints = getcoreDist (X, eps, minPts)//Calculate reachable distance
02: coreDist = computecoreDist (X, eps, minPts)//Compute Kernel Distance
03: for unprocessed point p in corepoints
04: Np = getneighbors (p, eps)
05: mark p as processed and output p to the ordered list
06: if Np > minPts
07: Seeds = empty priority queue
08: update (Np, p, Seeds, coreDist)//update sequence
09: for q in Seeds
10: Nq = getneighbors (q, eps)//Number of points to calculate, defaults to all points
11: if Nq > minPts
12: update (Nq, q, Seeds, coreDist)//update sequence
13: return orderList
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After the OPTICS algorithm obtains the augmented cluster sorting, it cannot directly
obtain the clustering results. At this time, it is necessary to set the cutoff distance to
distinguish different clusters. In the reachable distance image, different depressed regions
below the cutoff distance represent different clusters.

2.3. Improved L-Shape Vehicle Bounding Box Fitting

The bounding box fitting algorithm is a method to solve the optimal enclosing space
of discrete point sets. Its basic idea is to use a slightly larger bounding box with simple
characteristics to approximately replace complex clusters, which is convenient for subse-
quent identification, tracking and avoidance. The commonly used bounding box fitting
algorithm is the minimum area circumscribed rectangle algorithm, but it is not suitable
for vehicle bounding box fitting. Considering that the vehicle has an obvious outline, a
simple and efficient L-shape algorithm can fit the bounding box of the vehicle. The basic
idea of the algorithm is to regard the vehicle contour as an “L” shape, as shown in Figure 7,
the algorithm defines the vehicle contour point cloud as the point set with the closest
Euclidean distance from the LiDAR at the same angle and defines the closest point as the
point where the vehicle contour point is closest to the LiDAR is divided into long and short
sides according to the scanning information based on the nearest point. The long side is
considered as the left and right sides of the vehicle, and the short side is considered as the
rear side of the vehicle. The vehicle point cloud is obtained. After the two sides of the
cluster, a straight-line fitting is performed on the two sides to obtain the bounding box.
The L-shape algorithm is simple, and the calculation time is low, but there are two strict
prerequisites: the first is that the shape of the vehicle contour point cloud needs to meet
the L shape or approximate L shape, otherwise, it will appear as shown in the Figure 8a.
The case of fitting failure in Figure 8d; the second is that the straight-line fitting algorithm
needs to correctly reflect the distribution and orientation of the point cloud, otherwise the
long side in Figure 8b and the long side in Figure 8c will appear fitting accuracy is low.
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Figure 7. L-shape bounding box fitting algorithm.

Aiming at the two problems of the traditional L-shape algorithm, an improved vehicle
bounding box fitting algorithm is proposed in this paper. The biggest advantage of this
algorithm is its high robustness, and it can complete vehicle bounding box fitting in
various scenarios. First, it expands the I-shaped and U-shaped vehicle contours based on
the L-shaped algorithm. As shown in Figure 9, the I-shaped vehicle contour points are
located on the left and right sides of the smart car and are flush with the smart car in the
forward direction. The target vehicle and U-shaped vehicle contour points are derived
from the target vehicle located directly in front or directly behind the smart car. Through
the expansion of the contour type, the algorithm fitting failure caused by the change of the
vehicle contour type and caused by the relative attitude is reduced.
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Figure 9. Common three types of vehicles point cloud contours.

Figure 10 shows the process of judging the vehicle contour point using the angle
criterion and interior point rate criterion. The angle criterion takes the nearest point of
the initial contour point as the center point, divides the original vehicle contour point into
long and short sides and calculates the included angle. The included angle of the L-shaped
profile is about 90◦, while the U-shaped and I-shaped profiles are greater than 90◦. The
interior point ratio considers the probability that the contour point distribution is a straight
line. When the point cloud distribution is a straight line, the interior point rate of the model
iterated by the RANSAC algorithm is high, which can reach more than 90%.



Remote Sens. 2023, 15, 3160 10 of 29

Remote Sens. 2023, 15, 3160 10 of 32 
 

 

 

Figure 9. Common three types of vehicles point cloud contours. 

Figure 10 shows the process of judging the vehicle contour point using the angle cri-

terion and interior point rate criterion. The angle criterion takes the nearest point of the 

initial contour point as the center point, divides the original vehicle contour point into 

long and short sides and calculates the included angle. The included angle of the L-shaped 

profile is about 90°, while the U-shaped and I-shaped profiles are greater than 90°. The 

interior point ratio considers the probability that the contour point distribution is a 

straight line. When the point cloud distribution is a straight line, the interior point rate of 

the model iterated by the RANSAC algorithm is high, which can reach more than 90%. 

 

Figure 10. Schematic of judging U-shaped and L-shaped contours. 

In the angle calculation process, the results obtained by fitting contour points from 

commonly used straight line fitting algorithms such as the RANSAC algorithm and the 

least squares fitting algorithm cannot fully reflect the distribution characteristics of the 

vehicle’s contour points, which leads to subsequent angle judgments. Thus, this paper 

introduces the Principal Component Analysis (PCA) algorithm and combines it with the 

RANSAC algorithm to ensure the robustness of the calculation of the contour point direc-

tion. 

The PCA algorithm is a statistical method for dimensionality reduction. It uses an 

orthogonal transformation to recombine the original variables into a new set of unrelated 

comprehensive variables and then extracts a few fewer variables from them according to 

Figure 10. Schematic of judging U-shaped and L-shaped contours.

In the angle calculation process, the results obtained by fitting contour points from
commonly used straight line fitting algorithms such as the RANSAC algorithm and the least
squares fitting algorithm cannot fully reflect the distribution characteristics of the vehicle’s
contour points, which leads to subsequent angle judgments. Thus, this paper introduces
the Principal Component Analysis (PCA) algorithm and combines it with the RANSAC
algorithm to ensure the robustness of the calculation of the contour point direction.

The PCA algorithm is a statistical method for dimensionality reduction. It uses an
orthogonal transformation to recombine the original variables into a new set of unrelated
comprehensive variables and then extracts a few fewer variables from them according to
actual needs to respond as much as possible. The original variable information. For the
obstacle contour point set P = {p1, . . . , pi}, the covariance matrix M is constructed as

M =
1
m

m

∑
i=1

(pi − p)(pi − p)T , (5)

where
λV = MV. (6)

In the formula, λ = (λ0, λ1, λ2) is the eigenvalue, and V = (V0, V1, V2) is the corre-
sponding eigenvector. The larger the eigenvalue of the eigenvector, the greater the change
of the sample set in this direction. Since most of the contour points are linearly distributed,
the eigenvector at this time can be oriented to the point cloud of the entire contour point.
However, the PCA algorithm does not have the ability of the RANSAC algorithm to reject
outliers. When there are some outliers in the data, the PCA algorithm cannot filter them out.
As shown in Figure 11, when there are outliers in the data, since the PCA algorithm reflects
the distribution characteristics of all point clouds, the black outliers are also included and
the fitting result is quite different from the real point cloud distribution. The RANSAC
algorithm does not consider all points, so the black outlier points are directly rejected
during the fitting process, and the robustness is high. Figure 11b shows the shortcomings of
the RANSAC algorithm. When the point cloud distribution has a certain curvature, such as
the rear bumper of the target vehicle, the rear trunk, etc.; the fitting results of the RANSAC
algorithm will have serious deviations and cannot be applied to this class.
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Figure 11. Comparison of fitting results between PCA algorithm and RANSAC algorithm. (a) There
are outliers but the data distribution is linear. (b) There are no outliers but the data distribution
is nonlinear.

Therefore, this paper proposes the RANSAC-PCA algorithm to improve the stability
of the straight-line fitting process. In the straight-line fitting stage, the initial point is
first screened using the RANSAC algorithm, and then the interior points obtained by the
RANSAC algorithm are recorded as sampling points, and finally the PCA algorithm is used
to fit the sampling point set. Among them, the RANSAC algorithm divides all points into
outer points and inner points and then the PCA algorithm estimates the orientation of the
inner points, and uses the estimated result to represent the orientation of the point cloud,
that is, the outline of the bounding box of the vehicle, effectively avoiding the interference
of abnormal points while ensuring towards the robustness of the fitting results.

In summary, the process flow of the bounding box fitting algorithm proposed in this
paper is shown in Figure 12. For the L-shaped contour, first, find the nearest point and the
farthest point, and then find the point farthest from the straight line formed by the two
points in the contour point set, use it as the corner point and finally obtain it according
to steps 2 and 3 in Figure 12 to the bounding box. For the U-shaped contour, find the
leftmost and rightmost points, and then similarly find the point farthest from the straight
line connecting the two points, and finally obtain the bounding box according to steps 2
and 3 in Figure 12.
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Before the clustering results are sent to the point cloud classification network for
recognition, the point cloud clusters that obviously do not have vehicle characteristics are
excluded in advance from the bounding box fitting results, which can effectively reduce the
time-consuming recognition. In addition to the basic characteristics such as length, width
and height, the following indicators are also defined, as shown in Table 1. It should be
noted that the starting point of this link is not to find clusters with vehicle characteristics
but to delete obvious non-vehicle clusters such as rods and thin walls. Figure 13 shows the
number of obstacles after screening. It can be found that in the screening, other obstacles
such as walls, bushes, trees and utility poles can be quickly and effectively eliminated.

Table 1. Bounding box initial screening index.

Number Threshold Definition

1 Theight_(min|max) Maximum and minimum height of obstacles
2 Twidth_(min|max) Maximum and minimum width of obstacles
3 Tlength_(min|max) Maximum and minimum length of obstacles
4 Tarea_(min|max) Top View Area of Obstacles
5 Tratio_(min|max) The aspect ratio of the obstacle
6 Tratiocheck_l_(min) Aspect ratio threshold for obstacles
7 Tpt_per_m3_(min) The number of points contained within the obstacle
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After that, the point cloud inside the vehicle bounding box, which is considered to
have high confidence, will then be fed into the point cloud classification neural network for
further semantic recognition.

3. Vehicle Point Cloud Recognition with PointNet
3.1. PointNet Point Cloud Classification Network

The traditional vehicle point cloud recognition method relies on machine learning.
After extracting the global features such as linearity, flatness, volume and curvature change
value of the point cloud, use a trained SVM, random forest or Adaboost to classify and
identify it. However, the training of classifiers is very time-consuming. In addition, the
input object of the classifier is manually extracted point cloud global features, which leads to
the classification result largely depending on whether the designed features can accurately
describe the vehicle target. Therefore, considering the amount of training, algorithm
transferability and recognition accuracy, this section introduces the PointNet point cloud
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classification network and uses the result of the bounding box fitting algorithm as input to
identify the point cloud in the high confidence vehicle bounding box.

Deep learning has achieved a lot of results in image recognition, intelligent manufac-
turing, data mining and other fields. The basic idea is to combine certain features of the
input data to obtain more diverse features, and then to input data is differentiated and iden-
tified. After years of development, a series of algorithms represented by neural networks
have emerged such as Convolutional Neutral Networks (CNN), Generative Adversarial
Networks (GAN), Long-Short Term Memory Network (LSTM), etc.

The principle of three-dimensional convolution is like that of two-dimensional con-
volution. The difference is that there are more depth channels. The information that can
be represented by this channel includes the number of video frames, three-dimensional
graphic slices or distance information of point clouds. Three-dimensional convolution is
at the height of the input data. Convolution operations are performed in the directions,
width and depth, and finally, three-dimensional convolution information is obtained. The
principle is shown in Figure 14.
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Figure 14. 3D convolution process.

The purpose of the pooling layer is to reduce the dimension of the feature map and
retain a large amount of important information. There are two general pooling methods:
max pooling and average pooling. Figure 15 shows the feature map and the results obtained
after operating with maximum pooling and average pooling, respectively. Maximum
pooling first selects a fixed-size window, regards the largest element in the window as a
feature value and then completes feature value extraction through a sliding window. The
average pooling method is the same as the maximum pooling; the difference is that the
selected feature value is the average value in the window.
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Figure 15. Pooling in two different ways.

The fully connected layer is at the end of the convolutional neural network. After
the previous convolution has learned enough features, the high-dimensional features
are reshaped into a one-dimensional vector inside the fully connected layer, and the
classification results are output. The main function of the classifier is to learn the potential
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classification rules from the existing data categories and it can complete the classification
when the location data is input. Commonly used classifiers such as support vector machines
and logistic regression are mainly used to solve binary classification problems and it is
difficult to face multi-classification problems. SoftMax has been widely used in the field of
multi-classification and the effect is remarkable. The principle is to map the output category
of the network to the (0, 1) interval to indicate the probability that the target belongs to a
certain category so that no matter how many types of labels there are. SoftMax can output
the probability corresponding to each label and take the one with the highest probability
Labeling completes the classification task.

Since the convolutional architecture requires a highly regular input data format in
order to share weights or perform kernel optimization, and point clouds and grids are in
unusual formats, most methods first convert point cloud data into regular 3D voxel grid
or collection of images before feeding it into a deep network architecture for recognition.
Obviously, such processing will change some of the original features of the point cloud.
Charles R. Q of Stanford University proposed a classification and segmentation method
based on point cloud global features—PointNet in 2017 [7].

PointNet is a new type of deep learning model for processing point cloud data, which
can be used for various cognitive tasks of point cloud data such as classification, semantic
segmentation and target recognition. Its network structure is shown in Figure 16. PointNet
directly takes point cloud data as input, and it multiplies with a transformation matrix
learned by T-Net to ensure the invariance of the model to a specific space transformation,
and then uses multiple weight-sharing multi-layer perceptrons to extract features from the
point cloud and obtain (N, 1024) the size tensor, after convolution, obtain 1024-dimensional
vector features for each point, then use the transformation matrix learned by T-Net again
for feature alignment and finally utilize the maximum pooling method to obtain the global
features of the point cloud to complete the classification or split tasks. The core modules
of the PointNet network includes the T-Net alignment module, multi-layer perceptron,
maximum pooling and full connection.
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Figure 16. PointNet classification network structure.

The two T-Net alignment module structures used in the PointNet network structure
are shown in Figure 17. Since the order of points in the point cloud does not affect the
spatial structure of the point cloud itself, different input orders will affect feature extraction,
that is, if the order of the input point cloud is different, the MLP layer will extract different
high-dimensional features. Therefore, the input point cloud must be processed with the
T-Net module to ensure the input invariance of the point cloud. The T-Net module consists
of three parts. The first part consists of three layers of shared MLP for feature extraction;
the second part is a symmetric function for aggregating global information; the third
part is a two-layer fully connected hidden layer plus a linear layer for predicting affine
transformations matrix. In addition, the first T-Net module in PointNet is used to align the
input point cloud to ensure the invariance of the spatial rigid body after the point cloud
data is fed into the network. The second T-Net module is used to align the point cloud
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features extracted by the multi-layer perceptron. The T-Net module adds a regularization
term to the network training loss, constraining the matrix to be nearly orthogonal:

Lreg =
∥∥∥I − AAT

∥∥∥2

F
. (7)
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Multi-layer perceptron: multi-layer perceptron consists of an input layer, multiple
hidden layers and an output layer. The layers are fully connected. Each neuron is equipped
with a nonlinear activation function. Its structure diagram is shown in Figure 18, and the
calculation process is represented by Formulas (8)–(10), where W represents the parameter
matrix, g is the activation function of the hidden layer and G is the global feature.

W =


w11 w12 · · · w1c
w21 w22 · · · w2c
w31 w32 · · · w3c
w41 w42 · · · w4c

, (8)

f (P) = g(PW), (9)

G = maxpooling( f ). (10)
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Max pooling (maxpooling): PointNet uses the maximum symmetric function to ap-
proximate the function defined by any point set, avoiding the influence of the data order
on the result to solve the disorder problem of point cloud:

f ({x1, x2, . . . , xn}) ≈ g(h(x1), h(x1), . . . , h(xn)). (11)

In the formula, f (.) represents the point cloud global feature extraction function, and
h (.) represents the point feature extraction function.

Full connection: PointNet finally extracts the features of the points through the multi-
layer shared weight MLP and outputs the predicted category of each point after inputting
the connected 64-dimensional local features and 1024-dimensional global features into the
classifier. Since PointNet maximizes all points into a global feature, the connection between
local points and points is not captured by the network, and the local features of the point
cloud are lost. When the scene becomes complex, the accuracy of the PointNet network
drops significantly, not suitable for segmentation tasks.

In summary, this paper builds a PointNet network for the final point cloud recognition.
Since the pre-processing part has obtained a high-confidence vehicle bounding box, this
method not only has the robustness of the traditional method but also can obtain the
semantics of the vehicle point cloud. Information can achieve a better balance between
recognition accuracy and time-consuming.

3.2. PointNet Training Process

The training data in this paper comes from the KITTI Object 3D dataset. Since this
dataset does not provide classification data, we extract 18,566 original objects through the
conversion relationship between the image and LiDAR system, as well as the labels and
bounding boxes provided in the Training dataset. Obstacle data, a total of six categories,
as shown in Figure 19, including “Car”, “Pedestrian”, “Cyclist”, “Van”, “Misc”, “Truck”.
We convert “Car”, “Van”, and “Truck” into “Car”, keep “Pedestrian” and “Cyclist” and
classify the rest as “Other”. In the end, 10,341 “Car” samples, 4767 “Pedestrian” samples,
1863 “Other” samples and 1595 “Cyclist” samples are obtained.
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Figure 19. Different types of targets. (a) Car, (b) Cyclist, (c) Another car, (d) Pedestrian, (e) Truck and
(f) Van.

Since most of the KITTI datasets are road scenes, the proportion of samples belonging
to the category “Car” is relatively high. If the proportion of single-class samples is too
large, the generalization ability of the network model will be poor. For classes with a small
number of samples, it will be expanded by random deletion, rotation around the Z axis
and Gaussian random noise after copying. Furthermore, since the number of points per
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class varies a lot within and between classes, the input requires samples to maintain the
same number of points, usually 1024. Therefore, for samples with more than 1024 points,
use downsampling technology to reduce the number of points, and for samples with less
than 1024 points, use zero padding to expand it, as shown in Figure 20. The sample size
and proportion after data enhancement are shown in Table 2.
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Table 2. Comparison of the number and proportion of samples of each category before and after
data enhancement.

Class Index Car Cyclist Pedestrian Other

Before
Number 10,341 1595 4767 1863

Ratio 55.69% 8.59% 25.67% 10.03%

After
Number 8632 5403 6093 5023

Ratio 34.3% 21.48% 24.23% 19.97%

The cross-entropy loss function adopted by the point cloud classification network is

L =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yic log(pic). (12)

In the formula, M represents the number of preset categories in the label, yic is a sign
function and takes 1 if the prediction result is consistent with the label, otherwise it takes 0
and pic represents the predicted value of the probability that sample i belongs to category c.
The Adam optimizer is used for optimization, the initial learning rate is set to 1 × 10−3, the
maximum number of iterations epoch is set to 100 and the batch size is set to 256.

4. Experiment Results and Analysis

In the experimental stage of this paper, the LiDAR point cloud data in the KITTI dataset
is mainly used for algorithm verification. The KITTI dataset is a dataset widely used in
the fields of computer vision and autonomous driving, jointly launched by the Karlsruhe
Institute of Technology and the Technical University of Munich, Germany. This dataset
contains various data such as RGB images, LiDAR data, camera calibration information,
vehicle trajectories and road maps in various scenarios.

In addition to the KITTI dataset, this paper also collects structured road point cloud
data in the campus environment through the autonomous driving perception platform
built in our laboratory (Intelligent Electric Vehicle Laboratory, iEVL, Shanghai, China) to
verify the performance of the algorithm in some specific scenarios. As shown in Figure 21,
the platform is driven by a distributed drive chassis equipped with hub motors, equipped
with a Velodyne VLP-16 LiDAR made by Velodyne, a Mako-502C industrial camera made
by Allied Vision, Nuvo-6108GC industrial computer and a GPS module with integrated
IMU. Able to complete point cloud and image data collection and experiments for motion
planning algorithm verification. Among them, the number of lidar wire harnesses is 16, the
accuracy is ±3 cm, the working frequency is 10 HZ and the maximum scanning distance is
100 m.
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Figure 21. Autonomous Driving Perception Platform.

Since our platform cannot be compared with the platform that is installed on the
self-driving vehicle, our test session mainly focuses on verifying the effectiveness of the
algorithm and making a time-consuming relative comparison.

4.1. Validation of Clustering Algorithms

Firstly, the effectiveness of the clustering algorithm proposed in this paper is verified.
A comparison between the ADBSCAN algorithm and the OPTICS algorithm is provided.
The clustering radius of the TDBSCAN algorithm is set to 0.8 m, the cut-off distance of the
OPTICS algorithm is set to 1.2 m and the minimum number of sample points minPts for
the three types of algorithms is all set to 10.

Figure 22 shows the clustering effect of the three types of algorithms in the KITTI
dataset 2011_09_26_0013, and the statistics of the clustering results for each obstacle are
shown in Figure 23. For obstacles with small sizes and simple shapes, there is no difference
in the clustering effect of the three types of algorithms. When the clustering targets are
vehicles 4, 5, 6 and 7, the clustering effect of the algorithm is different. Among them, the
clustering result for obstacle 6 is the most obvious. TDBSCAN directly divides obstacle 6
into three categories, the ADBSCAN algorithm has no wrong clustering but lost about 55%
of the point cloud data.
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Figure 22. KITTI dataset 2011_09_26_0013 point cloud clustering effect.
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Figure 23. Comparison of clustering results for each obstacle.

Figure 24 qualitatively shows the clustering results of all obstacles in dataset 0018. The
clustering effect of the TDBSCAN algorithm on vehicles is poor and the same vehicle is
clustered into two results; the ADBSCAN algorithm can cluster the vehicles well, but the
clustering in the distance appears mistake. The OPTICS algorithm is obviously ahead of
the two types of DBSCAN algorithms in terms of clustering quality.
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Figure 24. Comparison of clustering results of three types of algorithms.

In order to quantitatively analyze the performance of the algorithm, we manually
counted the number of vehicles directly in front of the smart car in the 808 frames of
data in the KITTI dataset and compared it with the clustering results output by the three
algorithms. Here, we only consider whether the clustering is correct, not considering the
clustering quality, if the number of output clusters is the same, it means that the algorithm
clusters correctly in this frame, and the statistical results are shown in Table 3. In the
clustering results of each data set, the correct rate of the OPTICS algorithm keeps leading.



Remote Sens. 2023, 15, 3160 20 of 29

In dataset 0018, due to the relatively discrete distribution of point clouds in this dataset,
the correct rate of the DBSCAN algorithm has dropped to 59%, which is in an unavailable
state. However, the correct rate of the OPTICS algorithm can still reach 82%. In the 0056
data set, the correct rate of the three types of algorithms is high, and the correct rate of the
OPTICS algorithm reaches 100%. The clustering quality of the two clustering algorithms
based on DBSCAN fluctuates between different data sets, which shows that the robustness
of the algorithm is poor in different scenarios. Compared with the TDBSCAN algorithm,
the ADBSCAN algorithm designed in this paper has higher accuracy and stability. There is
a significant improvement. In the data set 0004, it is only less than 4% different from the
OPTICS algorithm and in 0018 it is 7% ahead of OPTICS.

Table 3. Comparison of clustering quality of each clustering algorithm.

Serial Number Algorithm Correct Frame Wrong Frame Right Ratio

0004
DBSCAN 173 86 66.8%

ADBSCAN 248 11 96.50%
OPTICS 257 2 99.22%

0018
DBSCAN 66 34 66%

ADBSCAN 89 11 89%
OPTICS 82 18 82%

0020
DBSCAN 55 31 63.95%

ADBSCAN 61 25 70.93%
OPTICS 80 6 93.02%

0026
DBSCAN 50 17 74.63%

ADBSCAN 62 5 92.54%
OPTICS 67 2 97.1%

0056
DBSCAN 258 36 87.76%

ADBSCAN 284 10 96.6%
OPTICS 294 0 100%

Figure 25 shows the time-consuming comparison of the three types of algorithms
in each data set in the MATLAB environment. The ADBSCAN algorithm optimized by
the KD-Tree algorithm takes less time, while the OPTICS algorithm takes more time in
most cases. In the DBSCAN algorithm and ADBSCAN algorithm, the clustering quality
of the ADBSCAN algorithm designed in this paper is better than the traditional DBSCAN
algorithm, comparable to the OPTICS algorithm, but the time consumption is significantly
lower than that of the OPTICS algorithm. Thus, the proposed ADBSCAN algorithm has
achieved a certain balance in terms of accuracy and time consumption, it can be selected as
needed in actual working conditions.
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Quantitative experiments are carried out using the autonomous driving perception
platform. As shown in Figure 26, the experimenters rode bicycles from near too far away
until they exceeded the range of LiDAR clustering. Figure 27 shows the clustering effect of
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the algorithm at different distances. When the distance is 3 m, the clustering effect of the
TDBSCAN algorithm and OPTICS algorithm is better than that of the ADBSCAN algorithm.
When the distance reaches 6 m, the clustering effects of the three algorithms are all better.
When the distance reaches 15 m, the TDBSCAN algorithm has lost the information in
the height direction, but the ADBSCAN algorithm and the OPTICS algorithm still can
guarantee normal clustering, which proves that the designed radius adaptive strategy
is effective.
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Figure 27. Schemes follow the same formatting. (a) Clustering effect at 3 m (the number of cluster
points is 660, 649 and 660). (b) Clustering effect at 6 m (the number of cluster points is 148, 148 and
148). (c) Clustering effect at 15 m (number of cluster points 17, 39 and 39).



Remote Sens. 2023, 15, 3160 22 of 29

The comparison of the clustering quality of the three types of algorithms in 451 frames
is shown in Figure 28. In the initial stage, the distance is relatively short, and the perfor-
mance of the ADBSCAN algorithm proposed in this paper is poor and wrong clustering
occurs. It is caused by setting the initial clustering radius to be small. The TDBSCAN
algorithm and the OPTICS algorithm performed stably. After reaching 300 frames, the
performance of the DBSCAN algorithm began to decline significantly, while the OPTICS
algorithm and the ADBSCAN algorithm still maintained stable clustering.
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Figure 28. Clustering quality comparison.

Figure 29 shows the clustering results of campus roads. Under different environments,
the proposed ADBSCAN algorithm has a stable clustering effect.
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4.2. Validation of Bounding Box Fitting Algorithm

Since the algorithm verification platform has a poor detection effect on vehicles, only
the KITTI dataset is used for verification. In data set 0056, the target is always in front of
the smart car and basically keeps driving in a straight line. The comparison results of the
direct estimation of the vehicle by the two algorithms are shown in Figure 30. The L-shape
algorithm, which only considers the L-shaped contour points, shows a sharp fluctuation in
the direction estimation, which is due to the misjudgment of the U shape as an L shape,
resulting in a wrong direction judgment. In contrast, the orientation fit in the proposed
algorithm has only small fluctuations caused by angle estimation errors. In 297 frames of
point cloud data, the correct rate of shape judgment of the conventional algorithm is 35.2%,
which is basically in a state of failure, while the correct rate of the proposed algorithm
is 100%.
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Next, the effectiveness of the RANSAC-PCA algorithm is further verified. The compar-
ison algorithm is divided into three types, one is that all the fitting stages in the algorithm
use the RANSAC algorithm, two is that all the fitting stages in the algorithm use the PCA
algorithm and three is that all the fitting stages in the algorithm use the RANSAC algorithm
twice. Figure 31 qualitatively shows the comparison of the fitting results of the four types of
algorithms for different vehicle contour points. The black solid line in the figure represents
the fitting result of the L-shaped algorithm using RANSCA-PCA straight line fitting, and
the blue and red dotted lines represent the fitting results of the L-shape algorithm using
one-time RANSAC and two-time RANSAC for straight-line fitting, respectively. The green
dotted line represents the fitting result of the L-shape algorithm using PCA. It can be seen
from Figure 31a that due to strong randomness, there are large deviations in the fitting
results of the two separate RANSAC algorithms. After using the RANSAC algorithm twice
for fitting, the results are significantly improved. In Figure 31b, the distribution of points is
rather messy, and currently, the fitting using the PCA algorithm is basically in a state of
failure. Figure 31c,d qualitatively shows the fitting results of the more standard L-shaped
contour points, and all four types of algorithms can complete the bounding box fitting.

Table 4 shows the fitting results of the algorithm on four KITTI datasets. In each
dataset, only one car is selected for statistical fitting, and the center point of the bounding
box is calculated using the vehicle length and width data in the KITTI dataset as the ground
truth. The accuracy of the proposed method is higher than that of the traditional L-shaped
algorithm. Among them, the lateral error is small, mainly because the lateral direction of
the target vehicle is easier to scan than the vertical direction; the estimation accuracy of the
longitudinal length depends on the angle between the vehicle and the target vehicle, and
the estimation is more difficult.
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Table 4. Algorithm comparison results on the KITTI dataset (meters).

Serial Number Algorithm
Horizontal Vertical

Mean Variance Mean Variance

0001
Regular 0.0986 0.056 0.1435 0.1368

Proposed 0.0688 0.0458 0.1143 0.1415

0015
Regular 0.1191 0.0935 0.515 0.135

Proposed 0.0912 0.0721 0.265 0.126

0020
Regular 0.0742 0.0749 0.3979 0.1288

Proposed 0.0652 0.0689 0.2950 0.132

0032
Regular 0.1065 0.0912 0.3998 0.251

Proposed 0.0842 0.0688 0.2829 0.299

Figure 32 shows the results of clustering and bounding box fitting under different datasets.

4.3. Verification of Comprehensive Detection and Identification Results

After obtaining the preliminary screening results, it uses the trained PointNet point
cloud classification network for vehicle recognition in this paper. The inputs are the cluster
clusters that have not been screened by the bounding box and the high-confidence vehicle
point cloud clusters that have been screened by the bounding box. The evaluation criteria
are the precision rate P, the recall rate R and the F value, where the precision rate is defined
as the proportion of positive predictions to all positive predictions:

P =
TP

TP + FP
. (13)
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The F and R is defined as
R =

TP
TP + FN

, (14)

F =
2 · P · R
P + R

. (15)

In the above formulas, TP means that the positive objects are predicted to be positive,
FP means that the positive objects are predicted to be negative, TN means that the negative
objects are predicted to be negative and FN means that the negative objects are predicted to
be positive. Some detection results are shown in Figure 33.

In Figure 33b, the bounding box fails and is marked yellow, but the PointNet algorithm
still recognizes it as a vehicle at the end, indicating that the proposed algorithm framework
has a certain fault tolerance rate. The front and rear algorithms can complement each other,
and finally, vehicle object recognition is completed. The accuracy rate, recall rate and F
value obtained by testing the three data sets are shown in Table 5. In the 0013 data set with
a relatively simple scene, no matter whether the original cluster or the high-confidence
vehicle cluster is input, the accuracy and the rates are higher, but it can be seen from
Figure 33a that the proposed framework is less time-consuming. From the comparison of
the recall rate R, the number of real vehicles is not significantly reduced after the initial
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screening of the bounding box. Therefore, the framework proposed in this paper is reliable
and can stably identify vehicle targets.
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Table 5. Recognition Algorithm Performance Comparison.

Algorithm Dataset Precision P Recall R F

Regular
0013 0.926 0.846 0.884
0018 0.903 0.861 0.882
0026 0.891 0.847 0.868

Proposed
0013 0.982 0.864 0.919
0018 0.965 0.904 0.934
0026 0.943 0.901 0.922

The comparison of the number of point cloud clusters and the time-consuming com-
parison is shown in Figure 34. In the data set 0013, the bounding box can be selected as a
candidate vehicle target most of the time, and the input after screening at frame 65 becomes
1, while the number of vehicles manually marked becomes 1 at frame 70. However, the
vehicle point cloud is almost completely occluded between frame 65 and frame 70, and
the vehicle cannot be recognized even if the original cluster is input. In terms of time
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consumption, when the number of clusters decreases significantly, the time consumption of
the identification stage also decreases significantly, which proves that the use of bounding
boxes to judge candidate vehicles in this paper can effectively reduce the time consumption
of identification.
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5. Conclusions and Future Work

A vehicle detection algorithm combining clustering results with deep learning is
proposed to ensure robust vehicle point cloud detection in this paper. In the clustering
part, the article proposes the ADBSCAN algorithm based on distance adaptive clustering
radius to improve the problem of poor clustering effect under the condition of the distant
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sparse point cloud. In addition, the possibility of applying the OPTICS algorithm to vehicle
point cloud clustering is also explored. After obtaining the clustering results, a vehicle
bounding box fitting algorithm that can adapt to a variety of different vehicle profiles is
presented, in which the principal component analysis algorithm is introduced into the
line fitting process to ensure the robustness of the bounding box fitting. In the recognition
part, a Point-Net point cloud classification network based on deep learning is constructed,
and the obtained high-confidence vehicle bounding box is sent to PointNet for semantic
recognition. Experiments based on the autonomous driving perception platform and the
KITTI dataset prove that the detection framework can detect vehicle targets stably and has
high robustness.

However, due to the limitations of experimental conditions, this paper only considers
experimental validation for the robustness and reliability of the recognition framework,
and the recognition accuracy of the entire framework can be probably further improved.
The work will be carried out on the real vehicle in the future, and the real-time performance
and accuracy of the framework will be optimized.
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