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Abstract: Land cover mapping plays a pivotal role in global resource monitoring, sustainable de-
velopment research, and effective management. However, the complexity of the mapping process,
coupled with significant computational and data storage requirements, often leads to delays between
data processing and product publication, thereby bringing challenges to creating multi-timesteps
large-area products for monitoring dynamic land cover. Therefore, improving the efficiency of each
stage in land cover mapping and automating the mapping process is currently an urgent issue to be
addressed. This study proposes a high-performance automated large-area land cover mapping frame-
work (HALF). By leveraging Docker and workflow technologies, the HALF effectively tackles model
heterogeneity in complex land cover mapping processes, thereby simplifying model deployment and
achieving a high degree of decoupling between production models. It optimizes key processes by
incorporating high-performance computing techniques. To validate these methods, this study utilized
Landsat imagery data and extracted samples using GLC_FCS and FROM_GLC, all of which were
acquired at a spatial resolution of 30 m. Several 10° × 10° regions were chosen globally to illustrate
the viability of generating large-area land cover using the HALF. In the sample collection phase, the
HALF introduced an automated method for generating samples, which overlayed multiple prior
products to generate a substantial number of samples, thus saving valuable manpower resources.
Additionally, the HALF utilized high-performance computing technology to enhance the efficiency
of the sample–image matching phase, thereby achieving a speed that was ten times faster than
traditional matching methods. In the mapping stage, the HALF employed adaptive classification
models to train the data in each region separately. Moreover, to address the challenge of handling a
large number of classification results in a large area, the HALF utilized a parallel mosaicking method
for classification results based on the concept of grid division, and the average processing time for a
single image was approximately 6.5 s.

Keywords: land cover; high-performance computing; remote sensing; workflow; automation

1. Introduction

Global land cover (GLC) plays a critical role in global resource monitoring and sus-
tainable development research, as it provides vital insights into ecological diversity, carbon
cycling, and human–environment relationships [1–3]. In recent years, with the rapid devel-
opment of remote sensing technology, land cover classification based on remote sensing
images has become the mainstream method for modern land cover mapping.

Unlike satellite images, which are usually obtained in near-real-time, GLC products
are typically associated with substantial lag times between the processing of images and
the release of data [4]. The shortest production cycle of a GLC product is usually one year,
and seasonal or monthly datasets are relatively rare [5]. In addition, the higher the product
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resolution is, the longer the production cycle. Currently, there are many GLC products
that are updated annually, such as the Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Cover Type product (MCD12Q1), each with a resolution of 500 m provided
by National Aeronautics and Space Administration (NASA) from 2001 to present [6]; the
Climate Change Initiative (CCI) program of the European Space Agency (ESA) provides a
300 m dataset (1992–2018), and the Copernicus Global Land Service (CGLS) [7] provides a
100 m dataset for land cover. Chen et al. [8] produced the GlobeLand30 with a resolution of
30 m from Landsat and China’s HJ-1 satellite images for 2000 and 2010. The latest version
was launched for updating in 2017 and was officially released in 2020. GLC with yearly
or even higher intervals limits the monitoring capability of land cover dynamic changes.
Until 2021, the ESA provided the WorldCover [9], a GLC product based on Sentinel data,
with a resolution of 10m, with the potential to be produced within approximately 3 months
of the acquisition of the last image. In 2022, Google released the Dynamic World [4], which
is a near real-time LC product. It utilizes cloud computing platforms to acquire and predict
the classification probabilities of Sentinel images in real-time. This marks a new era for
the fast mapping and updating of GLC within the realm of big data, and an increasing
number of researchers have started conducting related studies. Hence, improving the
computational efficiency of various stages in land cover mapping using big data and
automating the mapping process currently have become the key issues that need to be
addressed. Larger area, higher resolution, and faster update frequency have exponentially
increased the amount of data, thereby posing new challenges for storage and computing
power. At the same time, the land cover mapping process is complex, and each stage
depends on different models. The process of improving the efficiency of each link in land
cover mapping, systematizing and standardizing the mapping process, and achieving the
automated mapping of large-area land cover has gradually become one of the key issues.

As supervised classification algorithms are widely applied in remote sensing image
classification, obtaining a large number of accurate samples is crucial for training classifica-
tion models. Sample collection is considered the most time-consuming and labor-intensive
process in producing GLC [10]. Existing methods for extracting classification samples
still rely primarily on field investigations and visual interpretation of the imagery. This
approach not only demands extensive manual labor, but also restricts the study area’s scale
significantly. To address this problem, some scholars have studied the automatic extraction
of classification samples by combining prior products and auxiliary data [11–15]. This
method uses classification rules extracted from prior products to quickly obtain a large
number of spatially distributed and high-quality samples, thereby improving the efficiency
of sample extraction and increasing the update frequency of land cover products. Zhang
and Liu [16] used a total of 27,858,258 training samples in the production of a GLC product,
which is several hundred times higher than the number of training samples traditionally
selected manually, thereby occupying a large amount of storage and computing space.
ESRI [17] even used a super-large dataset of Sentinel-2 with a total of more than five billion
samples in the production of 2020 LandCover, which has a resolution of 10 m. In the process
of matching samples and remote sensing images, the extraction of spectral features and
indices of remote sensing images will consume a large amount of resources. In addition,
auxiliary data such as DEM [18] and climate data [19] are vital for land cover classification.
To incorporate these features, it is necessary to match the samples with these data, which
further increases the computational burden on the matching step.

Remote sensing image mosaicking is the process of stitching multiple remote sens-
ing images into a single geometric alignment composite scene for a wide field of view.
Large-area image mosaicking is a computationally intensive process [20]. Creating a na-
tional or global level product by mosaicking tens of thousands of image scenes that cover
tens of terabytes of data could take several days or even weeks to complete [21]. Using
high-performance computing methods to process each task in parallel can improve the
efficiency of image mosaicking. Researchers have studied parallel mosaicking methods.
Zhang et al. [22] combined aerial digital photogrammetry principles with parallel com-
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puting techniques to propose a parallel mosaicking method for massive aerial digital
images. Chen et al. [23] improved an algorithm used for video image mosaicking to
make it suitable for remote sensing images, thereby overcoming the problem of multi-
images having to be divided into one-to-one mosaics. Ma et al. [24] improved parallel
mosaicking efficiency by creating a dynamic task tree to divide the processing order of
remote sensing images. Remote sensing data, intermediate data, and result data undergo
frequent I/O operations during the computation process, which can lead to I/O bottle-
necks. Jing et al. [25] customized Resilient Distributed Dataset (RDD) operators in Spark to
accelerate the parallel mosaicking process through in-memory computation. Ma et al. [21]
introduced a memory-based file management system called Alluxio, which was combined
with computing-intensive remote sensing image mosaicking to effectively alleviate the I/O
bottleneck in the mosaicking process. The process of mosaicking classification results is
similar to that of remote sensing image mosaicking, but mapping after all data within the
study area are collected may decrease the efficiency of dataset updating. Therefore, when
mosaicking the classification results, it is necessary to consider that the acquisition time
may vary between different regions.

The earliest remote sensing models were limited by the performance of desktop soft-
wares running on a single machine. With the development of high-performance computing
(HPC), some HPC-based methods have been considered as effective solutions for solving
computational challenges, such as MPI/OpenMP [26], Hadoop [27], Spark [28], and CUDA
programming supported by GPUs [29]. Many HPC frameworks targeting remote sensing
and geographic information computing scenarios have also been proposed, such as Spa-
tialHadoop [30], Hadoop GIS [31], GeoFlink [32], etc. Although using these frameworks
and migrating computing to the cloud have alleviated the pressure of local computing,
the sharing of data and models still presents difficulties due to different users’ data stor-
age and organizational formats [33]. The models for various stages of GLC mapping use
different programming languages and run in different environments, which leads to re-
searchers spending a lot of time and effort on setting up and maintaining the environment.
Nüst et al. [34] encapsulated runtime environment dependencies and analysis components
in containers, therby improving the reusability, accessibility, and transparency of programs.
Wang et al. [35] implemented the automatic encapsulation of spatial information process-
ing operators in different environments based on containers. Atomic-level geographic
processing services have limited capacity and may not suffice to support large-area and
complex processing tasks [36,37]. Thus, it is necessary to construct complex workflows for
efficient resource allocation to facilitate the data and model orchestration of complex GLC
products mapping [38].

To address the aforementioned challenges, this study designed a high-performance
automated large-area land cover mapping framework(HALF) using distributed architecture.
The HALF incorporates high-performance computing technology into different stages of
the mapping process and presents three novel approaches: an automated method for
generating samples, a parallel matching method for samples and images, and a parallel
mosaicking method for classification results. These advancements significantly enhance the
computational efficiency of the framework. Furthermore, the models in each stage of the
mapping process have been encapsulated based on container technology and organized by
Airflow, thereby resolving the heterogeneity of the operating environment and facilitating
data reuse. The HALF was empirically tested in several 10° × 10° regions worldwide, thus
providing theoretical and technical support for automated GLC production.

2. Materials and Methods
2.1. Experimental Data
2.1.1. Landsat8

Landsat 8 is the eighth satellite in the United States Landsat program, and it carries the
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). The remote sensing
images obtained by OLI include nine bands, with spatial resolutions of 30 m for all bands



Remote Sens. 2023, 15, 3143 4 of 22

except the panchromatic band, which has a spatial resolution of 15 m. The remote sensing
images obtained by TIRS include only two separate thermal infrared bands, with a spatial
resolution of 100 m. The data used in this article is the Level-2 Science Products of Landsat
Collection 2, which are products obtained after radiometric correction and system-level
geometric correction. The data for year 2015 was selected, and, for each scene, the image
with the smallest cloud cover within a year was chosen. Figure 1 shows the number
of images in each 10° × 10° grid, with darker colors indicating a greater abundance of
remote sensing images in the corresponding area. The required remote sensing images
were selected through conditional queries and downloaded in batches using a machine-
to-machine (M2M) API. Landsat data were used in the study to match with the initial
spatial points and generate samples with spectral features for training the classifier model.
The final image classification results were then used for mosaic to create the land cover
products.

Figure 1. The quantity and distribution of of Landsat8 images of 2015 used in the study.

2.1.2. GDEM

The DEM data are the third version of The Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) program [39],
with a resolution of 30 m. It was jointly developed by the Ministry of Economy, Trade,
and Industry (METI) of Japan and NASA of the United States, and it is available for free
download and use. Three versions of data were released in 2009, 2011, and 2019, and
the third version was chosen for the study. A DEM was used to match the classification
samples and provide elevation information as a feature for the samples.

2.1.3. GLC Products

FROM_GLC [40] is a global 30 m land cover product produced by Gong et al. using
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data. It
classified over 6600 Landsat TM data scenes after 2006 and over 2300 Landsat TM and ETM+
data scenes before 2006, which were all selected from the green season. GLC_FCS [16] was
produced by Zhang and Liu et al. It provides a refined classification system, including
16 global land cover classification system types and 14 regional land cover types, with high
classification accuracy at 30 m resolution. The accuracy of FROM_GLC in 2015 ranges from
57.71% to 80.36%, while the accuracy of GLC_FCS in 2015 ranges from 65.59% to 84.33%.
GLC products were used to obtain prior classification information, which was then used to
automatically generate classification samples.

2.2. Framework Design

The HALF provides solutions for each stage of land cover mapping, as shown in
Figure 2. It takes remote sensing image data, auxiliary data, and prior GLC products
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as input. Initially, a large number of initial samples are automatically generated. Then,
training features are obtained by overlaying the samples with remote sensing and auxiliary
data. Then, the generated samples are used to adaptively train the classifier. Finally, the
final land cover product is generated by mosaicking the classification results of remote
sensing images. The HALF accelerates the execution speed of the model in the mapping
process through Spark, which encapsulates the models for each stage using Docker, which
organizes the process using the Airflow workflow engine to read and process remote
sensing image data using GDAL, which stores metadata information and performs spatial
operator operations using Postgres SQL. The HALF’s mapping process mainly includes the
following key stages shown in the figure below and described in the following subsections.

Figure 2. Framework of HALF.

2.2.1. Stage 1: Automatic Sample Generation

Collecting samples is one of the most important factors in land cover classification
problems, and it can have a significant impact on classification results, which is sometimes
even greater than the impact of the classifier [41]. The collection of sample data can be
categorized into manual interpretation and derivation of training samples from existing
land cover products. Many researchers have proven the benefits of exploring existing
classification knowledge from available products [42–45]. The method is capable of pro-
ducing a substantial amount of spatial samples that are evenly distributed without any
manual intervention.

Several land cover products have been created based on remote sensing imagery using
different classification systems. However, there is no universally accepted system among
researchers and the international community. Table 1 lists the existing GLC classification
systems. Although the classification systems constructed by different products and orga-
nizations are not exactly the same, there are certain similarities in category delineation.
Therefore, it is feasible to synthesize and generate new samples from existing products.
The GLC_FCS classifies all land cover data into nine primary classes, including cropland,
forest, grassland, shrubland, wetlands, water, impervious surfaces, bare areas, and ice and



Remote Sens. 2023, 15, 3143 6 of 22

snow. FROM_GLC classifies all land cover into 11 primary classes, which includes the nine
primary classes mentioned before (cropland, forest, grassland, shrubland, wetlands, water,
impervious surfaces, bare areas, and ice and snow) and the additional classes of cloud and
tundra.

Table 1. Comparison of existing GLC classification systems.

USGS [46] FAO [47] FROM_GLC GlobalLand30 GLC_FCS
1972 1996 2013 2014 2021

Forest Cultivated and Managed
Terrestrial Areas

Forest Forest Forest

Agricultural Natural and Semi-Natural
Terrestrial Vegetation

Crop Cultivated land Cropland

Cultivated Aquatic or
Regularly Flooded Areas

Shrub Shrubland Shrubland

Range
Natural and Semi-Natural

Aquatic or
Regularly Flooded Vegetation

Grass Grassland Grassland

Wetlands Wetland Wetland Wetlands
Urban or Built-Up Artificial Surfaces and

Associated Areas
Impervious Artificial Surfaces Impervious Surfaces

Barren Bare Areas Bareland Bareland and Tundra Bare Areas
Water Artificial Waterbodies,

Snow and Ice
Water Water Bodies Water Body

Perennial
Snow and Ice

Natural Waterbodies,
Snow and Ice

Snow/Ice Permanent
Snow/Ice

Permanent Ice
and Snow

Tundra Tundra
Cloud

The essence of sample selection is to obtain the spatial position of a certain pixel and
its corresponding land cover type, which can be directly derived from existing products.
Selecting high-precision training samples from land cover products is the key and pre-
requisite to obtain high-precision classification results. In order to ensure the reliability
of samples, this section proposes a method for extracting homogenous areas from multi-
source product data. The idea of homogenous area extraction is shown in Figure 3. First,
select two land cover products with identical spatial range, resolution, and data acquisition
time. Next, search for a (7 × 7) pixel range with an identical classification label in the same
spatial position within a single product and between the two products. Finally, consider the
middle (3 × 3) area as a homogenous region and quantify the number and distribution of
these areas. The central pixel is selected as a high-confidence sample for extraction, thereby
eliminating spatial deviations between the two land cover products and improving the
reliability of samples.

2.2.2. Stage 2: Parallel Matching of Samples and Images

Initial samples from existing land cover products only include longitude, latitude, and
land cover labels, and they lack the features required for classifier input. The initial samples
need to be matched with remote sensing images and auxiliary data in order to generate the
final samples. There is a significant computational burden when matching samples and
remote sensing images. The purpose of the process is to correspond the spatial positions of
samples with the pixel positions of remote sensing images in order to read band information
and perform calculations. The process of image matching includes the following: obtaining
the image corresponding to the point through a spatial index; converting the longitude
and latitude of the sample point to the plane coordinate system of the image; transforming
it into the pixel row and column position through affine six-parameter transformation;
and obtaining the average value in the window as the desired value. In the production
process of GLC products, the number of remote sensing images reaches more than tens of
thousands, and the number of spatial points in the training set can reach billions. The data
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volume of remote sensing images and auxiliary data can reach tens of terabytes. Traditional
desktop software and unoptimized matching methods are unable to complete this process,
so a more efficient matching method is needed to handle it. The HALF utilizes a parallel
matching method for samples and images, as illustrated in Figure 4. The key to improving
efficiency is to first establish an efficient correspondence relationship between samples and
images through a spatial index, which is followed by distributing the reading tasks to each
node. For each image, all matching points are read at once, thus avoiding the significant
disk I/O pressure caused by frequent image reading. The method is illustrated as follows:

Figure 3. Schematic diagram of homogeneous region extraction.

Figure 4. Parallel matching method for samples and remote sensing images.

• Read all the center point data to be matched into memory; use the longitude and
latitude of the point to form a unique identifier pid; read its spatial and attribute
information to form a spatial point object; and compose a tuple <pid, Point>;
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• Read the Landsat image metadata information; use the boundary coordinates to
construct a spatial index STRtree; and use the broadcast variable in Spark to transmit
it to each node. The broadcast variable will save a copy on each node, thus saving the
network transmission cost for multiple calls;

• Distribute the computing tasks. To address the issue of data skew resulting from
unequal allocation of images to different computing nodes during task distribution, a
custom partitioning strategy was developed, and the groupByKey operator was used
to allocate data evenly across all computing nodes as much as possible;

• For each image, parallel operations are performed using GDAL. Then, the image is
subjected to image fusion, reprojection, and resampling, and the row and column
numbers of the sample point’s longitude and latitude on the remote sensing image
are calculated. If a sample is covered by clouds for most of the year or its quality is
poor, it is discarded. The feature indicators are calculated for samples that meet the
quality criteria, and both the data, along with their corresponding match results, are
outputted.

2.2.3. Stage 3: Regional Adaptive Classification Model

The regional adaptive classification model was used to train the data in each region
separately. Typically, the entire research area is divided into small areas, and the corre-
sponding samples are used to train the model in each area adaptively. The classification
results from all areas are merged to generate the final experimental outcomes. Although this
approach may not be as straightforward in concept and implementation as global modeling,
it overcomes the issue of overfitting due to small areas or underfitting due to large areas
by sampling and training based on the unique characteristics of each region. Hankui [11]
quantitatively compared the effectiveness of global modeling and adaptive modeling in the
application of land cover in the United States, and their findings demonstrated that local
modeling achieved greater classification accuracy than global modeling. In this study, the
research area was segmented into a 10° × 10° grid.

The classifier provided by the HALF is a random forest model. Gómez et al. [48]
compared various classification models, such as artificial neural networks, decision trees,
support vector machines, random forests, and clustering in the mapping of land cover, and
they found that the random forest algorithm has the advantages of insensitivity to noise,
good anti-overfitting performance, and good robustness to data reduction. In addition,
it is relatively simple to set the parameters, as only the number of trees and the number
of features for decision tree branching need to be set. It is suitable for training data with
different distribution features in multiple different partitions. Traditional accuracy metrics
are derived from a confusion matrix such as overall accuracy (OA), producer accuracy (PA),
user accuracy (UA), and kappa coefficient [49].

2.2.4. Stage 4: Parallel Mosaicking of Large-Area Classification Results

The size of a Landsat satellite image is 185 km × 185 km. Therefore, when producing
large-area land cover products, multiple scenes need to be stitched together. The main
purpose of image mosaicking is to convert the trained remote sensing images to the map
and to output the final classification results. In this process, there were a huge number
of images. If the images are stitched in serial order, the computational pressure will be
enormous. Thus, a certain strategy needs to be adopted to solve the problem of low
efficiency in the image merging process.

This process involves coordinate system transformation, image registration, and
overlap area processing. Traditional image mosaicking methods first specify the coordinate
system of one image as the reference and then register other images with it to determine the
attribute values of corresponding coordinate points. If images are processed sequentially in
this process, the computational efficiency is slow. The HALF utilized an image mosaicking
method, and Figure 5 shows its schematic diagram. Traditional image processing operates
on a per-image basis, and parallelism is not sufficient. In this study, the study area was
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divided into a grid of 10° × 10° cells. The spatial index was used to query the remote
sensing images corresponding to each cell. Each cell was then subdivided into several
smaller sub-images, with a specified resolution and edge length. After obtaining the spatial
information of the sub-images, a blank image slice file corresponding to each sub-image
was created through GDAL. The spatial relationship between each sub-image and the
remote sensing image was established, and the row and column numbers on the remote
sensing image were transformed to the corresponding row and column numbers on the
sub-image through affine coordinate transformation. The specific values were written to
the image slice file, and finally, all sub-images were merged into a complete classification
result through the gdalbuildvrt and gdal_translate tools provided by GDAL. The spatial
resolution of the customized product can also be used to complete the resampling work
during the mosaicking process.

Figure 5. Schematic diagram of the mosaicking method for classification results. The world is
partitioned into a grid system with each grid spanning 10° × 10°, and each grid is further divided
into second-level sub-images. The blue border indicates the extent of the Landsat image, and when
there are classification results within the grid, the pixels of the second-level sub-images within the
spatial extent of the classification result are updated, and the final mosaic product is generated.

The parallel mosaicking method is demonstrated in Figure 6. The method first estab-
lishes the necessary parameters and determines the relationship between the sub-images
and the remote sensing images. It then distributes tasks by using the sub-images as the
parallel unit. When a sub-image corresponds to multiple remote sensing images, it first
determines whether it is a no-data value. Otherwise, there may be a scenario where the
invalid value will overwrite the valid value. Finally, it determines whether to output the
latest results or all results based on the established rules. If the program is set to output
multiple results, a blank view frame for multiple times is created to fill the corresponding
sub-image with the corresponding results.
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Figure 6. The parallel mosaicking method for classification results.

• Set the spatial extent, resolution, number of bands, and other parameters for different
application scenarios. Then, create blank map sheets. For example, a latitude and
longitude range of 10° × 10° corresponds to a grid of geographic extent of approx-
imately 1100 km in length and width. If the sub-image resolution is set to 100 m,
and each sub-image size is 256 × 256 pixels, then there are approximately 44 × 44
sub-images in this spatial range. The metadata information of the sub-images is stored
in binary format, including spatial location and description, and files are created based
on whether they already exist;

• Read the image information, and use the flatMap operator to match the spatial position
of the sub-image with the metadata of the remote sensing image to establish a spatial
correspondence. In this step, the key-value pairs of SubId and remote sensing images
are obtained;

• Use the unique identification code pertaining to the SubId of the sub-image as the key
to call the groupByKey operator to obtain the complete set of remote sensing images
corresponding to each sub-image; the task is then distributed. Each task unit performs
the sub-image filling task;

• In each task computing unit, perform coordinate transformation and row/column
calculation for the image classification result, and fill in the corresponding pixel points
for the sub-image. If no additional settings are made, the result from the latest remote
sensing image corresponding to the sub-image is selected for writing.

2.3. HALF Workflow

The HALF provides workflow modules that encapsulate the key stages above through
containers and organize each link using the workflow engine. The workflow model involves
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organizing remote sensing data, sample data, and processing functions into a structured
and configurable set of steps. This approach enables practical problems to be resolved
through automation or semi-automation. To encapsulate the model, the required basic
environment image is searched and downloaded from the Docker Hub repository. Then,
the necessary runtime environment is added, and the Docker commit command is used to
create a new container image for storage. Relevant parameters of each model are recorded
in XML description documents, while the basic model information is described in metadata
files during registration. When adding a model, key details such as the model name,
description, type, input parameters, output parameters, executable file path, dependent
image, add time, user name, and test case are set. Metadata information of the operator is
added to the database to complete the final model information storage and registration.

When organizing the workflow, use the Docker execution command as the Airflow
workflow execution statement; access the database configured by Airflow; and monitor the
running status of workflow nodes and instances. Airflow [50] is a lightweight workflow
manager developed by AirBnB, Inc. Airflow provides a broad range of tools for managing
the execution of workflows, such as pausing and resuming workflow execution, stopping
and restarting individual workflow steps, and restarting workflows from a certain step.
Airflow treats each workflow as a directed acyclic graph (DAG) of tasks with directional,
non-cyclic dependencies. The DAG describes the relationships between tasks and defines
their execution order. The Apache Foundation lists over 300 existing workflow languages
and systems [51], and commonly used workflow systems in different fields have defined
various organizational standards [52]. The international academic community has pro-
posed the FAIR principles (Findable, Accessible, Interoperable, Reusable) for open and
shared scientific data [53]. To this end, researchers have proposed the Common Workflow
Language (CWL) [54], which entails a specification and standard for describing the creation
of workflows that provides a universal standard for addressing the main issues in sharing
workflows. The CWL describes the input and output of workflows in JSON or YAML
format and has been applied in fields such as bioinformatics, hydrology, geospatial analysis,
and physics. CWL-Airflow is one of the first workflow managers to support the CWL
standard. It creates CWL-DAG instances based on workflow structure and executes them,
followed by saving the results to an output folder.

The complete mapping process is presented in Figure 7. The research process con-
sists of several stages encompassing sample generation, data matching, model training,
image mosaicking, and data updating. The model description file specifies the param-
eters for each workflow node, and the input and output nodes for each workflow are
designed accordingly.

Figure 7. Conceptual design of the workflow. Describes the cartographic phase of HALF, with
yellow nodes representing external data, green nodes representing computation results, blue nodes
representing models, and red nodes representing classification models.
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In the HALF, users can establish models by describing the metadata information of
workflow nodes in the description file and setting the input and output parameters of the
nodes according to different application requirements. The HALF quickly builds workflows
according to different application requirements to achieve customized management and
monitoring. For the combined workflow model, the system provides a save function that
records node parameter information and spatial location on the interface. After entering
the workflow name and comments, the workflow model can be saved to the server for
future use. It also allows users to monitor the running status of each step with multiple
states such as success, running, waiting, and failure. Set the input and output of each node;
the input can select the output of the previous node, and the input correction is carried out
in this link to ensure that the output format of the previous node is filled in correctly.

2.4. Experimental Environment

The experimental environment consisted of a distributed cluster composed of three
Dell Power Edge R720 servers, each with an Intel Xeon E5-2630 v2 2.60 GHz CPU and 30GB
of RAM. The three machines shared a NAS storage of 20T. The experimental software and
operating environment were Hadoop 2.7.6, Spark 2.3.4, Scala 2.11.8, JDK 1.8, Python 3.8.3
and GDAL 3.0.3(released by the Open Source Geospatial Foundation, Chicago, US).

The research creates container images for the models. Table 2 shows some of the
images used for the runtime environment. The initial images were obtained from Docker
Hub and further encapsulated to ensure that each model was portable and reusable.

Table 2. Images environment configuration.

Images Description Base Images Models

landuse-py Used to run models written in
Python python:3.8.3

Sample Generation
Classifier Training

Image Classification Prediction

gdal-spark Used to run models written in
Java Spark osgeo/gdal:ubuntu-full-3.6.3 Sample–Image Matching

Image Mosaicking

pg12-citus-postgis Used to storage metadata and
spatial queries postgres:12.14-alpine3.17 Building Spatial Index

Spatial Querying

end-point
Used to launch the back-end
project and provide network

services

java:openjdk-8 Back-end Project

3. Results
3.1. Model Performance Testing

We compared the deployment workload and execution time of the operators’ running
tasks in containers and hosts. Deploying conventional applications on a physical machine
may depend on multiple development and runtime environments, and the complexity of
configuration depends on environment dependencies. For example, sample generation
only requires a Python basic environment and GDAL to read images; the sample–image
matching model is written in Java and also depends on Spark and GDAL; image training
requires GDAL in the Python environment to fuse and resample images. The deployment
of GDAL in the Python environment operating on the physical machine can be installed
through conda, but the GDAL tool in the Java environment involves gcc compilation,
which is extremely cumbersome. By pulling images provided on Docker Hub, the existing
environment can be directly pulled and run, and the deployment workload is only one.
Therefore, compared with the physical machine environment, the deployment efficiency
can be effectively improved in the Docker container environment. Figure 8 shows the total
time spent in production. The reason why the running time was longer in the Docker
environment than in the physical machine environment is that the startup and destruction
of Docker containers took some time, but the impact was very small in seconds. In addition,
Docker containers themselves have the characteristic of light weight and will not occupy
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additional memory resources. In summary, deploying the model through Docker did not
bring any losses in execution performance, but, compared to deploying the environment on
a physical machine, it could reduce the configuration workload, thus making it convenient
to migrate and reuse programs when deploying the production environment on new
machines.

(a) Comparison of time consumption (b) Comparison of deployment

Figure 8. Performance comparison between physical machine and container. (a) shows the com-
parison of time consumption, with various models on the horizontal axis and their corresponding
running time on the vertical axis. (b) shows the comparison of deployment amount, with various
models on the horizontal axis and an abstract estimate of deployment workload on the vertical axis.

3.2. Automatically Generated Samples

Generating training samples based on existing land cover products makes it possible to
obtain uniformly distributed samples at a large scale. The generated samples are visualized
for several regions globally in Figure 9. The method guarantees complete automation of the
entire classification process without any human intervention and ensures a large sample
size and relatively uniform distribution in the sample space. Land cover classes such as
water, bare area, or snow/ice tend to have higher discriminability during classification,
thus resulting in denser sample points. On the other hand, classes such as cropland or
grassland, which may have less distinct boundaries in different products, may exhibit more
areas with “no samples” during classification. The classification system used for samples
was inherited from previous products, thus eliminating the need for expert knowledge.

Figure 9. Automatically generated samples. The title of each subfigure indicates the latitude and
longitude of the lower-left corner of the region. The legend is shown on the right side of each figure,
and the white color indicates that there are no samples in this area.
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After matching, the generated sample set exhibited the characteristics illustrated
in Table 3, which included seven spectral features (bands), four remote sensing index
features—Normalized Difference Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI), Enhanced Vegetation Index (EVI), Normalized Burn Ratio (NBR)—the
latitude and longitude of the center point, the acquisition time of the image, and auxiliary
indicators such as DEM, slope, and aspect.

Table 3. Descriptions of samples.

Feature Data Source Characteristic

Spatial Characteristics

Landsat

Longitude and Latitude
Temporal Characteristics Image Acquisition Time
Spectral Characteristics Band1, Band2. . .Band7

RS Index NDVI, NDWI, EVI, NBR
Topographic Feature DEM DEM, Slope, Aspect

Land Cover Type GLC First-Level Type

3.3. Performance of Sample and Image Matching

In this section, we validated the method and conducted performance tests on different
numbers of samples and remote sensing images.The experimental regions are shown in
Figure 10, which include parts of Australia, Africa, and America. The longitude and latitude
ranges for the Australian region were (110°E 40°S, 160°E 10°S), for the African region were
(20°E 30°S, 50°E 10°N), and for the American region were (110°W 10°N, 50°W 40°N) and
(80°W 50°S, 60°W 0°N). The method was able to complete the matching task within a short
period of time when dealing with millions of samples and remote sensing images to be
matched within a region. The execution time increased with the increase in samples and
remote sensing images to be matched within a region.

Figure 10. Time consumption statistics of the matching method.

To further validate the performance of the proposed method, the HALF matching
method was set to Spark’s local computing mode and compared with the method based on
GDAL under the same computing resources. The experimental task was to perform sample
point–image matching on randomly selected 10,000 to 500,000 points from 131 images and
to calculate the corresponding total time. Figure 11 shows that the proposed method not
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only had a significant advantage in running speed, but also was not affected by the sharp
increase in point data volume in terms of running time stability. This is because the spatial
relationship between points and images was first established using spatial indexing; as the
number of points increased, the I/O overhead of the remote sensing images was relatively
fixed.

Figure 11. Performance comparison of matching method. The orange line indicates the time con-
sumption of the matching method of HALF, and the blue line indicates the time consumption of the
matching method of GDAL.

In order to further investigate the performance of each step of the method, Table 4
provides a detailed breakdown of the time taken for each stage of the two methods at
sample sizes of 100,000. The results show that the HALF matching method took significantly
less time than the GDAL-based method in the stages of reading points and establishing
spatial relationships, as well as reading image values and performing calculations, thereby
demonstrating superior computational performance. At the same time, for different sample
sizes, the time taken for the Spark-based matching method to distribute tasks to computing
nodes increased, while the time taken to read image values and perform calculations
remained relatively stable. This indicates that the custom partitioning strategy developed by
the method effectively addressed the problem of uneven distribution of node images during
task distribution, thus ensuring that the task completion time of each node was as close as
possible, which maximized the use of computing resources and reduced computational
time.

Table 4. Time consumption analysis for each step of the matching method when data size is 100,000.

Stages Time Cost(s) GDAL HALF

1 Build spatial index 0.7 0.7

2 Read data and create
spatial relationships 4.2 2.6

3 Distribute tasks / 4.9

4 Compute feature
values 174.1 24.6

5 Total 179.2 32.8

3.4. Performance of Large-Area Classification Result Mosaicking

Exploration of the performance of the proposed large-area image parallel mosaic
method was conducted by selecting some 10° × 10° grids globally for experiments. The
experimental regions are shown in Figure 12, which are the same as Figure 10. Furthermore,
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a thematic map was constructed based on the matching time of each grid area, where
darker colors indicate longer algorithmic processing time.

Figure 12. Time consumption of the mosaicking method.

A detailed analysis of the method performance in terms of processing time for the
mosaic results of selected regions has been presented in Table 5. It was calculated that
the average processing time for one image was around 6.5 s. For regions with around 60
images, such as regions 4 and 5, the calculation could be completed in around 400 s, while,
for regions with around 30 images, such as region 11, it took over 200 s. As shown in the
experimental results, with the increase in the number of images, the processing time of
the mosaic method also gradually increased. Region 7 required only a little over 2 s to
process one image on average, because only some parts of the region were land, and the
sub-images not covered by any input images were not involved in the calculation. Among
the selected regions, region 2 had the longest processing time, which was around 17%
longer than that of region 4 and 5 with the same number of images. This is because Landsat
images have deformation problems in different latitude regions, with larger image sizes in
higher latitude regions, leading to longer processing time in high latitude regions. Further
experiments were conducted to investigate the performance of the method under different
regions and data volumes.

The study selected five regions with different latitudes that were all located on land.
Figure 13 shows the changes in method runtime as the number of remote sensing images
increased. To facilitate comparison, all these regions were located entirely on land. It was
found that, regardless of the region, the method’s processing time showed a linear trend
as the number of images increased. This is because, during the calculation, a correspon-
dence was established between the sub-images and the remote sensing images, and the
calculation tasks were distributed based on the sub-images. For each calculation task, the
remote sensing images were traversed and calculated. Therefore, as the number of images
increased, the method’s processing time increased almost linearly. In addition, the higher
the latitude of the region, the more time it took to process the same number of images,
because Landsat images at higher latitudes undergo distortion due to different projections,
thereby resulting in larger image sizes and longer read times.
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Table 5. Data volume and time consumption for partial regions.

Region Spatial Extent Number of
Images

Number of
Samples Mosaic Time (s) Match Time (s)

Region 1 (50°S–40°S,
70°W–60°W) 43 9,276,097 361 166.12

Region 2 (40°S–30°S,
70°W–60°W) 64 7,557,768 481 204.07

Region 3 (40°S–30°S,
140°E–150°E) 59 6,770,182 468 31.20

Region 4 (30°S–20°S,
20°E–30°E) 64 3,663,073 413 99.72

Region 5 (30°S–20°S,
140°E–150°E) 64 5,716,990 408 233.32

Region 6 (30°S–20°S,
130°E–140°E) 63 6,657,017 417 109.19

Region 7 (20°S–10°S,
110°E–120°E) 7 6,698,112 16 175.16

Region 8 (20°S–10°S,
20°E–30°E) 63 1,675,984 401 182.95

Region 9 (20°S–10°S,
30°E–40°E) 55 4,159,308 324 80.81

Region 10 (−10°S–0°N,
40°E–50°E) 13 11,522,471 72 169.84

Region 11 (30°N–40°N,
80°W–70°W) 31 16,008,303 222 143.02

Region 12 (0°N–10°N,
30°E–40°E) 62 1,022,583 359 119.86

Region 13 (10°N–20°N,
80°W–70°W) 35 9,698,301 250 134.51

Region 14 (20°N–30°N,
90°W–80°W) 39 12,549,213 253 146.13

Region 15 (20°N–30°N,
80°W–70°W) 34 11,688,087 224 153.62

Region 16 (30°N–40°N,
90°W–80°W) 63 12,793,479 439 259.34

Figure 13. Performance analysis of mosaicking methods.
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3.5. Result of Mapping

Figure 14 shows some regions around the world to present the classification results
of the images. The results of the high-performance mosaicking method proposed were
demonstrated by stitching together the classification results from regions such as Australia,
Africa, and the Americas. The approach proposed in this study was effective for land
mapping and could provide technical support to automate global land mapping.

Figure 14. Large-area mosaic classification results.

Updating the classification results at the regional level could be performed on new
incoming remote sensing images based on the results of the large-area mosaic method. As
shown in Figure 15, there were missing data in some regions in the initial mapping result
for the Korean Peninsula region. By querying the corresponding image row and column
numbers based on spatial location information, new images could be inputted to fill in
the missing areas. Figure 16 shows the process of updating existing products in the Japan
region. In some areas, the product was affected by clouds, but higher-quality images could
be used as input to update the obscured areas.

Figure 15. Update of regional classification results of the Korean Peninsula.

Figure 16. Update of regional classification results of Japan.
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4. Discussion

The HALF framework presented in this study offers an automated and high-perfor-
mance solution for large-area land cover mapping. By encapsulating each process’s models
using container technology, the HALF addresses the issue of model heterogeneity between
different processes, thus resulting in a significant reduction of deployment workload
without sacrificing operational performance. The HALF integrated various stages in
land cover mapping by using the CWL-Airflow workflow to organize and arrange the
models, thus increasing the automation and flexibility. While the proposed method was
experimentally verified for large-area and efficient mapping, there was a need for service
publishing and sharing functions for workflows. Collaborative efforts between experts
from various fields and countries are crucial for effective GLC mapping. The real-time
sharing of models, processes, and data can have significant implications for land cover
mapping.

The HALF provides a method of extracting a large number of samples from multi-
ple sources of prior products. This method facilitates the generation of a large number
of spatially distributed and evenly balanced samples, thereby significantly reducing the
human and material resources that are utilized in the sample selection process. However,
the accuracy of the samples generated by this method is affected by the prior products. In
this study, many samples were generated by overlaying classification products automati-
cally, and the first-level classes in the FROM_GLC and GLC_FCS products were extracted.
The classification system chosen was relatively coarse, and the samples produced by this
method were constrained by the accuracy of the prior products, thereby affecting the train-
ing of the classification model. In future research, the quality of the produced samples can
be more rigorously controlled by adopting a more refined classification system. In addition,
techniques such as change detection methods and transfer learning can be utilized to create
a substantial number of uniformly distributed and high-precision samples.

The HALF optimized and accelerated sample feature matching and classification
result mosaicking using high-performance computing technology. The specific effects
of the method and its performance under different data volumes were discussed and
explained in Sections 3.4 and 3.5. The experimental results show that the matching method
proposed in this study could quickly establish spatial relationships between points and
images, and it could read image attributed to data in parallel, thereby effectively improving
the computational efficiency of sample–image matching and feature extraction. Its efficiency
was more than 10 times faster than conventional matching methods, and it performed
well and stably under different data volume scenarios, thus making it applicable to other
remote sensing applications that require large-area vector and raster data matching. The
parallel mosaicking method for classification results used image slices as basic units,
thereby achieving real-time mapping of large-area remote sensing image classification
results to produce products and improving mapping efficiency. The total time required for
resampling and mosaic of a single Landsat image in a 10° × 10° grid was about 6.5 s on
average, thereby solving the problem of low computational efficiency when synthesizing
multiple images. However, there may be practical difficulties in expanding the study area to
the entire world, and the computational burden will increase exponentially with increasing
research scope and resolution. Therefore, data fusion with other spatio-temporal resolution
remote sensing data can be utilized to generate more real-time products if a higher update
frequency is desired.

5. Conclusions

The process for producing large-area land cover products is complex, and as the
demand for higher-resolution satellite remote sensing data and more frequent product
updates increases, there is a growing need for automated tools and high-performance
computing methods. The HALF aims to improve the operational efficiency of each link in
the traditional process of land cover mapping in big data by utilizing high-performance
computing technology. The HALF presents a method for large-area land cover mapping,
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which can serve as a valuable inspiration for researchers working on the development of
remote sensing data processing or mapping tools. This is particularly beneficial for those
who have limited access to paid computing power or require customization beyond existing
platforms. To address the heterogeneity of operating systems, running environments,
and programming languages between different links, container technology is used to
encapsulate models such as sample generation, sample–image matching, model training
and prediction, and classification result mosaicking, thereby supporting model reuse
and data sharing, which greatly reduces the workload of deployment. Additionally, a
general workflow language was introduced to model the land cover mapping process,
organize data and models for each link, and decouple the production model from the
overall process, thereby enhancing the automation and flexibility of the mapping process.
In the future, we will further explore how to obtain higher-quality samples from multiple
land cover products, encapsulate them into online data services with network technology,
and integrate them into an integrated production portal to better support researchers in
the field. By continuously improving the HALF, we can enhance the efficiency of large-
area land cover mapping and better support global resource monitoring and sustainable
development efforts.
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