
Citation: Luo, Q.; Li, H.; Chen, Z.; Li,

J. ADD-UNet: An Adjacent

Dual-Decoder UNet for

SAR-to-Optical Translation. Remote

Sens. 2023, 15, 3125. https://

doi.org/10.3390/rs15123125

Academic Editors: Liang-Jian Deng,

Gemine Vivone and Danfeng Hong

Received: 23 April 2023

Revised: 10 June 2023

Accepted: 12 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

ADD-UNet: An Adjacent Dual-Decoder UNet for
SAR-to-Optical Translation
Qingli Luo * , Hong Li, Zhiyuan Chen and Jian Li

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, No. 92,
Weijin Road, Nankai District, Tianjin 300072, China; lihong_123@tju.edu.cn (H.L.); chenzhiyuan@tju.edu.cn (Z.C.);
tjupipe@tju.edu.cn (J.L.)
* Correspondence: luoqingli@tju.edu.cn; Tel.: +86-22-27402366

Abstract: Synthetic aperture radar (SAR) imagery has the advantages of all-day and all-weather
observation. However, due to the imaging mechanism of microwaves, it is difficult for nonexperts
to interpret SAR images. Transferring SAR imagery into optical imagery can better improve the
interpretation of SAR data and support the further fusion research of multi-source remote sensing.
Methods based on generative adversarial networks (GAN) have been proven to be effective in SAR-
to-optical translation tasks. To further improve the translation results of SAR data, we propose
a method of an adjacent dual-decoder UNet (ADD-UNet) based on conditional GAN (cGAN) for
SAR-to-optical translation. The proposed network architecture adds an adjacent scale of the decoder
to the UNet, and the multi-scale feature aggregation of the two decoders improves structures, details,
and edge sharpness of generated images while introducing fewer parameters compared with UNet++.
In addition, we combine multi-scale structure similarity (MS-SSIM) loss and L1 loss as loss functions
with cGAN loss together to help preserve structures and details. The experimental results demonstrate
the superiority of our method compared with several state-of-the-art methods.

Keywords: SAR-to-optical translation; conditional generative adversarial networks (cGAN); SAR;
ADD-UNet; MS-SSIM

1. Introduction

With the development of remote sensing technology, diverse remote sensing sensors
have found their way into different fields, ranging from prevention to urban planning and
scene monitoring. Among the major data sources are optical remote sensing and synthetic
aperture radar (SAR) images. While optical imagery boasts advantages in higher spatial
resolution, richer spectral information, and better detailed information, it is hindered by
adverse weather conditions such as clouds and fog. On the other hand, SAR can provide
all-day and all-weather data. However, the imaging mechanism of microwaves poses
difficulties in interpreting SAR images. In light of this, translating SAR images into optical-
like images can enable non-experts to quickly identify ground information in the absence
of optical images, thereby extending the range of SAR image applications and providing a
new perspective for the fusion of SAR and optical images.

SAR images are also widely used in cloud removal because of their advantages, such
as being able to pass through clouds and smoke. They can be obtained 24 h a day and
regardless of the weather conditions. However, disadvantages such as speckle noise, a lack
of color information, and geometry distortion and shadows cause experts to be unable to
distinguish between different areas. Using SAR-to-optical translated images is a way to
solve this problem. For example, Singh and Komodakis [1] trained a CycleGAN to remove
clouds, and Darbaghshahi [2] trained two GANs for cloud removal.

In the context of SAR-optical image matching, a significant issue arises from the
notable non-rigid deformations (NRDs) between SAR and optical images. These NRDs
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result in inconsistent texture and structural features between the two image modalities,
consequently leading to a decline in matching accuracy. To tackle this problem, Nie [3]
proposed a novel dual-generator translation network that effectively integrates the texture
and structural features of SAR and optical images. This approach aims to achieve high-
quality SAR-optical image matching by mitigating the impact of NRDs and improving
the consistency of features between the two image types. Therefore, the exploration of
methods for SAR-to-optical translation is a promising avenue for research and the study of
SAR-to-optical holds significant theoretical and practical importance.

In the early stages, several pseudo-color-encoding algorithms [4–6] were proposed to
transfer SAR images into color images. However, these methods had limitations in produc-
ing results that resembled real optical images. In recent years, deep learning algorithms
have made remarkable strides in the field of computer vision. In the field of pixel-level
land-cover class mapping, a novel approach called super-resolution mapping based on
spatial-spectral correlation was proposed by Peng Wang [7]. This method aims to mitigate
the impact of both linear and nonlinear imaging conditions and leverage the more precise
spectral properties of the data. In the context of target detection and classification, Xiaodi
Shang [8] introduced a technique known as target-constrained interference-minimized
band selection for dimensionality reduction. This technique effectively eliminates redun-
dant bands and selects a subset of bands that adequately represent the entire image. By
doing so, it enhances the efficiency and accuracy of target detection and classification tasks.

The opacity of neural network mechanics results in poor interpretability for neural
networks when physical information is missing. In order to release the above limitation,
the framework for physics-informed machine learning has proposed and the integration
architectures of physical information and neural networks have been realized [9,10]. These
approaches aim to integrate domain knowledge and physical constraints into the network
architecture or loss functions, enhancing the interpretability and generalizability of the
models. Such integration facilitates a better understanding of the underlying physical
processes and ensures that the generated outputs adhere to known physical laws. These
studies demonstrate the potential of combining domain knowledge with neural networks
to achieve more accurate and robust results in tasks such as land cover classification, change
detection, and image reconstruction. Incorporating the laws of physics into neural networks
holds vast potential for application. These architectures allow accurate prior knowledge
and constraints added into neural networks, and this leads to better performance and
generalization capabilities of the models.

One of the most popular networks for image-to-image transformation tasks is the
generative adversarial networks (GAN) [11], which has become an increasingly attractive
architecture. Nevertheless, the result of GAN is random and uncontrollable. Therefore,
conditional GAN (cGAN) [12] was proposed to guide the process of image generation.
Isola et al. [13] explored the effects of cGAN on general image-to-image translation tasks
and proposed the renowned pix2pix framework. Both cGAN and pix2pix are supervised
methods that require paired datasets for network training. However, acquiring paired
datasets can be challenging and costly. To address this problem, CycleGAN [14] was
proposed for unpaired dataset translation. In the field of unsupervised image translation,
U-GAT-IT [15] was recently introduced and has achieved better results in geometric changes
by incorporating a new attention module and adaptive layer-instance normalization.

With the development of GAN, an increasing number of methods based on GAN
have been proposed for the SAR-to-optical translation task. A lot of work based on GAN
networks has already been proven effective in the task of SAR-to-optical image translation,
yielding impressive results. For instance, Niu et al. [16] introduced cGAN to the field of
remote sensing image translation. Merkle et al. [17] utilized cGAN to transform optical
images into SAR images for registration. Fu et al. [18] proposed a reciprocal GAN for two-
directional SAR and optical image translation. Reyes et al. [19] explored the optimization
of network parameters based on CycleGAN. Wang et al. [20] combined CycleGAN and
pix2pix to enhance the structural information of generated images. Zhang et al. [21] added
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a VGG perceptual loss to enhance cGAN. Qian Zhang et al. [22] investigated the effects
of texture and edge features in enhancing the structural similarities between generated
images and ground truth. Guo et al. [23] proposed an edge-preserving GAN (EPCGAN)
that improves the structural characteristics and visual clarity of generated images through
content-adaptive convolution on feature maps. Li et al. [24] introduced wavelet feature
learning to refine SAR-to-optical translation. Wang et al. [25] combined convolutional
neural network (CNN) with vision transformer to enhance the representation capability of
generator by merging global and local features. The existing GAN-based methods have
demonstrated their feasibility in SAR-to-optical translation.

The generator architecture is a crucial element in GAN-based image-to-image methods.
Initially, the encoder–decoder was the primary structure employed by researchers [26–29]
as the generator [30]. Currently, the generator structures are mainly derived from the
framework proposed by Johnson et al. [31] and UNet [32]. Johnson’s network demonstrated
comparable image style transfer quality to Gaty’s method [33], while being much faster.
It consists of three components: several convolution layers for down-sampling, a set of
residual blocks, and a number of deconvolution layers for up-sampling. This architecture
has gained considerable attention in subsequent research [12,19,21,34]. The other widely
adopted generator structure is UNet [11,16,18,20,22], which leverages skip connections
to combine shallow and low-level features of encoder layers with deep and semantic
features of decoder layers, thus improving the network’s performance. However, the
optimal depth of UNet is uncertain, and its skip connections and fusion aggregation are
limited to the same-scale feature maps of encoder and decoder layers. To address these
issues, UNet++ [35] was proposed, which includes decoders of different depths within
its architecture and aggregates features of various semantic scales of decoders with dense
connections. Despite outperforming UNet in image segmentation tasks, UNet++ requires
numerous parameters, which necessitate significant device memory or lengthy training
times. Additionally, the effectiveness of individual skip connections from each decoder to
the outermost decoder remains in question.

The generative adversarial network (GAN) [9], proposed by Goodfellow, have found
applications in various fields, including image translation, super-resolution [36], style
transformation [37–39], and image retrieval [40,41]. In the GAN framework, the generator
model and the discriminator model are trained simultaneously in an adversarial manner.
The generator acts as a counterfeiter, aiming to generate fake images that closely resemble
real ones, while the discriminator serves as the connoisseur, attempting to distinguish
between generated and real images. However, the plain GAN approach often suffers from
uncontrollable results and the risk of mode collapse, where the generator fails to explore
the full diversity of the target distribution. To address these limitations, conditional GAN
(cGAN) [10] was proposed. The cGAN uses an input label as additional information to help
constrain the generated image to be relevant to the input label. This label helps constrain
the generated image to be relevant to the given input. The loss function of cGAN can be
defined as follows:

min
G

max
D
LcGAN(G, D) = E[log(D(x, y))] + E[log(1− D(x, G(x)))] (1)

where G is a generator and D denotes a discriminator. x is a condition label and y is a
corresponding realistic photo. G attempts to minimize this objective to make the generated
image G(x) closer to the real image y, while D aims to maximize the objective to distinguish
generated images from real ones. G and D work against each other in an adversarial way.

Pix2pix [11] is a classic framework of cGAN, and it has shown excellent performance
in image-to-image tasks. Pix2pix adopts the UNet [31] for the generator and patchGAN
for the discriminator. The loss function of pix2pix combines L1 loss with cGAN loss, and
this combination results in fewer visual artifacts than relying solely on cGAN. L1 loss is
defined as:

LL1 = E[‖G(x)− y‖1] (2)
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The objective function of pix2pix combines cGAN loss and L1 loss.

L = LcGAN + λLL1 (3)

where λ denotes the weight of L1 loss.
In the field of image translation, methods [26,42] simply using convolutional neural

network (CNN) by minimizing the Euclidean distance between the generated images and
real ones will lead to blurry results. Compared with these, GAN can produce more realistic
images. This is because the discriminator is equivalent to a learnable loss function, and
through its confrontation with generator, the differences between generated images and
real ones can be gradually narrowed.

Previous research [11] has shown that combining the cGAN loss and a reconstruction
loss can enhance the results in image translation tasks. The reconstruction loss, typically
measured using L1 loss, acts as a regression function that facilitates the faster convergence
of the network. However, using L1 loss directly on a pixel-wise basis can lead to a loss
of fine details and structural features. To enhance the quality of generated images, re-
searchers [34,43] have proposed the use of multi-scale discriminators. Zhang et al. [20] used
VGG perceptual loss to improve the similarity between generated images and real optical
images. Li et al. [44] added SSIM [45] loss to help improve the structural information of
generated images, although SSIM loss may introduce artifacts. At present, the utilization
of multi-scale features in loss function is less considered. Zhao et al. [46] combined multi-
scale structural similarity (MS-SSIM) [47] with L1 loss as a novel loss function in image
restoration tasks yielding superior results compared to individual L1, SSIM, or MS-SSIM
losses. By incorporating a multi-scale SSIM loss, MS-SSIM better preserves high-frequency
information, although it may introduce changes in brightness and color deviation. In
contrast, L1 loss better maintains luminance and color consistency. Combining MS-SSIM
and L1 loss functions proves to be more effective than either loss alone in preserving image
quality.

The proposed adjacent dual-decoder UNet (ADD-UNet) network is an extension of
the UNet generator, which adds an adjacent scale decoder to the outer decoder for feature
fusion. By aggregating multi-scale semantic features, ADD-UNet can improve structural
features, details, and edge sharpness of the generated images with fewer parameters com-
pared to UNet++. The new loss function proposed in this paper combines cGAN loss,
MS-SSIM loss [47], and L1 loss, which significantly improves the detail feature and struc-
tural similarities between the generated optical and real optical images. The experiments
conducted in this paper demonstrate the generalization performance of ADD-UNet on
two different datasets, where the method achieves outstanding results. The proposed
method has the potential to advance the state-of-the-art in SAR-to-optical image translation
tasks.

2. Materials and Methods

This paper presents a novel approach for SAR-to-optical translation, introducing
several key contributions. Firstly, we introduce an innovative adjacent dual-decoder
UNet network architecture for the generator. This architecture significantly enhances the
structural features, details, and edge sharpness of the generated images, while requiring
fewer parameters compared to UNet++. Secondly, we propose a hybrid loss function that
combines the benefits of MS-SSIM loss, L1 loss, and cGAN loss. This combination serves to
improve the detailed features and structural similarities between the generated images and
real optical images. By integrating these components, our method aims to achieve superior
results in SAR-to-optical translation tasks.

2.1. Adjacent Dual-Decoder UNet

Our initial concept involves the development of a dual-decoder network by incorpo-
rating an additional decoder into the UNet architecture. This approach enables the fusion
of feature information from both shallow and deep decoders, allowing the outer decoder to
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access multi-scale semantic features. Figure 1 illustrates our preliminary ideas, showcasing
different depths of the UNet architecture with an added decoder. In our experiments
outlined in Section 3.1, we discovered that the structure depicted in Figure 1f yields the best
performance, leading us to select it as our final architecture. This final structure, referred to
as the adjacent dual-decoder UNet (ADD-UNet), consists of two adjacent decoder depths.
The inner shallow decoder is positioned next to the outer deeper decoder. Additionally,
on each symmetrical layer, the feature maps from the encoder are skip-connected to both
decoders. At the same resolution, the feature maps from the shallow decoder are also
skip-connected to the deeper decoder. The fusion of these feature maps can be calculated
as follows:

d7,j =


H[e6, DC(e7)] j = 1
H
[
em, DC

(
d7,j−1

)]
2 ≤ j < 8− i

H
[
em, di,j, DC

(
d7,j−1

)]
8− i ≤ j ≤ 6

(4)

where em denotes the feature map of m− th encoder layer and m indexes the feature map
of encoder layer from top to bottom. d7,j denotes the feature map of j− th layer of the
outer decoder, where j indexes decoder layers from bottom to top and 7 denotes the depth
of the outer decoders. Similarly, di,j denotes the feature map of j− th decoder layer of
the shallow decoder, where i denotes the depth of the shallow decoder. As depicted in
Figure 1, in Equation (1), m = 7− j. [] denotes a concatenation layer. DC represents a
deconvolution layer that up-samples the input. H denotes a convolution operation with
an activation function, and the number of its filters is the same as ej. If j < 8− i, d7,j
receive 2 inputs, of which one input is from the symmetry encoder layer and the other is
the deconvolution output of its former layer (skip connections in this case are similar to
UNet). Additionally, if 8− i ≤ j ≤ 6, d7,j receives 3 inputs, of which 2 inputs are feature
maps of the same resolution from the shallow decoder and the encoder, and the 3rd input
is from the deconvolution output of the (j− 1)− th layer of the deeper decoder.
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The encoder component of our network comprises seven convolutional layers respon-
sible for down-sampling. Each convolutional layer is followed by batch normalization (BN)
and LeakyReLU (LR) activation. The convolutional kernel size is set to 4 × 4, and the stride
is set to 2, enabling efficient down-sampling. The decoders, on the other hand, perform
up-sampling using deconvolution layers. The deconvolution layers utilize a 4 × 4 convolu-
tional kernel with a stride of 2. At the same resolution, the feature maps of the encoder are
connected to both decoders through skip connections. Furthermore, the feature maps of
the shallow decoder are skip-connected to their corresponding counterparts in the deep
decoder. When fusing the feature maps in the decoder layers, the number of channels
increases. To address this, a convolutional layer is employed to restore the number of
channels in the current decoder layer to match that of the symmetrical encoder layer. The
generator takes SAR images as conditional input and generates optical-like images. To
obtain an optical-like image, the output feature map from the deep decoder is up-sampled
to restore its size to 256 × 256. Subsequently, a convolutional kernel with three channels
and a stride of 1 is applied to convert the feature map to the RGB color space.

In this paper, the discriminator employed is based on a 5-layer convolutional neural
network (CNN) structure, as depicted in Figure 2. The architecture follows the PatchGAN
design, which focuses on analyzing local image patches rather than the entire image. This
approach allows for a more fine-grained evaluation of the generated images, enabling the
discriminator to provide detailed feedback and guidance to the generator network. The
optical image and the conditional SAR image are input together into the network through
channel concatenation. The output of the discriminator is a 16 × 16 matrix. Each pixel in
the matrix represents the probability that its corresponding patch in the input optical image
comes from a real optical image rather than a generated one. The pixel value is in the range
of [0, 1]. “1” means that the patch is from a real optical image, and “0” means that the patch
is from the generated optical image.
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2.2. Improved Loss Function

In this paper, the loss function employed is a combination of three components: cGAN
loss, MS-SSIM loss, and L1 loss. The cGAN loss is responsible for ensuring that the
generated images resemble real optical images. The MS-SSIM loss is utilized to enhance
the structural features and detail refinement of the generated images. Lastly, the L1 loss
contributes to preserving the luminance and colors of the images, promoting more accurate
color reproduction. By combining these three loss components, the overall loss function
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guides the training process to optimize both structural features and color fidelity in the
generated optical images.

MS-SSIM method: The generated optical image G(x) and its corresponding real optical
image y are, respectively, taken as two inputs. Then, a pyramid of M levels is computed
by applying low-pass filter and 1/2 down-sampling iteratively. The original image is at
scale 1 and the highest scale is at scale M. The image of highest scale is obtained through
(M − 1) iterations. For the j − th scale, contrast comparison cj(G(x,)y) and structural
similarity comparison sj(G(x), y) are calculated. The luminance similarity L(G(x), y) is
only calculated at scale M. Down-sampling by 1/2 is performed using average pooling
with stride 2. Low-pass filter is performed with a Gaussian filter. The final MS-SSIM is the
weighted multiplication of the indexes of each scale:

MS− SSIM(G(x), y) = [lM(G(x), y)]αM ·
M

∏
j=1

[
cj(G(x), y)

]β j ·
[
sj(G(x), y)

]γj

(5)

where lM denotes the luminance at scale M, cj represents the contrast at scale j, and sj
denotes the structural similarity. The value range of MS-SSIM is [0, 1]. The higher the value
is, the more similar the two images are. In this paper, M = 5. α, β, γ are used to adjust the
weight of each component. Additionally, we used the empirical weight value in [47].

αj = β j = cj
α1 = 0.0448, α2 = 0.2856, α3 = 0.3001, α4 = 0.2363, α5 = 0.1333

(6)

For a specific scale,

l(G(x), y) =
2uG(x)uy+c1

u2
G(x)+u2

y+c1

c(G(x), y) =
2σG(x)σy+c2

σ2
G(x)+σ2

y+c2

s(G(x), y) =
σG(x)y+c3

σG(x)σy+c3

(7)

where uG(x) is the mean of image G(x) and uy is the mean of image y. σG(x) and σy are,
respectively, the standard deviations of image G(x) and image y. σG(x)y is the covariance
of G(x) and y. C1 and C2 are constants to prevent the denominator from being 0.

The MS-SSIM loss function is defined as:

LMS−SSIM= 1−MS− SSIM(G(x), y) (8)

In summary, the combined loss function of our method is defined as:

L = LcGAN(G, D) + λ2LMS−SSIM + λ3LL1 (9)

where λ2 and λ3 denote the weight of LMS−SSIM and LL1, respectively.

2.3. Datasets

In this study, the SEN1-2 dataset, established by Schmitt et al. [48], was utilized for the
SAR-to-optical translation experiments. The SEN1-2 dataset comprises paired Sentinel-1
(SEN-1) SAR images and Sentinel-2 (SEN-2) optical images. The optical images in the
dataset are created by combining bands 4, 3, and 2 to form RGB images. The dataset covers
various random regions globally across four different seasons. Two independent subsets
were selected from the SEN1-2 dataset for the experiments. The first subset, referred to as
the Test1 dataset, consists of 4080 pairs of SAR-optical images representing four typical
scenes: forest, urban areas, farmland, and mountain. The second subset, called the Test2
dataset, includes 1140 pairs of SAR-optical images and represents complex situations in
urban areas and farmland. To partition the datasets for training and testing purposes, each
dataset was split into 80% training data and 20% test data. This division ensures that the
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models are trained on a majority of the data while still reserving a portion for evaluating
their performance.

2.4. Evaluation Metrics

In this study, two commonly used image quality evaluation metrics, peak signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM) [45], were employed for
the quantitative assessment of the proposed method in the image translation task.

PSNR measures the ratio between the maximum possible power of a signal and the
power of the noise corrupting that signal. It is often used to evaluate the fidelity or similarity
between two images. A higher PSNR value indicates a better quality of the generated
image compared to the reference image.

SSIM, on the other hand, assesses the structural similarity between two images by mea-
suring the similarity of patterns, structures, and textures. It takes into account luminance,
contrast, and structural information to determine the similarity between the images. The
SSIM value ranges from 0 to 1, with 1 indicating a perfect match between the two images.

By utilizing both the PSNR and SSIM metrics, the proposed method can be quanti-
tatively evaluated in terms of image quality, with higher PSNR values and higher SSIM
scores indicating better performance and similarity between the generated images and the
target images.

2.5. Implementation Details

We apply pix2pix as our baseline and make all improvements on it. At our baseline,
we use a 7-layer UNet for generator, since it is commonly used in SAR-to-optical translation
tasks [20,22]. In Equation (3), λ [11] is the weight of L1 loss relative to cGAN loss. Increasing
the proportion of L1 loss will result in fuzzier images while increasing the proportion of
cGAN loss will lead to sharper results. If the value of λ is too large, the generated images
will be blurry. To obtain sharper translation results, we set λ = 10 instead of 100. For the
same reason, we set the weight λ2 = 10, λ3 = 10 in Equation (9). All experiments were
performed using a NVIDIA RTX 2080 Ti GPU with 11 G memory on PyTorch framework.
The input to was single-channel SAR images of 256× 256 in size. The output from generator
was generated optical images of 256× 256× 3 in size. The Adam optimizer was chosen
to optimize the network with a learning rate set to 2 × 10−4. A least-square loss [49] was
utilized to replace the negative loglikelihood objective in LSGAN in Equation (1), as it was
more stable and was able to produce results of higher quality. Specifically, D minimizes
E[(D(x, y)− 1)2] + E[(D(x, G(x)))2] and G minimizes E[(D(x, G(x))− 1)2].

To verify the performance of our method, several state-of-the-art methods were em-
ployed, including CycleGAN [12] and U-GAT-IT [13]. These methods were implemented
using official codes.

3. Results
3.1. Selection of the Additional Decoder Branch

Our initial idea was to build a dual-decoder network by adding an additional decoder
to UNet. We carried out experiments on the optimal depth of the additional decoder branch
and found that the additional decoder was the most effective when it was the adjacent depth
to the outer decoder. The baseline was set as pix2pix without an additional decoder branch
(UNet7 in our case). As illustrated in Figure 1b–f, the additional decoder branch with
depth from 2 to 6, respectively, were added to UNet7, and then the network architectures
of UNet27, UNet37, UNet47, UNet57, and UNet67 are constructed, respectively. The loss
function of all these networks is consistent with our baseline, and it is combined of GAN
loss and L1 loss.

Table 1 lists the performance of dual-decoder UNet with additional decoder branches
of different depths. Of the SSIM and PSNR metrics on the two datasets, UNet67 performed
best. On the Test1 dataset, the SSIM value of UNet67 exceeds UNet by 25.6% and its
PSNR value surpasses UNet by 6.3%. On the Test2 dataset, the SSIM value of UNet67
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exceeds UNet by 19.8% and its PSNR value surpasses UNet by 9.0%. This suggests that
images generated by UNet67 are not only closest to real optical images but also of the best
quality. On the larger dataset Test1, the deeper the additional coder, the higher the SSIM
accuracy. Nevertheless, on the smaller dataset Test2, the SSIM value of UNet57 is lower
than Unet37. This shows that the size of the dataset has an impact on the performance of
the network structure. However, UNet67 has good performance on both datasets, reflecting
its generalization.

Table 1. Comparison of additional decoder branch with different depths. The best values for each
quality index are shown in bold.

IQA Dataset UNet7 UNet27 UNet37 UNet47 UNet57 UNet67

SSIM
Test1 0.399 0.350 0.392 0.412 0.426 0.478
Test2 0.534 0.598 0.599 0.572 0.550 0.671

PSNR
Test1 19.249 18.983 19.586 19.751 19.690 20.462
Test2 21.242 22.127 22.133 21.823 21.273 23.146

Figure 3 visualizes the feature maps of the last layer at the shallow and deep decoder
of UNet with additional decoder of varying depths. The feature map for a layer is obtained
by averaging all its feature maps and displayed in the form of its heatmap. The real optical
image (ground truth) presents the mountain landform with a ridge line. As shown in
Figure 3c, in feature maps at shallow decoder of UNet27 and UNet37, the contour of the
ridge line is indistinguishable from its left surroundings. For UNet57, the ridge line is
intermittent. UNet67 is the only method that restored the continuous ridge line and a small
line structure next to it. From Figure 3d, only the ridge line at deep decoder of UNet67 is
continuous. In conclusion, the capability of structure representation of UNet67 is the best,
and thus UNet67 is used as the generator structure in this paper. UNet67 is termed as an
adjacent dual-decoder UNet for its additional decoder is adjacent to the outer decoder.

3.2. Comparison of Different Generators

To assess the effectiveness of our proposed generator, ADD-UNet, we conducted
the comparison experiments of different generators and compared the performance of
ADD-UNet with Johnson’s [31], UNet++ [35] and UNet (UNet7). The UNet7 method
is the realized pix2pix as our baseline. To compare different generators, we keep other
settings of these methods the same as the baseline, including loss functions. Johnson’s
network has achieved impressive results on image style transfer and is widely used as
a generator in image-to-image tasks. For fairness, we constructed a network with four
convolutional layers, nine residual blocks intermediate, and four deconvolutional layers
according to Johnson’s method, and the specific settings of each layer are consistent with
UNet at baseline. In our experiment, UNet++ is conducted by filling up the inside of UNet7
with decoders of all depths following the connectivity scheme of UNet++.

Table 2 lists the performance comparison of different generators in terms of SSIM
and PSNR results. Table 3 lists the number of parameters and inference time of different
generators. In terms of SSIM value, ADD-UNet outperforms the other methods on both
datasets. This suggests that images generated by ADD-UNet are closest to real optical
images. Compared with UNet++, the SSIM accuracy of our method is 3.9% higher on
the Test1 dataset and 7.2% higher on the Test2 dataset, and the number of parameters
is reduced by 27.6%. A smaller number of parameters makes our networks portable for
mobile devices and avoids expensive computing or high memory requirements. The results
demonstrate that the proposed ADD-UNet achieves a significant reduction in inference
time, approximately halving the time required compared to UNet++. Both our method and
UNet++ provides a higher PSNR compared with other generators. On the Test1 dataset,
the PSNR accuracy of ADD-UNet is only reduced by 0.3% compared with UNet++. On the
Test2 dataset, the PSNR accuracy of ADD-UNet is 3.0% higher than UNet++.
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Figure 3. Feature visualization of UNet with an additional decoder of varying depths. The image
from the first line to the sixth line are feature maps of UNet7 to UNet67. From left to right are:
(a) single-channel SAR image input; (b) heatmap of the last layer at shallow decoder; (c) heatmap of
the last layer at deeper decoder; (d) output generated image; and (e) ground truth (SEN-2 optical
image).

Table 2. Comparison of different generators. The best values for each quality index are shown in
bold.

IQA Dataset UNet Johnson’s UNet++ ADD-UNet

SSIM
Test1 0.399 0.309 0.460 0.478
Test2 0.534 0.619 0.626 0.671

PSNR
Test1 19.249 18.149 20.531 20.462
Test2 21.242 22.155 22.481 23.146
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Table 3. Parameters and inference time of different generators. The best values for each quality index
are shown in bold.

Generator Params. Inference Time (s)

UNet 41.83 M 0.016
Johnson’s 48.01 M 0.022
UNet++ 102.29 M 0.071

ADD-UNet 74.03 M 0.031

Figure 4 presents translation results by the proposed ADD-UNet and other advanced
networks on the Test1 dataset. The examples generated by ADD-UNet and UNet++ have
better structures and details than those by UNet and Johnson’s. As marked with red boxes
in the first row of Figure 4, a border line is across the middle of the forest in the original
optical image. The border line is almost missing from the results of UNet and Johnson’s.
However, most of the border line is restored in generated images by both UNet++ and
ADD-UNet. In the second row of Figure 4, the generated images by ADD-UNet and
UNet++ are sharper than other methods and both of the methods can restore the long line
along the building block within the red box. From red boxes of the third row in Figure 4,
both ADD-UNet and UNet++ recovered the U-shaped crack structure feature while other
methods did not. In summary, both UNet++ and ADD-UNet perform better in keeping
structural features, detail fineness, and outline sharpness than UNet. Furthermore, the
parameter quantity of ADD-UNet is much lower (27.6%) than that of UNet++, and this is
the advantage of ADD-UNet.
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Figure 5 displays the translation results of different generators on the Test2 dataset.
From the red boxes of the first and second row, only ADD-UNet restored the structure
and texture of buildings while other methods cannot. In the third row, only ADD-UNet
restored the three blocks within the red box, among which the small block in the middle is
surrounded by white edge. Additionally, in the green box of the third row, the structure of
the small block generated by ADD-UNet is closest to ground truth.
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3.3. Comparison of Different Loss Functions

To verify the effectiveness of the proposed loss function, we carried out the comparison
experiments on two loss functions, including our loss function (cGAN + MS-SSIM + L1)
and pix2pix’s loss function (cGAN + L1). All models are trained with ADD-UNet. As listed
in Table 4, compared with (cGAN + L1), both the SSIM and PSNR values are higher with
(cGAN + MS-SSIM + L1). The SSIM value of our results has improved by 10.7% on the
Test1 dataset and 7.9% on the Test2 dataset, compared with (cGAN + L1) loss. This means
that the generated images from our loss function are more similar to the ground truth than
those with only the (cGAN + L1) loss applied.

Table 4. Comparison of loss functions. The best values for each quality index are shown in bold.

IQA Dataset cGAN + L1 cGAN + MS-SSIM + L1

SSIM
Test1 0.478 0.529
Test2 0.671 0.724

PSNR
Test1 20.462 20.763
Test2 23.146 23.395

Figure 6 presents the translation results of the proposed loss function and (cGAN + L1)
on the Test1 dataset. In the first row, with the proposed loss (cGAN + MS-SSIM+ L1), the
border line in the forest within the marked red boxes is restored longer than that with the
loss (cGAN + L1). In the original optical of the second row, a small white path is within
the red box. The generated image of our proposed loss restores the path better than that of
(cGAN + L1). Then, the generated samples with the proposed loss have the advantage of
preserving more realistic structural features and details than that with (cGAN + L1). As
highlighted with red boxes of the third row, our loss function can generate clearer contour of
the U-shaped detail. Overall, our proposed loss function (cGAN + MS-SSIM+ L1) performs
better than the loss function of (cGAN + MS-SSIM + L1), and it has a better ability to keep
structure features and detail fineness.
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Figure 7 presents the translation results of the proposed loss function and (cGAN + L1)
on the Test2 dataset. From the red boxes on the first row, in the generated image by
(cGAN + L1), an elliptical structure of farmland is incorrect. Our method correctly restored
the linear contour of the farmland. In the second row, the separate structure feature of
the two blocks within the red box is recovered by our method. However, in the generated
image of (cGAN + L1), the two blocks are connected incorrectly. From the red box of the
third row, our method restored more details than (cGAN + L1).

3.4. Comparison with the State of the Art

We compare our method with several state-of-the-art methods. As listed in Table 5, on
the Test1 dataset, the SSIM index of our method is 0.529, 32.6% higher than pix2pix. On
the Test2 dataset, the SSIM index of our method is 0.724, 35.6% higher than pix2pix. The
SSIM of our method also far exceeds the other two unsupervised methods (CycleGAN and
U-GAT-IT). This indicates that the images generated by our methods are closer to the real
optical images in terms of structure features, contrast, and luminance. On the Test1 dataset,
the PSNR value of our method reaches up to 20.763, which is 7.9% higher than pix2pix. On
the Test2 dataset, the PSNR value of our method reaches is up to 23.395, which is 10.1%
higher than pix2pix. The PSNR of our method surpasses other methods, and the possible
reason is that our generated images contain less noise.
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Table 5. Comparison with state-of-the-art methods. The best values for each quality index are shown
in bold.

IQA Dataset Pix2pix CycleGAN U-GAT-IT Ours

SSIM
Test1 0.399 0.160 0.154 0.529
Test2 0.534 0.125 0.148 0.724

PSNR
Test1 19.249 13.301 12.371 20.763
Test2 21.242 12.446 12.560 23.395

Figure 8 shows the results of different methods of SAR-to-optical translation on the
Test1 dataset. Compared with other methods, images generated by our method have more
realistic details. The first row presents a ridge line. From the SAR image, both the ridge
line and the rock to the left of it are dark, appearing to be a “wider gap”. In the generated
images by CycleGAN and U-GAT-IT, the colors are incorrect, and the ridge line and the
rock to its left have been incorrectly restored to the same category of landform that looks
different from the background. In the generated image by pix2pix, although the rock on
the left can be distinguished from the ridge line, the texture and structural features of the
rock are not accurate. Our method is the only method of recovering both the ridge line and
the texture characteristics of its left rock surface. As marked with red boxes of the second
row, the optical image of SEN-2 exhibits a rectangular-like bright spot on the water surface.
Our method clearly restored the structure of the bright spot while other methods failed.
From the third to the fourth row, compared with results of other methods, the colors, and
texture features of images produced by our method are closest to real optical images. The
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images generated by CycleGAN and U-GAT-IT contain structures close to the ground truth,
but their color information is wrong. For images generated by pix2pix, their colors are
closer to the ground truth, but they seem noisy and unclear. In the red boxes of the fifth
and sixth row, the farmland structure restored by our method exhibits richer details and
shaper outline than other methods.
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Figure 9 shows the results of different methods on the Test2 dataset. In the first row,
only our method restored the structure of the long road within the red box. In the second
row, our method recovered the line structure in the farmland, and is shaper than pix2pix.
From row 3 (a), the SEN-2 optical image presents a curved black structure within the red
box and the magnified view of the structure is shown on row 3 (b). Our method accurately
restored this structure while other methods failed. From the images of the fourth to sixth
row, the structural details and texture restored by our method are closest to ground truth.
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row 3 (b) are the magnified view of the scene in the red boxes in row 3 (a).

In all, compared with other methods, the images generated by our method are closer
to real optical images. The generated optical images of our method provide finer details,
sharper outline, and better structure information.

4. Discussion and Conclusions

In this paper, the proposed ADD-UNet model demonstrates its effectiveness in SAR-
to-optical translation tasks. The key contributions of this research are as follows: Firstly,
the adjacent dual-decoder structure of ADD-UNet enables the learning of multi-scale
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semantic features, which improves the quality of the generated images by capturing both
global and local information. Secondly, a hybrid loss function consisting of cGAN loss,
MS-SSIM loss, and L1 loss is employed to enhance the structural and textural features of the
generated images. This combination of loss functions helps to preserve important details
and structures, leading to more visually appealing results.

The experimental results conducted on two different datasets highlight the superior
performance of our method compared to advanced techniques, such as pix2pix and UNet++.
The proposed ADD-Unet achieves significant improvements in terms of SSIM and PSNR
values, demonstrating its effectiveness in enhancing image quality and generalization
across diverse datasets. Furthermore, the comparison with other advanced networks
reveals that ADD-Unet outperforms Unet++ in terms of SSIM accuracy, while also reducing
the number of parameters required.

The comparative experiments with different loss functions emphasize the advantages
of our proposed loss function (cGAN + MS-SSIM + L1) over the alternative (cGAN + L1).
The proposed loss function successfully preserves structural features and finer details in
the generated images.

In conclusion, the proposed ADD-UNet model and the hybrid loss function show
promising results in SAR-to-optical translation. Future work will focus on further im-
proving the accuracy and generalization capabilities of the model to enhance its practical
applications.
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