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Abstract: Flood disasters caused by typhoon rainfall seriously threaten regional social and economic
development. Accurately assessing the risk of typhoons and their secondary disasters is a great chal-
lenge in disaster prevention and reduction. To address this, the city of Fuzhou, Fujian Province, which
was severely affected by Typhoon “Lupit” (2109), was selected as a case study. A typhoon rainfall
flood disaster system including four components (the disaster-causing factor, disaster-pregnant envi-
ronment, disaster-bearing body, and disaster prevention and reduction capacity) was constructed. A
typhoon-rainfall process comprehensive intensity index (TPCI) based on different time scales within
the typhoon process was developed to accurately evaluate the flood risk. The TPCI represented
the disaster-causing factors of rainfall intensity, duration, and concentration features. Geographical
similarity and random forest (RF) were applied to screen 23 typical indices for an urban flood disaster
risk assessment model. The results indicated that the TPCI based on a 6 h precipitation simulation
at a 24 h time scale was highly effective in highlighting the role of short-term precipitation in the
typhoon process. A total of 66.5% of the floodplain area had a medium-grade or higher TPCI value,
while 32.5% of the area had a low-grade TPCI. Only 1% of the flooded areas were not identified,
which indicated that the TPCI could accurately capture the risk of typhoon rainfall. The urban flood
disaster risk assessment model comprehensively considered socioeconomic and natural environment
conditions. High-risk areas were identified as regions with extreme precipitation and dense popu-
lations. The dynamic evaluation results accurately described the spatiotemporal differences in the
flood disaster risk. A period of extreme precipitation lagged the landfall time of Typhoon “Lupit”,
causing the proportion of areas above the medium–high-risk threshold of flood disasters to rapidly
increase from 8.29% before the landfall of the typhoon to 23.57% before its demise. The high-risk
areas of flood disasters were mainly distributed in the towns of Shangjie, Nanyu, and Gaishan, which
was consistent with the observed disasters. These study findings could contribute to the development
of effective measures for disaster prevention and reduction, and improve the resilience of urban areas
to typhoon disasters.

Keywords: typhoon; rainfall process; flood disaster; dynamic risk; Fuzhou

1. Introduction

Typhoons are tropical cyclones that form in the Northwest Pacific Ocean and the South
China Sea, where sea surface temperatures exceed 26 ◦C and central wind forces exceed
grade 12. The Chinese mainland abuts the Pacific Ocean to the east, with an extensive

Remote Sens. 2023, 15, 3116. https://doi.org/10.3390/rs15123116 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15123116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0003-8187-8316
https://orcid.org/0009-0008-0497-6904
https://orcid.org/0000-0003-1934-5802
https://doi.org/10.3390/rs15123116
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15123116?type=check_update&version=1


Remote Sens. 2023, 15, 3116 2 of 26

coastline of over 18,000 km. Typhoon disasters in the southeast coastal areas are particularly
severe [1,2]. Heavy rainfall, strong winds, and storm surges induced by typhoons are the
main causes of disasters, damaging the regional ecological environment and endangering
people’s lives and property. The rainfall from typhoons is often influenced by a com-
bination of subtropical high pressure [3,4], southwest monsoons [5–7], and topographic
effects [8–10], which can easily trigger flash floods, landslides, urban floods, and other
disasters in sequence. In recent years, typhoon disasters have caused significant economic
losses due to the rapid economic development in the southeast coastal area of China [11].
One of the most prominent examples is Super Typhoon “Likima” (1909), which landed
in eastern China, causing 56 fatalities and a direct economic loss of 53.72 billion CNY.
Floods occurred in many places, including the historic flood in the Lingjiang River Basin
of Zhejiang Province, which led to an accumulation of up to 10 m of water in the city of
Linjiang (https://www.ndrcc.org.cn/, accessed on 9 May 2023). Due to the peripheral
airflow of the Severe Typhoon “In-Fa” (2106), the city of Zhengzhou in Henan Province
experienced unprecedented flooding, resulting in 380 deaths and disappearances [12–14].
Humanity needs to learn and adjust flood prevention strategies from such severe flood
events, incorporating human behaviour, flood prevention policies, and infrastructure in-
vestments into flood risk modelling to advance our understanding of coupled human-water
systems and reduce the impact of hydrological disaster risks on society [15–18]. As a result,
it has become critical to scientifically assess the risk of typhoon-induced floods for disaster
prevention and mitigation in coastal cities in China.

Heavy rainfall is the primary cause of flood disasters. It is crucial to have a precise
understanding of the temporal and spatial characteristics of rainfall and its impact on
floods, which is an essential aspect of disaster mechanism research [19]. Various researchers
have used rainfall indices, such as process total precipitation [20], daily cumulative precipi-
tation [21,22], and precipitation 1–3 days before a flood [23–25], to analyse flood disaster
risks. The risk of heavy rainfall is higher during typhoons and the flooding formation time
is shorter, resulting in more severe disasters. However, applying the above rainfall indices
in analysing urban typhoon-induced floods can be challenging, as these indices may affect
the accuracy of the risk distribution. To address this issue, some researchers have analysed
hourly precipitation data and discovered that floods are closely linked to the intensity of
hourly precipitation [26,27] and cumulative precipitation in 4–6 h [28], indicating that an
increase in short-term precipitation will intensify floods. Nevertheless, this relationship is
not universal due to differences in regional climatic and hydrological conditions [29,30].
Additionally, the concentration reflecting the changes in precipitation intensity within
the rainfall process is also a critical factor influencing the severity of floods [31]. Zhang
et al. [32] conducted a study in which they designed various rainfall scenarios to explore
the response characteristics of urban waterlogging under different rainfall patterns and
concentrations. They found that the higher the concentration of precipitation, the more
severe the inundation during the same return period.

The typhoon rainfall process typically exhibits multi-peak shapes with intermittent
periods of precipitation (i.e., large amounts of zero rainfall values) and a high degree
of concentration [33–35]. At the same time, urban flood disasters are characterized by
shorter durations and higher spatial dispersion compared with basin floods [36]. In the
case of fast-moving typhoons, it is necessary to consider the distribution of precipitation
intervals during the typhoon process and analyse the impact of the dynamic characteristics
at different time scales on the risk of urban flood disasters. Therefore, dynamic assessment
is key to accurately identifying the risk of typhoon-induced flood disasters.

Urban flood risk is influenced by a range of factors beyond rainfall, including sur-
face conditions, asset exposure, and disaster prevention and reduction capacity [37–40].
Flood risk assessment is a complex process that requires the consideration of multiple
factors to determine the probability of risk. The index system method is a useful tool for
assessing flood risk, with some researchers proposing indices such as disaster-causing
factors, disaster-pregnant environments, disaster-bearing bodies, and disaster prevention
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and reduction capacity. By calculating the weight of each index, it is possible to obtain a
quantitative expression of flood disaster risk [41,42]. However, the selection and weighting
of indices are crucial for ensuring the validity of the assessment process. Various methods,
such as information gain [43,44], frequency ratio, random forest (RF) [45,46], and the ana-
lytic hierarchy process (AHP) [47,48], can be used to analyse the importance of risk indices.
For example, Fang et al. [46] used RF to determine that the topographic wetness index
(TWI) was the most significant index for the flood sensitivity mapping of the Xinluo upper
subwatershed of the Jiulong River watershed, whereas Du et al. [44] and Arora et al. [45]
reached different conclusions.

Notably, the importance of a risk index may vary across different regions, with some
indices having a high impact on floods in certain areas and little impact in others. Re-
searchers have used geographical similarity to measure the possibility of landslides in
regions based on factors such as topography and land cover, finding that risk indices
related to landslides differ regionally [49–51]. Given the strong correlation between floods
and landslides, it is essential to apply the principle of geographical similarity to flood risk
assessment, although there has been limited research on this topic to date. Therefore, it is
important to use geographical similarity to assess the contribution of various geographical
features (e.g., slope, river density, and relative elevation) in a study area to flood disasters
and further analyse the importance of the indices, thus ensuring that the risk assessment
results reflect the characteristics of the study area and are widely accepted in academic
circles.

At 11:00 on 5 August 2021 (Chinese standard time; the same hereafter), Typhoon
“Lupit” (2109) made landfall in Nan’ao County, Guangdong Province, causing significant
damage to several provinces. Despite its relatively low wind speed, the typhoon resulted
in heavy and prolonged rainfall, which triggered severe floods in the city of Fuzhou
(http://fz.fjdsfzw.org.cn/, accessed on 9 May 2023). To assess the dynamic flood risk
during the typhoon rainfall process of “Lupit”, this study developed a typhoon-induced
flood risk system based on four aspects of the natural disaster system theory [52,53]:
the disaster-causing factor, disaster-pregnant environment, disaster-bearing body, and
disaster prevention and reduction capacity. Then, the hourly precipitation observation
data from automatic rainfall stations were used to determine the typhoon-related hourly
precipitation data. A typhoon-rainfall process comprehensive intensity index (TPCI), which
integrated the rainfall intensity, duration, and concentration to assess the impact of extreme
precipitation, was proposed, and its effect was verified. Finally, we used geographical
similarity to identify suitable risk indices for the quantitative assessment of urban flood
disaster risk during the typhoon rainfall dynamic process.

2. Study Area and Typhoon Overview
2.1. Study Area

The study area, Fuzhou, is situated in the eastern part of Fujian Province, China
(118◦08′–120◦31′, 25◦15′–26◦39′). It is located in the coastal region of the lower reaches of
the Min River and faces Taiwan Province across the sea, as depicted in Figure 1a–c. Fuzhou
serves as the capital of Fujian Province and is the central city of the economic zone on
the western side of the strait. The city has a typical subtropical monsoon climate with
abundant precipitation throughout the year, averaging 1360 mm annually. In the summer
and autumn, typhoon activity is concentrated, leading to heavy rainfall and flooding.
Fuzhou is considered one of China’s primary flood control cities. The Rainfall Intensity
Assessment Area (RAA) covers the entire Fuzhou region (Figure 1b), while the Flood
Disaster Risk Assessment Area (FAA) includes the main urban districts and peripheral
development zones, such as Gulou District, Taijiang District, Cangshan District, and parts
of Jin’an District, Mawei District, and Minhou County (Figure 1c).

http://fz.fjdsfzw.org.cn/
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Figure 1. Location and overview of the study area: (a) the location of Fuzhou in eastern Fujian Prov-
ince, China, and the track of Typhoon “Lupit” (2109); (b) the FAA location in the entire area of Fu-
zhou (RAA) and the meteorological station distribution in the RAA; (c) the remote sensing image 
map of the FAA. 
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as illustrated by its track in Figure 1a. At 17:00 on 2 August 2021, a tropical depression 
formed in the sea near the city of Zhanjiang, Guangdong Province, which later intensified 
into a tropical storm at 8:00 on 4 August. At approximately 11:00 on 5 August, “Lupit” 
made landfall in Nan’ao County, Guangdong Province, with a grade 9 maximum central 
wind force (23 m/s), before reaching Dongshan County, Fujian Province, at 16:50 on the 
same day. It weakened to a tropical depression at 17:00 on 5 August, but strengthened 
back to a tropical storm near the eastern coast of Fujian Province later that evening. By 7 
August, “Lupit” had weakened again to a tropical depression, and the National Meteoro-
logical Center of the China Meteorological Administration stopped issuing further up-
dates on 9 August at 14:00. 
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Figure 1. Location and overview of the study area: (a) the location of Fuzhou in eastern Fujian
Province, China, and the track of Typhoon “Lupit” (2109); (b) the FAA location in the entire area of
Fuzhou (RAA) and the meteorological station distribution in the RAA; (c) the remote sensing image
map of the FAA.

2.2. Typhoon Overview

Typhoons that develop in the South China Sea differ from those in the Northwest
Pacific Ocean in terms of their lower wind speeds and meandering tracks. These features
allow them to interact with tropical clouds and southwest monsoons, leading to heavy
precipitation. Typhoon “Lupit” (2109) is a typical example of a South China Sea typhoon,
as illustrated by its track in Figure 1a. At 17:00 on 2 August 2021, a tropical depression
formed in the sea near the city of Zhanjiang, Guangdong Province, which later intensified
into a tropical storm at 8:00 on 4 August. At approximately 11:00 on 5 August, “Lupit”
made landfall in Nan’ao County, Guangdong Province, with a grade 9 maximum central
wind force (23 m/s), before reaching Dongshan County, Fujian Province, at 16:50 on the
same day. It weakened to a tropical depression at 17:00 on 5 August, but strengthened back
to a tropical storm near the eastern coast of Fujian Province later that evening. By 7 August,
“Lupit” had weakened again to a tropical depression, and the National Meteorological
Center of the China Meteorological Administration stopped issuing further updates on
9 August at 14:00.

3. Data Preprocessing

In this study, 23 indices were selected as the initial assessment measures for flood
disaster risk. Among them, the TPCI was chosen to represent the disaster-causing factor
in the typhoon rainfall process. Additionally, 11 indices were used to analyse the envi-
ronmental conditions that predisposed the area to flooding disasters. These included the
topographic slope (TS), topographic aspect (TA), topographic relief (TR), depression depth
(DD), topographic wetness index (TWI) [54], stream power index (SPI) [55], river density
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(RD), height above nearest drainage (HAND) [56], impermeability (Imper), runoff coeffi-
cient (RC), and vegetation coverage (FVC). Furthermore, the disaster-bearing bodies were
represented by four indices, including population density (PD), GDP density (GD), road
network density (RND), and the number of key places within 500 m (NKP). Finally, the
capacity of emergency preparedness and response mechanisms were investigated in this
study by considering metrics such as the proportion of health technicians per 10,000 people
(PHT), material reserve ratio per 10,000 people (MRT), funding ratio per 10,000 people (FR),
meteorological and hydrological station density (DMHS), transfer road network density
(TRD), number of fire brigades within 3 km (NFB), and capacity of emergency shelters
within 500 m (CES).

The data used in this study are presented in Table 1. The TPCI data during “Lupit”
were derived from hourly precipitation data from automatic meteorological stations and
typhoon track data. TS, TA, TR, DD, SPI, TWI, and HAND data were obtained from a digital
elevation model and river distribution data of the study area. The 2021 FVC data were
derived using remote sensing data. RC data were obtained by assigning corresponding
values to land cover types based on the “Standard for the Design of Building Water Supply
and Drainage (GB50015-2019)” (https://std.samr.gov.cn/, accessed on 15 June 2022). Imper
and river density (RD) data were calculated using impervious surface and river data from
the land cover data, respectively. PD and GD data were obtained by updating GHSL
building distribution data with population and GDP statistics. RND and TRD data were
calculated from road distribution data. NKP, DMHS, NFB, and CES data were obtained
from the distribution data of key sites, meteorological and hydrological stations, fire
brigades, and emergency shelters, respectively. PHT, MRT, and FR data were obtained
by interpolating the statistical data of administrative villages and hospitals using IDW.
The flood disaster distribution information used to verify the effect of TPCI was sourced
from the Fuzhou Bureau of Natural Resources and Planning (http://zygh.fuzhou.gov.cn/,
accessed on 15 June 2022) and news media reports. All layers were prepared in the ArcGIS
Pro 3.0 environment.

Table 1. Statistical table of data.

Data Name Data Type Data Details Source

Hourly precipitation Attribute data 1–10 August 2021 Fujian Provincial Meteorological Bureau
Typhoon track Attribute data 2–15 August 2021 https://tcdata.typhoon.org.cn, accessed on 15 June 2022

Digital elevation model AlOS DEM 12.5 m https://search.asf.alaska.edu/#/?dataset=ALOS,
accessed on 15 June 2022

Remote sensing data Raster data 30 m https://developers.google.cn/earth-engine/datasets/
catalog/landsat, accessed on 15 June 2022

Land cover data Raster data 10 m https://developers.google.cn/earth-engine/datasets/
catalog/ESA_WorldCover_v100, accessed on 15 June 2022

Building distribution Raster data 100 m https://ghsl.jrc.ec.europa.eu/download.php?ds=bu,
accessed on 15 June 2022

Road distribution Road network
shapefile 2021 https://amap.com/, accessed on 20 June 2022

GDP statistical data Attribute data 2021 Fuzhou Statistical Yearbook
Population Attribute data 2021 Fuzhou Statistical Yearbook

Hydrological stations
distribution Attribute data 2021

http://27.156.118.74:
18800/web/html/index.html?module=yqxx, accessed on

20 June 2022
Key sites distribution Point of interest 2021 Fujian Provincial Disaster Reduction Center

Administrative village data Attribute data 2021 Fujian Provincial Disaster Reduction Center
Fire brigade distribution Point of interest 2021 https://amap.com/, accessed on 20 June 2022

Hospitals distribution Point of interest 2021 Fujian Provincial Disaster Reduction Center
Emergency shelters

distribution Attribute data 2021 Fujian Provincial Disaster Reduction Center

Flood disaster distribution Attribute data 3–8 August 2021 http://zygh.fuzhou.gov.cn/, accessed on 20 June 2022,
and news media coverage

https://std.samr.gov.cn/
http://zygh.fuzhou.gov.cn/
https://tcdata.typhoon.org.cn
https://search.asf.alaska.edu/#/?dataset=ALOS
https://developers.google.cn/earth-engine/datasets/catalog/landsat
https://developers.google.cn/earth-engine/datasets/catalog/landsat
https://developers.google.cn/earth-engine/datasets/catalog/ESA_WorldCover_v100
https://developers.google.cn/earth-engine/datasets/catalog/ESA_WorldCover_v100
https://ghsl.jrc.ec.europa.eu/download.php?ds=bu
https://amap.com/
http://27.156.118.74:18800/web/html/index.html?module=yqxx
http://27.156.118.74:18800/web/html/index.html?module=yqxx
https://amap.com/
http://zygh.fuzhou.gov.cn/
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4. Methods

The methodology employed in this study is presented in Figure 2. The methods
included the development of an urban flood risk assessment index system, computation of
typhoon rainfall process intensity, selection of flood risk indices, and a flood disaster risk
assessment model.
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4.1. Calculation of Risk Assessment Index

In this section, we describe the methodology used to calculate the flood risk assessment
indices, with a focus on the calculation of the disaster-causing factor, while the other indices
are processed as mentioned in Section 3. The spatial resolution of the 23 indices was
standardized to 200 m to facilitate assessment. The spatial distribution of each index in the
FAA, which consisted of 21,155 grid cells, is shown in Figure A1.
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4.1.1. Influencing Elements of Typhoon Rainfall Process

To calculate the TPCI, the typhoon precipitation must be separated from the overall
regional precipitation, which was achieved using the Objective Synoptic Analysis Technique
(OSAT) [57–59] adapted to the characteristics of typhoon ”Lupit” (Table A1).

The comprehensive intensity assessment model of the rainfall process considered two
elements, the intensity and duration of rainfall, as proposed by the National Meteorolog-
ical Center [60,61]. However, considering the suddenness of typhoon disasters and the
intermittent rainfall process, this study proposes to assess the comprehensive intensity of
the typhoon rainfall process by using rainfall intensity, duration, and concentration as the
influencing elements.

We defined the statistical time period (TP) and substatistical time period (Sub-TP),
where TP is greater than Sub-TP and both are greater than 1 h. The relationship between
TP and Sub-TP was maintained at a ratio of 1:N, and the same was true for Sub-TP and 1 h.

Rainfall intensity (R): To calculate the rainfall intensity (R) within the TP, we used a
weighted average of the maximum rainfall value of the Sub-TP and the average rainfall
value of each Sub-TP, with a weight of 0.5, as shown in Equation (1) [60,61].

R =
rmax +

∑m
i=1 ri
m

2
(1)

In the formula, R represents the rainfall intensity of the TP; rmax is the maximum
rainfall value of the Sub-TP (unit: mm); m is the number of Sub-TPs in the TP, and ri is the
rainfall value of the ith Sub-TP (unit: mm).

Rainfall duration (T): T is defined as the number of Sub-TPs within a TP where the
total precipitation of Sub-TP reaches a certain impact magnitude.

Concentration intensity (C): C within the TP is calculated with 1 h precipitation as
the smallest unit. Specifically, C is determined as the weighted average of the maximum
concentration of Sub-TP and the average concentration of each Sub-TP, with a weight of
0.5, as expressed in Equations (2) and (3) [32].

C =
cmax +

∑m
i=1 ci
m

2
(2)

ci =
∑n

j=1 c2
ij(

∑n
j=1 cij

)2 × 100% (3)

where C represents the concentration intensity of TP; cmax is the maximum concentration
of Sub-TP (unit: %); m is the number of Sub-TPs in the TP; ci is the concentration of the
i-th Sub-TP (unit: %); n is the number of hours of the Sub-TP; and cij is the j-th hour
precipitation in the i-th TP.

4.1.2. Typhoon-Rainfall Process Comprehensive Intensity Index (TPCI)

The process of typhoon rainfall is characterized by heavy rainfall events induced
by typhoons, which can have significant impacts on a local region. We calculated three
influencing elements of the typhoon-rainfall process (see Section 4.1.1) to obtain three
corresponding indices: the rainfall intensity index (RI), rainfall duration index (TI), and
concentration intensity index (CI).

The TPs used for the calculation of the TPCI were the 24 h and process periods, and
24 h and 6 h periods were used for the corresponding Sub-TP. According to Guan et al.’s
research on the extreme precipitation threshold of typhoons in Fujian Province, the RIs for
the 24 h and 6 h periods were determined [62]. TI was determined by counting the number
of Sub-TPs corresponding to the 24 h rainfall intensity ≥ 50 mm and 6 h rainstorm intensity
≥ 20 mm within the TP. CI was divided into four grades based on three thresholds (10%,
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20%, and 25%). Values of 1, 2, 3, and 4 represent the degrees of RI, TI, and CI from small to
large, and the specific division standards are provided in Table 2.

Table 2. Division standards of RI, TI, and CI.

Values
Process as TP, 24-h as Sub-TP 24-h as TP, 6-h as Sub-TP

C of Sub-TP
R of Sub-TP T R of Sub-TP T

1 [50, 75) 2 [20, 30) 1 [0, 10)
2 [75, 100) 3 [30, 40) 2 [10, 20)
3 [100, 125) 4 [40, 50) 3 [20, 25)
4 ≥125 ≥5 ≥50 4 ≥25

Combining RI, TI, and CI yields TPCI as in Equation (4).

TPCI = RI × TI × CI (1 ≤ TPCI ≤ 64) (4)

where RI is the rainfall intensity index, TI is the rainfall duration index, and CI is the
concentration intensity index.

4.2. Screening of Disaster-Causing Factors and Disaster-Pregnant Environmental Indices
4.2.1. Geographical Similarity

The geographical similarity is a measure of the overall similarity between two spatial
locations in the geographical environment, and its calculation method is described in
reference [51]. The degree of geographical similarity between the geographic environment
and the flooded area in a region is positively correlated with the flood risk in that region.
In this study, the average similarity was used to represent the comprehensive similarity of
each grid, as presented in Equation (5).

Sim = avg(Sim1, Sim2, Sim3, . . . Simk) (5)

In the formula, Sim is the comprehensive similarity of each grid; Simk is the geograph-
ical similarity of each index; and k is the number of indices.

Two hundred flood samples were randomly selected to calculate the Sim distribution
of each grid in the FAA, as shown in Figure 3a. The Sim value of more than 95% of the
flooded grids was greater than 0.5, thereby validating the effectiveness of the method
(Figure 3b). Conversely, non-flooded areas were expected to have relatively small Sim
values. To construct a sample set, the first 200 grids with the smallest Sim values were
selected as non-flood samples and combined with the flood samples.
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4.2.2. Random Forest

Random forest (RF) is an ensemble learning algorithm proposed by Breiman [63].
It is based on a decision tree algorithm and a bagging idea, where random attributes



Remote Sens. 2023, 15, 3116 9 of 26

are introduced to the training process of decision trees through a learning ensemble. To
avoid multicollinearity issues, Pearson’s correlation coefficients were calculated among
the explanatory variables using the sample set (see Figure A2). Indices with correlation
coefficients greater than 0.8 were selected, and in turn, each index with a higher sum of the
absolute value of the correlation coefficient than those of the other indices was removed.
After this calculation, TS, FVC, and RC were removed, and the remaining 9 indices were
used as explanatory variables for RF classification. The importance of each variable in
the RF model is shown in Figure A3, where TA was found to be the least important
index. Although TA may not have a high correlation with floods, it is closely related to
precipitation, especially in mountainous regions where the windward side of the mountain
range receives more precipitation than the leeward side. Therefore, TA was further removed
from the analysis.

4.3. Flood Disaster Risk Assessment Model

The AHP has been widely employed to determine the weights of flood disaster risk
assessment indices [47,48]. AHP is a systematic and hierarchical analysis method that
combines qualitative and quantitative analyses and can be used to calculate subjective
weights [64]. Based on the weight of each index, a weighted synthesis was performed to
construct the flood disaster risk assessment model using Equation (6) [52,53].

Risk = H ×WH + E×WE + V ×WV + R×WR (6)

where Risk is the risk of flood disaster, H is the hazard of the disaster-causing factor, E
is the sensitivity of the disaster-pregnant environment, V is the vulnerability of disaster-
bearing bodies, R is the disaster-prevention and reduction capacity, and W is the weight of
the index.

The importance results of the RF and the knowledge of local experts were utilized
to construct judgement matrices for the disaster-causing factor and the disaster-pregnant
environment. The weight values of each flood disaster index were calculated based on
the judgement matrix, as presented in Figure 4. Considering the geographical similarity
and the actual situation in the region, the 19 selected indices were categorized as low-
grade, medium-grade, medium–high-grade, and high-grade and assigned specific values
as shown in Table 3.
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Table 3. Ranges of indices grades.

Criterion Name Index Name Low-Grade Medium-Grade Medium–High-Grade High-Grade

Disaster-causing factor TPCI 1–16 17–32 33–48 49–64

Disaster-pregnant
environment

Imper <0.25 [0.25, 0.5) [0.5, 0.75) ≥0.75
TR ≥10 m [5 m, 10 m) [3 m, 5 m) <3 m
SPI <2 ≥6 [2, 4) [4, 6)
TWI <8 [8, 12) [12, 16) ≥16
DD <1 m [1 m, 2 m) [2 m, 3 m) ≥3 m

HAND ≥10 m [5 m, 10 m) [3 m, 5 m) <3 m
RD <0.25 [0.25, 0.5) [0.5, 0.75) ≥0.75

Disaster-bearing body

PD <1 [1, 400) [400, 800) ≥800
GD <0.01 [0.01, 0.25) [0.25, 0.5) ≥0.5

RND <0.01 [0.01, 0.5) [0.5, 0.75) ≥0.75
NKP <1 [1, 6) [6, 11) ≥11

Disaster prevention and
reduction capacity

NFB ≥7 [4, 7) [1, 4) <1
TRD ≥0.2 [0.1, 0.2) [0.01, 0.1) <0.01
MRT ≥100 [50, 100) [1, 50) <1
CES ≥2000 [1000, 2000) [1, 1000) <1

DMHS ≥3 [2, 3) [1, 2) <1
PHT ≥100 [50, 100) [1, 50) <1
FR ≥100 [50, 100) [1, 50) <1

5. Results
5.1. Analysis of TPCI
5.1.1. Calculation Results of TPCI

The OSAT method was used to isolate the hourly precipitation caused by Typhoon
“Lupit” in the RAA. The typhoon impacted the region from 5:00 on 3 August 2021, to 9:00
on 8 August 2021. The precipitation process line for the typhoon and non-typhoon events
is presented in Figure A4, and the cumulative precipitation during the process is shown
in Figure A5. Starting at noon on 3 August, a small amount of typhoon precipitation was
observed in the RAA, which gradually increased and exhibited a multimodal morphology.
On 4 and 5 August, there were more intermittent periods of precipitation, and the peak type
of precipitation was sharper and thinner. On 6 August, the most precipitation occurred
during the typhoon process, with heavy precipitation that had a long duration.

We calculated TPCIprocess and TPCI24h based on the precipitation data of typhoon
“Lupit” from 12:00 on 3 August to 12:00 on 7 August and followed the division standards in
Table 3. Figure 5a–d show the results of TPCIprocess and its constituent elements. Overall,
TPCIprocess roughly reflected the distribution trend of the comprehensive rainfall intensity,
with most areas having a medium-grade TPCI or higher. High-grade areas were distributed
in a dotted pattern in central Minhou County, northern Changle District, and the northern
part of the city of Fuqing, and medium-high-grade areas showed a banded, irregular
distribution (Figure 5a). The high-grade areas of RI were mainly located in southern
and northern Minhou County, eastern Fuqing, Cangshan District, Lianjiang County, and
Luoyuan County (Figure 5b). The TIs in all regions were above a medium grade, indicating
that the duration of the impact of “Lupit” was more than 2 days (Figure 5c). The CIs
in all regions were above a medium grade, indicating that, although “Lupit” had a long
impact time, the main precipitation periods were very concentrated (Figure 5d). On the
other hand, TPCI24h could better reflect short-term torrential rain intensity during the
typhoon influence process. TPCI24h was low-grade and had a smaller distribution from
noon on 3 August to noon on 5 August (Figure 5e,f), and it was stronger in most areas from
noon on 5 August to noon on August 6th (Figure 5g), when the main precipitation period
occurred. As the rain decreased, the TPCI24h grades decreased in most areas from noon on
August 6th to noon on 7 August (Figure 5h).
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5.1.2. Validation of TPCI Results

We analysed the rationality of the calculation process of the 24 h time scale TPCI. Two
groups of 24 h rainfall events were designed with the same 6 h total precipitation, but
different concentrations (Figure 6a,b). The TPCI calculation processes of each precipitation
event are shown in Table 4. The uniform rainfall pattern resulted in a TPCI value of 0,
while the non-uniform rainfall pattern resulted in a TPCI value of 8 in the rainfall event
with 72 mm of precipitation in 24 h. When the 24 h precipitation increased to 192 mm, the
precipitation concentration of Event 8 was the lowest, but its 6 h precipitation was >20 mm,
resulting in the same TPCI value as that of Event 7. In the case of high process precipitation,
the uniform rainfall pattern could also lead to a higher risk of disaster.
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Table 4. Description of the designed hyetographs and their TPCI values.

Rainfall Event Rainfall Amount of 24-h Description of Temporal Distribution Calculation Process of TPCI

Event1 72 mm
Unimodal rainfall with early peak and maximum
rainfall within a 6 h timeframe accounting for 80%

of the 24 h total amount.

R/RI = 37.8 mm/2
TI = 1

C/CI = 69.69/4
TPCI = 8

Event2 72 mm
Unimodal rainfall with late peak and maximum

rainfall within a 6 h timeframe accounting for 80%
of the 24 h total amount.

R/RI = 37.8 mm/2
TI = 1

C/CI = 69.69/4
TPCI = 8

Event3 72 mm
Bimodal rainfall with early and late peaks, both
the early maximum and the late one within a 6 h

timeframe account for 40% of the 24 h total amount

R/RI = 22.8 mm/1
TI = 2

C/CI = 62.30/4
TPCI = 8

Event4 72 mm Uniform rainfall

R/RI = 18 mm/0
TI = 0

C/CI = 17.13/2
TPCI = 0

Event5 192 mm
Unimodal rainfall with early peak and maximum
rainfall within a 6 h timeframe accounting for 80%

of the 24 h total amount.

R/RI = 100.8 mm/3
TI = 1

C/CI = 52.55/4
TPCI = 12

Event6 192 mm
Unimodal rainfall with late peak and maximum

rainfall within a 6 h timeframe accounting for 80%
of the 24 h total amount.

R/RI = 100.8 mm/3
TI = 1

C/CI = 52.55/4
TPCI = 12

Event7 192 mm
Bimodal rainfall with early and late peaks, both
the early maximum and the late one within a 6 h

timeframe account for 40% of the 24 h total amount

R/RI = 60.8 mm/1
TI = 2

C/CI = 59.79/4
TPCI = 8

Event8 192 mm Uniform rainfall

R/RI = 48 mm/1
TI = 4

C/CI = 17.71/2
TPCI = 8

To further analyse the effect of the TPCI on the actual rainfall process, some meteo-
rological stations with severe flood disasters in the nearby area were selected: S1 (Nanyu
Town Meteorological Station), S2 (Shangjie Town Meteorological Station), S3 (Fujian Provin-
cial Sports Center Meteorological Station), and S4 (Gaishan Town Meteorological Station)
(Figure 6c–f). The amount of precipitation controlled the calculation process of the TPCI.
From 12:00 on the 3rd to 12:00 on the 5th, the precipitation was lower and there were more
intermittent periods of precipitation, resulting in a higher concentration. However, under
a reasonable precipitation classification, the 24 h time scale TPCI based on the 6 h short
duration accurately reflected the changes in the rainfall process and captured the dynamic
characteristics of the disaster risk of typhoons.

The TPCI can be utilized to assess the risk of natural disasters, such as floods, land-
slides, and mudslides, resulting from heavy rainfall. To verify the efficacy of the TPCI as an
index representing the cause of the flood, flood disaster data from Typhoon “Lupit” were
examined, which consisted of temporal and spatial attributes. To conduct this verification,
the flooded areas included in TPCIprocess and TPCI24h were analysed at various TPCI
grades (Table 5). The spatial overlay results of the TPCI and flood locations at different
time scales demonstrated that approximately 66.5% of the flood locations were in areas
with medium-grade TPCI values or higher, 32.5% were low-grade, and only 1% were not
identified by the TPCI. Specifically, for TPCI24h, from noon on the 3rd to noon on the 4th,
the majority of flooded areas were at medium-grade; from noon on the 4th to noon on the
5th, the flooded area more than doubled that of the previous period, with most areas having
low-grade values; from noon on the 5th to noon on the 6th, the total flood area reached
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its peak, and TPCI was dominated by medium–high-grade, with high-grade appearing
locally; and from noon on the 6th to noon on the 7th, the total flood area decreased by
4.73 km2 compared with that of the previous period, with most regional strengths being
medium-grade and above.

Table 5. TPCI grade verification in flooded areas.

Calculation Period for TPCI Unidentified * Low * Medium * Medium-High * High * Total *

12:00 on the 3rd–12:00 on the 4th 0.03 1.17 10.36 0.35 - 11.91
12:00 on the 4th–12:00 on the 5th 0.12 21.38 3.50 0.13 - 25.13
12:00 on the 5th–12:00 on the 6th - 32.54 12.12 37.35 5.74 87.75
12:00 on the 6th–12:00 on the 7th 0.10 17.14 25.12 38.96 4.03 85.25

Typhoon process 2.48 10.47 31.13 45.9 - 89.98

* Area unit: km2.

Regarding TPCIprocess, 2.75% of the flooded areas were not graded, and medium-high-
grade areas accounted for 51% of the total flooded areas. While TPCIprocess provided a
clearer expression of the rainstorm intensity over the time scale of the overall process,
numerous flood areas were ungraded. In contrast, TPCI24h reflected the spatiotemporal
changes in rainstorm intensity and could identify 6 h, short-duration rainfall on a 24 h time
scale. Notably, the TPCI in flooded areas did not necessarily correlate with the highest grade,
indicating that the flood disaster was related to local underlying surface characteristics.
Therefore, TPCI with a reasonable threshold can effectively identify flooded areas.

5.2. Analysis of Flood Disaster Dynamic Risk
5.2.1. Risk Assessment

The flood disaster risk assessment model was used to evaluate the distribution of
the flood disaster risk and changes in the proportion of affected areas caused by typhoon
“Lupit” on both the process time scale and the 24 h time scale in the FAA. The flood risk
at the process time scale showed a general trend of decreasing from the centre of the
built-up area outwards, with high-risk areas accounting for 7.08% of the FAA and primarily
distributed in the southeastern and northwestern parts of Cangshan District, northern
Minhou County, central and northern Jin’an District, and northeastern Gulou District
(Figure 7). Medium–high-risk areas accounted for 26.47% and were mainly located on the
periphery of the high-risk areas, while medium-risk areas accounted for 38.19% and were
mostly located on the periphery of the medium–high-risk area and northwestern Minhou
County. Low-risk areas accounted for 28.26% and were concentrated in the northwestern
part of Minhou County and the western part of Mawei District, mostly at the edge of
the FAA.
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Figure 7. Spatial distribution of typhoon process flood disaster risk in the FAA.

From noon on the 3rd to noon on the 4th, medium–high-risk and high-risk areas
accounted for 8.29% of the FAA and were concentrated in the northwestern part of the
FAA, with scattered locations elsewhere (Figure 8a). From noon on the 4th to noon on
the 5th, the flood risk range shifted to the south–central part of the FAA with a slightly
reduced extent (Figure 8b). Typhoon “Lupit” made two landfalls at approximately 11:00
and 16:00 on the 5th. From noon on the 5th to noon on the 6th, the flood risk range rapidly
expanded, with 23.57% of the areas of medium–high-risk and above located primarily
in built-up areas. Most of the medium- and low-risk areas in the previous period were
upgraded to medium–high-risk (Figure 8c). From noon on the 6th to noon on the 7th,
the flood risk range was reduced, with the high- and medium-high-risk areas remaining
largely unchanged. Central Cangshan District, southern Jinan District, and western Mawei
District were reduced to no-risk levels (Figure 8d). The risk grade conversion flow shown
in Figure 8e indicates that the sharp changes in TPCI24h under the influence of typhoon
“Lupit” led to dynamic changes in the flood risk area.
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5.2.2. Validation of Risk Assessment Results

To assess whether the flood disaster risk classifications at both the typhoon process
time scale and the 24 h time scale were reasonable, we plotted radar diagrams of the
average values of the standardized indices at different risks, as shown in Figure 9a,b. For
the process time scale, areas with high- and medium–high-risk generally exhibited lower
TS, higher impermeability, higher TPCI values, and greater damage due to higher GP
and PD. The medium- and low-risk areas tended to have less precipitation and sparse
populations. Notably, the TPCI calculated per 24 h showed better distinguishability than
the TPCI calculated by the process at different risk grades, suggesting that intermittent and
short ephemeral intense precipitation at the process scale is more strongly associated with
urban flooding.
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We also conducted additional flood disaster causation analysis for the grid area within
a 500 m radius of meteorological stations S1–S4. Figure 9c shows the average standardized
index values for the four station areas, all of which exhibited high TPCI grades. S4 is
surrounded by the Gaishan Investment Area, which has high impermeability and high
population and economic densities. S3 is in an area surrounded by dense viaducts, which
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creates a “funnel” effect underneath the viaducts. As a result, rainwater accumulates and
forms pooling water, which disrupts the traffic in the affected areas. S2 is surrounded by
old residential areas with ageing drainage pipes, low drainage standards, and lagging
drainage systems. S1 is in a rural area on the outskirts of the city, with a small population,
low elevation, poor drainage, and few disaster prevention and mitigation facilities, making
rescues difficult. During the impact of Typhoon “Lupit”, severe floods occurred in these
areas, and the dynamic risk of urban flooding calculated in this study also showed a high
risk, supporting the validity of the results. Therefore, our study demonstrates that the
obtained risk classifications are realistic.

6. Discussion

The occurrence of floods is often a result of complex and interrelated factors, including
the physical geography and socioeconomic conditions of a region, rather than a single
isolated event caused solely by sudden and intense precipitation. In this study, a framework
for urban flood risk assessment was established based on the heavy rainfall process during
a typhoon, using natural hazard system theory to investigate and screen relevant factors
for flood risk. Through this framework, the risk of flooding in Fuzhou caused by Typhoon
“Lupit” (2109) was accurately assessed over multiple periods. While hydrodynamic flood
modelling based on physical mechanisms may provide a closer approximation of real flood
conditions [65], the assessment framework proposed in this study does not require highly
precise data, allowing for a faster computational speed and accurate spatial prediction
of risk.

In this study, a data-driven approach was employed to select indicators for flood
risk assessment using the principles of geographical similarity and random forest. This
approach overcomes the limitations of traditional indicator selection methods, which are
often influenced by human subjectivity and fail to capture complex nonlinear relationships
between data. Furthermore, a typhoon-rainfall process comprehensive intensity index
(TPCI) that integrates the intensity, duration, and concentration of precipitation was pro-
posed to account for the intermittent nature of the typhoon precipitation process. This
index not only captures trends in precipitation intensity at different time scales, but can
also be used to assess the risk of natural disasters, such as floods, landslides, and mudslides
caused by heavy rainfall during typhoons. The study by Ye et al. [66] demonstrated that
designing different flood inundation scenarios based on the statistical characteristics of
historical precipitation can be applied to flood hazard risk mapping for urban planning.
The TPCI-based assessment method proposed in our study is particularly effective in
dealing with the non-stationary nature of typhoon precipitation [67], which is characterized
by significant temporal variability.

In addition, this study utilizes remote sensing and geographic information systems
(GIS) to spatially analyse disaster-bearing bodies and disaster prevention and reduction
measures. By using a grid-based approach for risk assessment, it is possible to capture the
variation in risk within administrative areas and better understand the changes in risk over
time. This approach is more effective than traditional methods that rely solely on statistical
socio-economic factors in administrative areas.

7. Conclusions

In this study, we conducted a dynamic risk assessment of floods caused by Typhoon
“Lupit” (2109) in Fuzhou, Fujian Province, China, by constructing a typhoon-rainfall process
comprehensive intensity index (TPCI). To screen influencing factors of flood disaster risk,
we utilized geographical similarity and RF algorithms. The main results are summarized
as follows:

1. The TPCI was developed by using regional precipitation thresholds and considered
the effects of precipitation intensity, duration, and concentration on rainfall processes
at different time scales. This index is a scientifically valid measure that is user-friendly
and easy to calculate. Its feasibility was tested and verified using both short-term
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(6 h) and daily (24 h) precipitation time scales. The results showed that 66.5% of the
flood locations were classified as having a medium-grade or higher TPCI value, 32.5%
had a low-grade TPCI value, and only 1% were not identified by the TPCI. The study
also found that uniform rainfall patterns were associated with a higher likelihood of
flooding, particularly at greater precipitation amounts.

2. A total of 23 initial assessment indices were selected from four aspects: the disaster-
causing factor, disaster-pregnant environment, disaster-bearing body, and disaster
prevention and reduction capacity. Non-flooded samples were obtained based on the
similarity of the flooded area’s geographical environmental features, and the random
forest algorithm was used to analyse the importance of the initial indices. Based on
the results of the importance analysis, four indices, namely, TS, RC, FVC, and TA,
were discarded. Consequently, the urban flood risk assessment index system was
constructed using the remaining 19 indices, which not only reduced data noise, but
also provided a relatively objective way of screening assessment indices.

3. By employing the hierarchical analysis process and the RF importance results of the
initial indices, the flood disaster risk was quantitatively calculated at both a process
time scale and a 24 h time scale based on the TPCI results. At the process time scale,
the flood disaster high-risk areas, medium–high-risk areas, medium-risk areas, and
low-risk areas accounted for 7.08%, 26.47%, 38.19%, and 28.26% of the total study
area, respectively. The areas of medium–high-risk and above were mainly distributed
in the southeastern and northwestern parts of Changshan District, northern Minhou
County, north–central Jin’an District, and northeastern Gulou District. The flood risk
results at the 24 h time scale better reflected the spatial and temporal variability of the
disaster risk during typhoon rainfall than the results at the process scale. The extreme
rainfall period lagged the landfall of Typhoon “Lupit,” resulting in a sharp increase in
the proportion of the area at medium–high-risk and above at a 24 h time scale from
8.29% to 23.57% before the typhoon’s landfall. The high-risk areas after the typhoon’s
landfall were mainly located in the towns of Shangjie, Nanyu, and Gaishan, which
had a high degree of coincidence with the actual disaster situation and were more
relevant to the geographical characteristics of the study area.

8. Recommendations

However, there are still some limitations to this study: (i) To address the limitations
of this study and further improve the understanding of flood risk in urban areas, future
research could explore additional factors influencing flooding beyond the 23 basic indices
used in this study. These factors could include aspects such as soil characteristics, land use,
and drainage systems, which may have significant impacts on flood risk, but were not fully
considered in this study. (ii) Moreover, the accuracy of the data used in this study could be
further improved. While spatial interpolation was used to process some of the data, this
technique may have introduced some inaccuracies. Future research could consider using
higher-quality gridded data or even collecting new data through field surveys to enhance
the accuracy of the input data. (iii) Another potential area for future research is to expand
the study to other regions with different geographical and meteorological conditions to
examine the generalizability of the findings. This could involve conducting comparative
analyses between different regions to better understand the regional differences in flood
risk and identify specific factors that contribute to these differences.
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Appendix A

Table A1. OSAT parameters setting for Typhoon “Lupit” precipitation separation.

Maximum Wind Speed near Typhoon Centre * (m/s) D0 (km) D1 (km)

<17.2 300 800
≥17.2 500 1100

* Minimum distance of typhoon centre from the Chinese coastline < 300 km.
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Figure A1. Disaster-causing factors: (a) TPCI of process; disaster-pregnant environment: (b) im-
permeability (Imper); (c) topographic relief (TR); (d) stream power index (SPI); (e) topographic
wetness index (TWI); (f) depression depth (DD); (g) height above nearest drainage (HAND); (h) river
density (RD); (i) topographic slope (TS); (j) runoff coefficient (RC); (k) vegetation coverage (FVC);
(l) topographic aspect (TA); disaster-bearing body: (m) population density (PD); (n) GDP density
(GD); (o) road network density (RND); (p) the number of key places within 500 m (NKP); disaster
prevention and reduction capacity: (q) the number of fire brigades within 3 km (NFB); (r) transfer
road network density (TRD); (s) material reserve ratio per 10,000 people (MRT); (t) the capacity
of emergency shelters within 500 m (CES); (u) meteorological and hydrological station density
(DMHS); (v) funding ratio per 10,000 people (FR); (w) the proportion of health technicians per 10,000
people (PHT).
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