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Abstract: Landslides are a dangerous natural hazard that can critically harm road infrastructure in
mountainous places, resulting in significant damage and fatalities. The primary purpose of this study
was to assess the efficacy of three machine learning algorithms (MLAs) for landslide susceptibility
mapping including random forest (RF), decision tree (DT), and support vector machine (SVM).
We selected a case study region that is frequently affected by landslides, the important Kamyaran–
Sarvabad road in the Kurdistan province of Iran. Altogether, 14 landslide evaluation factors were
input into the MLAs including slope, aspect, elevation, river density, distance to river, distance to
fault, fault density, distance to road, road density, land use, slope curvature, lithology, stream power
index (SPI), and topographic wetness index (TWI). We identified 64 locations of landslides by field
survey of which 70% were randomly employed for building and training the three MLAs while the
remaining locations were used for validation. The area under the receiver operating characteristics
(AUC) reached a value of 0.94 for the decision tree compared to 0.82 for the random forest, and 0.75
for support vector machines model. Thus, the decision tree model was most accurate in identifying
the areas at risk for future landslides. The obtained results may inform geoscientists and those in
decision-making roles for landslide management.

Keywords: landslides; machine learning; random forest; support vector machine; decision tree;
Kamyaran–Sarvabad road

1. Introduction

A landslide is one of the most common and harmful geological disasters in the world,
causing fatalities, property damage, and economic downturns [1]. Natural events and
anthropogenic activities trigger landslides [2,3]. Many geoscience researchers have em-
phasised that because of the complexity of both natural and anthropogenic factors that
are assumed to be accountable for the evaluation of landslides, it is difficult to predict
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the spatial and temporal occurrence of landslides [4,5]. These catastrophic occurrences
caused a great quantity of fatalities, injuries, and infrastructure damage, especially of road
networks [6,7]. Hence, 1.3% of fatalities in all natural disasters occurred from landslides,
with Asia accounting for around 54% of these landslides [8].

Iran has always been prone to landslides. The Alborz Mountain and the Zagros Moun-
tain both have a moderate to high susceptibility to landslides, with the Zagros Mountain
being considerably more sensitive [9]. Landslides, especially in mountainous regions, have
the potential to destroy roads and railroads and even result in fatalities [10]. Previous stud-
ies that created landslide susceptibility maps to indicate where landslides are most prone to
occur [11] used a variety of statistical techniques [12–14]. Recently, machine learning algo-
rithms (MLAs) have gained popularity among academics and industry professionals and
have significantly improved geohazard modelling [15,16]. The large datasets of landslide
susceptibility maps (LSMs) can be utilized by MLAs techniques such as support vector
machine (SVM) [17], decision tree (DT), neuro-fuzzy systems, random forest (RF) [18], deci-
sion tree [19], kernel logistic regression (KLR) [20], random forest (RF) [21], and artificial
neural networks (ANN) [22]. These techniques have enhanced precision and processing
adaptability [23]. To enhance planning and control the risk of landslides, landslide sus-
ceptibility mapping can be utilized as a practical technique [24]. Landslides may occur or
become more intense as a result of the construction of roads and communication lines in
hilly terrain, as is the case for the road that we studied. It is therefore essential to use these
algorithms to identify slope movements, the mechanisms causing them, as well as effective
factors in slope instability.

To the best of our knowledge, the literature review shows that studies of natural
hazards, including landslides, have been carried out by many researchers using various
techniques and methods in many different regions of the world. However, this process has
not stopped yet, and these studies are still ongoing because achieving a technique that can
effectively detect landslide-prone areas, especially using satellite imagery and radar data,
is very important in managing areas susceptible to landslides, especially in mountainous
areas and places where many people live near these areas [25,26]. Therefore, the main
goal of all these studies is to obtain a reliable and reasonable landslide susceptibility map.
It is necessary to map such landslide susceptibility maps in every region with different
environmental factors that lead to the creation of many uncertainties and cause the results
of a technique and method to be different from one region to another. On the other hand,
in the studied area, no special technique or method has been used to create a landslide
susceptibility map. Therefore, the purpose of this research is to use three conventional
machine learning techniques such as Random Forest, Decision Tree, and SVM to achieve
a reasonable and reliable landslides susceptibility map to identify places prone along an
important and strategic mountain road, the Kamyaran–Sarvabad main road in Kurdistan
province, Iran.

2. Study Area

The study area is situated in Iran’s western Kurdistan province, with eastern longi-
tudes ranging from 46◦21′01′ ′ to 46◦57′24′ ′ and northern latitudes ranging from 34◦45′52′ ′

to 35◦19′35′ ′. The area covers approximately 775.72 km2 (Figure 1). The length of the
Kamyaran–Sarvabad road is around 97 km. The minimum and maximum elevations above
sea level are 867 and 2474 m, respectively. The mountainous Kamyaran–Sarvabad road
has a large number of sloping movements, including falling rocks and landslides. Due to
its mountainous nature, the ridge is covered with snow and temporarily blocked on some
winter days. The research region is situated in the Sirvan drainage basin, which is a part
of the Sanandaj–Sirjan and Zagros structural zone. Rock outcrops from the Cretaceous to
the Quaternary are included in bedrock lithologies. The majority of the research sites are
composed of rocks from the Mesozoic and Cretaceous eras, including limestone, sandstone,
shale, and volcanic rocks.
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Figure 1. The location of Kamyaran–Sarvabad road in Iran and Kurdistan province. 

3. Landslide Conditioning Factors 
A crucial next step for developing machine learning models is identifying the condi-

tioning factors that can affect or cause the occurrence of landslides after gathering the 
dataset for landslides [27,28]. According to the presumption that new landslides are likely 
to occur in places with characteristics similar to those observed in the locations of prior 
landslides, a number of influential factors and a map of existing landslides need to be 
constructed before building the LSM [29]. 

We determined the following influencing factors and obtained the relative spatial 
layers using a literature review and analysis of previous landslide locations: slope, aspect, 
elevation, distance to river, river density, distance to road, distance to fault, road density, 
fault density, curvature, land use, lithology, SPI, and TWI (Figure 2) (Table 1). First, a 12.5 
× 12.5 m digital elevation model (DEM) was produced using data from the ALOS PALSAR 
satellite from the Alaska satellite facility website (https://vertex.daac.asf.alaska.edu). 

Through the use of ArcGIS, we created slope, aspect, elevation, and curvature maps 
using the DEM. The seven classes, 0°–5°, 5°–10°, 10°–20°, 20°–30°, 30°–40°, 40°–50°, and 
>50° were used to categorise slopes (Figure 2a). Aspect was classified into nine classes, N, 
NE, E, SE, S, SW, W, NW, and Flat (Figure 2b). The DEM was used to derive an elevation 
map, which was then divided into seven classes, ranging from 867–1100, 1100–1300, 1300–
1500, 1500–1700, 1700–1900, 1900–2100, and >2100 (Figure 2c). The slope was described as 
either having a convex or concave surface shape. In general, the curvature of the earth 
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Figure 1. The location of Kamyaran–Sarvabad road in Iran and Kurdistan province.

3. Landslide Conditioning Factors

A crucial next step for developing machine learning models is identifying the con-
ditioning factors that can affect or cause the occurrence of landslides after gathering the
dataset for landslides [27,28]. According to the presumption that new landslides are likely
to occur in places with characteristics similar to those observed in the locations of prior
landslides, a number of influential factors and a map of existing landslides need to be
constructed before building the LSM [29].

We determined the following influencing factors and obtained the relative spatial
layers using a literature review and analysis of previous landslide locations: slope, aspect,
elevation, distance to river, river density, distance to road, distance to fault, road density,
fault density, curvature, land use, lithology, SPI, and TWI (Figure 2) (Table 1). First, a
12.5 × 12.5 m digital elevation model (DEM) was produced using data from the ALOS PAL-
SAR satellite from the Alaska satellite facility website (https://vertex.daac.asf.alaska.edu).

Through the use of ArcGIS, we created slope, aspect, elevation, and curvature maps us-
ing the DEM. The seven classes, 0◦–5◦, 5◦–10◦, 10◦–20◦, 20◦–30◦, 30◦–40◦, 40◦–50◦, and >50◦

were used to categorise slopes (Figure 2a). Aspect was classified into nine classes, N, NE, E,
SE, S, SW, W, NW, and Flat (Figure 2b). The DEM was used to derive an elevation map,
which was then divided into seven classes, ranging from 867–1100, 1100–1300, 1300–1500,
1500–1700, 1700–1900, 1900–2100, and >2100 (Figure 2c). The slope was described as either
having a convex or concave surface shape. In general, the curvature of the earth fluctuates
between convex (positive), concave (negative), and flat (zero) values [30]. We mapped
curvature in three classes of concave, convex, and flat (Figure 2d). A major controlling
variable for the incidence of landslides is lithology [31], the lithology information derived
at a scale of 1:100,000 from a geological map (Figure 2e). Since land use has an impact
on hydrological conditions and soil strength, it is also regarded as a crucial landslide-
controlling factor [32]. In this study, we categorized land use into 13 classes (Figure 2f). We

https://vertex.daac.asf.alaska.edu
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obtained the faults map at a scale of 1:100,000 from the geological map and then computed
the distance to faults using “Euclidean distance” tool in the ArcGIS 10.5 software. This
was then classified into 5 classes including 0–500, 500–1000, 1000–1500, 1500–2000, and
>2000 m (Figure 2g). We constructed a fault density map in five categorised including
0–0.085, 0.085–0.238, 0.238–0.381, 0.381–0.534, and 0.534–0.868 (km/km2) using the “Line
density” tool in the ArcGIS 10.5 software (Figure 2h). Additionally, the “Euclidean distance”
tool was used to map the distances to rivers, which were then divided into 5 categories:
0–500, 500–1000, 1000–1500, 1500–2000, and >2000 m (Figure 2i). The river density map
was extracted using the “Line density” and then categorized into five classes including
0–0.115, 0.115–0.287, 0.287–0.458, 0.458–0.650, and 0.650–1.017 (km/km2) (Figure 2j).
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Table 1. Details of applied conditioning factors in the current study area.

Category Parameter Source, Scale/Resolution

Topographic map

Elevation

ALOS PALSAR DEM 12.5 m
Slope

Aspect
Curvature

Geological map
Lithology

Geology map, 1:100,000Distance to fault
Faults density

Hydrological map

Topographic Wetness Index (TWI)

ALOS PALSAR DEM 12.5 m
Stream Power Index (SPI)

Distance to River (m)
River density

Land cover map
Land use Iranian land use map

Distance to Road (m) Topographical map, 1:50,000
and Google Earth imageriesRoad density

Landslide susceptibility is known to decrease with increasing distance from main
roads [33]. Thus, distance to roads was mapped by “Euclidean distance” tool and then
categorised into 5 classes including 0–500, 500–1000, 1000–1500, 1500–2000, and >2000 m
(Figure 2k). Road density is another factor that influences the incidence of landslides. It
was extracted using the “Line density” and then categorized into five classes including
0–0.145, 0.145–0.354, 0.354–0.526, 0.526–0.734, and 0.734–1.323 (km/km2) (Figure 2l).

SPI was utilised to estimate how the topography affected hydrological processes [34].
The value of this parameter is computed from the following equation [35].

SPI = As× tgβ (1)

where AS (m2m−1) is the precise catchment area and β is the slope angle in degrees.
Five categories were used to categorise the SPI map, including 0.0125–2059, 2059–10,295,
10,295–25,738, 25,738–56,625, and 56,625–262,534 (Figure 2m). TWI is important condi-
tioning factor in the incidence of landslides [36]. This index is an index of elevation that
captures the ratio between slopes in the basin. It is a measure of the geographical spread
of soil wetness throughout the surface of the earth, and it may be calculated using the
equation below [37].

TWI = ln
(

As
tgβ

)
(2)

where AS (m2m−1) denotes the precise catchment area, tgβ denotes the slope angle at that
location, and α denotes the total upslope drainage via a point. Five classes were used to
generate the TWI map in this investigation including 1.104–4.586, 4.586–5.994, 5.994–7.698,
7.698–10.218, and 10.218–19.999 (Figure 2n).

4. Methodology

The studied road is a mountainous road with a steep slope, and due to the fact that
the areas of landslides were not recorded as polygons by organizations, we had to consider
the landslide’s locations at the toe slope as the area prone to landslides (point locations
by handy GPS) as they are clearly visible in the photos in Figure 3. The locations of 64
landslide points were identified by field surveys and checked on aerial photographs and
Google Earth imageries.
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Figure 3. Examples of landslides located along the Kamyaran–Sarvabad main road, Iran.

The field survey also indicated that most of the landslides are rotational slides. In
total, 45 of these points were utilised for the training data, while 19 of these points were
employed in the validation dataset. Then, using the training data and all conditioning
parameters, three standard MLAs—RF, DT, and SVM—were used to identify the landslide-
prone locations. The landslide point validation dataset was then used to validate the
models (Figure 4).
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4.1. Landslide Inventory Map (LIM)

An inventory map for landslides is required for landslide modelling. After that, GIS-
based statistical analysis can be used to determine the spatial association among landslides
and landslide conditioning factors [38]. Landslides in a particular area are noted in the
LIMs along with their position, action level, classification, and date. The primary cause
of errors in LSM is a deficiency in the landslide inventory [39,40]. As mentioned above,
we identified 64 landslide locations and used them either for model building and training
(70%) and the rest for validation (30%). Figure 3 shows some images of landslides that have
occurred in the research area.

4.2. Background of the MLAs
4.2.1. Random Forest

Using various selection methods to filter for specific features, we employed the critical
features in the Random Forest (RF) model to determine their correlation with the classifi-
cation. RFs are inherently random; therefore, the model may periodically assign different
relevance weights to features [41,42]. By choosing the intersection of the final feature and
a predetermined number of features, the model was trained. That way, a predetermined
number of features is selected that significantly affects the classification process after re-
peatedly looping through this stage. The following is a more detailed explanation of how
the significance of a particular feature X in RF is determined:

(1) Determine each decision tree’s OOB error, denoted as errOOB1, using the matching
out-of-bag (OOB) data in RF, with errOOB1 representing the average error for each
calculation using only those predictions from the trees that are not contained in their
respective bootstrap sample.

(2) Add noise interference at random to every OOB sample, sampling feature X values.
Additionally, a random adjustment may be made to the sample value at feature X.
Recalculate the OOB data error after that, and then log the outcome as errOOB2.

(3) Considering that RF contains NS trees, the following is the significance of feature X:

VIi =
1

Ntree

Ns

∑
n=1

(errOOB2− errOOB1) (3)

In this research, training was undertaken with 70% of the landslide data, and validation
was performed with the remaining 30%. Two factors of decreasing mean accuracy and a
Gini mean decreasing factor are used to rank each of the effective parameters in order of
importance. The weights acquired for the effective factors in the R software 5.4 were then
transferred to the ArcGIS environment, where they were used to create the final landslide
map with five classes.

4.2.2. Support Vector Machines

Vapnik introduced the Support Vector Machine (SVM) for the first time (1995). Since
then, many researchers have used it to examine natural and environmental hazards [43].
Its theoretical underpinnings are statistical learning theory. SVM is a machine learning
classifier that has been employed to address a variety of problems in the real world,
including landslide prediction [29–44].

The larger the separation plate is, the more stable the model will be against distortion
and noise, and as a result, the greater its power will be for generalization. SVM model
algorithms provide a holistic approach to estimating functions whose main focus is to solve
quadratic optimization problems. Consider X and Y corresponding to the factors affecting
classified variables and the corresponding vectors of the two types of categorised variables
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(landslide and non-landslide). The ideal separation hyper plane can be defined as follows
if Y = (Y1, Y2) and X = (X1, Xm):

g(X) = sihn(
m

∑
i=1

ai ×Y× K(X, Xi) + C) (4)

where C, ai, and K(X, Xi) are the offset from the original, n is the number of influencing el-
ements for landslides, and the kernel functions might be polynomial, radial basis functions,
sigmoid, or linear, accordingly [45].

4.2.3. Decision Tree Algorithm

A non-parametric method with a hierarchy of trees is called a decision tree (DT) model
and can be used to uncover non-additive and non-linear correlations between targeting
or predictive factors and input factors [46,47]. Classification trees and regression trees are
the two main DT types. Regression trees are used for continuous data, while classification
trees are used to predict discrete variables [48]. The primary benefit of the DT is that there
is no need to transform variables because the structure of the model will remain the same
without conversion; so, it saves time. It is also simple to design and analyse, and it may
model complex interactions between variables.

DT modelling is often undertaken in two steps: 1—Tree construction; and 2—Tree
pruning [38]. In many instances, pruning may be needed to prevent improper knots in
the tree. A good algorithm is the algorithm that creates the largest tree and prunes it after
measuring the ideal pruning threshold. There are two types of pruning: pre-pruning and
post-pruning. When a tree is pre-pruned, it grows until a specific requirement is reached;
however, when a tree is post-pruned, the entire tree is constructed. The interest rate for
each node is calculated as per Equation (5):

GainRatio(X, T) =
Gain(X, T)

SplitIn f o(X, T)
(5)

where T is an educational data set that contains subset Ti (1, 2 . . . n), and the profit ratio for
the X characteristic is calculated as per the following Equations (6)–(8):

GainRatio(X, T) =
Gain(X, T)

SplitIn f o(X, T)
(6)

wherein

Gain(X, T) = Entropy(T)−
n

∑
i=1

|Ti|
|T| Entropy (7)

SplitIn f o(X, T) = −∑n
i=1
|Ti|
|T| log2

|Ti|
|T| (8)

For the DT algorithm, Weak 3.9 software was used to run the modelling procedures.

4.2.4. Validation of the Models

Relative operator characteristics (ROC) were used to verify the three models. The
x and y axes of the ROC curve, which correspond to the True Positive Rate (TPR) and
False Positive Rate (FPR), capture the percentage of times that the true value is accurately
predicted and the percentage of times that the false value is predicted to be true [49]. The
training data and the susceptibility of landslides were compared to produce this curve.

The “area under this curve” is how the AUC is referred to. Furthermore, the model
well with highest AUC will function much better [50]. AUC of 0.5 is the equivalent for
the neutral model. The more closely the AUC value approaches one, the better the model
performs [51].
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4.2.5. Importance of the Factors Using Accuracy and the Gini Indexes

The results of the RF algorithm are examined in the form of two indicators including
the accuracy index and the Gini index. By examining both of these indicators, the Gini
factor was introduced as the most important input variable to the model. The Gini Index
algorithm is based on the Gini theory. Let us assume S as a sample with k class ( Ci.1. . . . .k),
and then we can classify S into k subsets by the differences between the classes. Consider
Si as a sample set that belongs to a class Ci, and therefore, the Gini index of the sample set
Si is computed as follows:

Ginin index(S) = ∑m
j=1 Pj(1− Pi) = 1−∑m

j=1 P2
j 0 ≤ Gini ≤ 0.5 (9)

where Pi and Pj are the probabilities of landslide occurrence in class i and j, respectively,
which are computed with Si/S and Sj/S, for each sample set of S that belongs to Ci [52,53].

5. Results
5.1. Importance of the Factors on Landslide Occurrence

The most significant factors and accompanying assessment indices affecting landslide
susceptibility are shown in Table 2. Accordingly, the RF model revealed that slope and
curvature parameters had the least influence on the probability of landslides. The model’s
outcomes demonstrate that the model chose the distance to road, distance to river, road
density, and TWI variables. Consequently, based on these factors, the decision tree is
formed, which is most influenced by the distance to the road.

Table 2. MDA and MDG indices based on a random forest model to determine conditioning factors
of landslide susceptibility along the Kamyaran–Sarvabad main road.

Factor 0 1 MDA MDG

Distance to roads 16.3 24.5 24.1 5.9
Road density 9.7 17.1 16.9 3.7

Distance to river 5.3 10.5 10.14 1.3
Lithology 7.6 8.3 9.4 1.7
Land use 2.2 9.5 8.7 1.78

Elevation (m) 1 8.8 8.3 0.83
River density 2.8 6.1 6.05 0.89

Distance to fault 1.8 5.8 5.9 0.52
Aspect 2.1 5.84 5.8 1.32

Fault density 2.08 4.01 3.9 0.38
SPI 0 0 0 0.21

Slope 0.36 −0.21 −0.1 0.31
TWI 0.92 −1.12 −0.26 0.43

Curvature −0.01 −2.5 −2.02 0.19
0: non-landslide; 1: landslide; MDA means decrease in accuracy index; MDG means decrease in Gini index.

5.2. Performance of the Random Forest Model

The error rate changes as the quantity of trees changes, as seen in Figure 5a. The
error rate must be modified as the number of trees increases in order to determine the
appropriate tree density. The RF algorithm’s estimates of the number of landslide and
non-landslide spots are shown in this figure by classes 0 and 1, respectively. The OOB
index also represents the estimates of the samples outside of the basket to observe how the
error of the RT algorithm changes with increasing the number of trees. Based on the results
shown in Figure 5a, all three errors have a similar decreasing trend as the number of trees
increases. For the class 0, after alternating the increase and decrease using about 100 trees,
the decreasing and increasing trend was repeated again until a constant trend was reached
with about 380 trees. For class one, after alternating the increase and decrease using about
100 trees, a constant trend was found after repeating the decreasing and incremental trend
in small intervals from about 280 trees onwards. For the OOB error, the increasing and
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decreasing trend was repeated and the error rate trend was fixed using about 380 trees.
Figure 5b shows the ROC curve of the random forest algorithm. In this curve, the positive
rate of accuracy versus the positive rate of error is displayed. As can be seen, the area below
the curve is 0.96, which indicates a very high accuracy for this model.
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The modelling outcomes of this model demonstrated that the model chose four vari-
ables from the analysed variables, including distance to road, distance to river, road density,
and TWI. The decision tree is created based on these variables, with distance to the road
ranking highest.

5.3. Developing Landslide Susceptibility Maps

The final LSM was obtained by computing the weight of the layers for different
conditioning factors in the occurrence of landslides and by obtaining the rate for each class
along with the algebraic sum of the raster layers with the weight obtained for each layer
of the data mining algorithms. Landslide susceptibly maps based on either an RF, DT, or
SVM model are presented in Figure 6. Additionally, the area and the percentage of different
classes of landslide potential in each of the three maps are presented in Table 3.

Table 3. Area and percentage of landslides for each of the susceptibility classes identified for the
Kamyaran–Sarvabad main road, Iran, using Support Vector Machine (SVM), Decision Tree (DT), and
Random Forest (RF) models.

Classes

SVM DT RF

Area (%) Class Area
(Hectares) Area (%) Class Area

(Hectares) Area (%) Class Area
(Hectares)

VLS 26.6 20,632.4 19.6 15,203.09 15.4 11,963.1
LS 32.6 25,306.9 33 25,621.56 28.9 22,422.6
MS 28.4 22,007 27.6 21,447.67 27.2 21,073.9
HS 7.4 5750.7 13.6 10,529.34 21.3 16,489.4

VHS 5 3875.5 6.2 4770.86 7.2 5623.5
VLS: Very low susceptibility; LS: Low susceptibility; MS: Medium susceptibility; HS: High susceptibility; VHS:
Very high susceptibility.

The ROC curve was used to assess the models that were employed. The AUC values for
each model using the validation dataset are displayed in Table 4 and Figure 7. Accordingly,
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it is the chi-square’s asymptotic significance, or p-value, which we recently ran in SPSS.
The statistical significance of the link we just investigated is determined by this value.
In all significance tests, a link between the two variables is considered to be statistically
significant if p < 0.05.

Table 4. Area under the curve (AUC) results for the models utilising the validation dataset for the
ROC curve.

Models Area Std.
Error a

Asymptotic
Sig. b

Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

Decision Tree 0.942 0.034 0.000 0.875 1.009
Random Forest 0.823 0.067 0.001 0.692 0.953

SVM 0.756 0.078 0.007 0.604 0.909
a Under the nonparametric assumption; b Null hypothesis: true area = 0.5.
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The “textbook” approach to creating confidence intervals is known as the asymptotic
confidence interval (Asymptotic 95%). Despite the fact that it is valid for large sample sizes
(thus the other moniker, “large-sample” confidence interval), there are no predetermined
standards for how big is “large enough.” To put it another way, an exact confidence interval
will result in the exact confidence level specified (for example, 95%); it is certain that if you
repeated an experiment or poll repeatedly, you would obtain the same results 95% of the
time [54]. The DT model demonstrated the greatest performance as compared to the SVM
(AUC = 0.75), which demonstrated the lowest performance, with an AUC value of 0.94.

6. Discussion

The intensity and impact of natural hazards depends on their magnitude and severity.
This information is critical, and tools are needed for hazard prediction to minimise human
and financial loss [55]. Considering the body of research, the data’s accessibility, and
the importance of the influencing variables for landslide incidence, as judged by the
accuracy and Gini indices, resulting from the RF modelling, our study showed that the
distance to the road, the road density, the distance to the river, the geology, and the land
use were the five most important factors affecting landslide susceptibility. Constructing
roads and not complying with the necessary standards and not protecting the cut-off areas
creates dangerous conditions for the saturation of the underground layers, resulting in
landslides—especially in places where the geological formation is susceptible and already
eroded. Improper road construction and expansion in our study area are indeed the main
factors for landslides to occur. The Kamyaran–Sarvabad main road’s high to extremely high
landslide susceptibility zones in Iran’s Kurdistan province are located on the phyllite and
slate and on the limestone and volcanic rocks covered by a soil layer. Similar results were
reported by several others who also concluded that the most crucial factors for landslides
to occur are the distance to the road and the density of the roads [56–59].

Furthermore, the current research showed that MLA models can assist decision-makers
in identifying areas that are prone to landslides and may either be excluded from road
and other development projects or managed in a way to make construction and use safe.
The LSMs developed by all MLAs perform a great deal better than those made by [60]. In
contrast to our analysis’s AUC ranges of 94% for DT and 0.82% for RF, their study’s AUC
values ranged from 62.4% for GLM to 0.75% for RFs. Additionally, ref. [61], who used RFs
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for mapping landslide susceptibility along the Wadi Tayyah Basin in the Asir Region of
Saudi Arabia, reported that our results for the RF with a prediction rate (AUC = 0.82%)
were better.

Our results show that DT, RF, and SVM have respective prediction rates of 0.94, 0.82,
and 0.75. We hypothesise that these disparities in prediction rates are due to the unique
characteristics of each research location. The current study found potential contributing
factors to landslides, and the findings and techniques can be used to create landslide
inventory maps in other areas beyond our study area.

7. Conclusions

To produce landslide susceptibility maps for the main road between Kamyaran and
Sarvabad, we evaluated SVM, DT, and RF models. The following results in this study can
be highlighted:

(1) According to the results for two indices, Mean Decrease Accuracy and Mean Decrease
Gini, the RF model was the most accurate in identifying the significance of landslide
conditioning factors that caused landslide events in the current experiment. The most
important factors in landslide susceptibility modelling for our research region include
the distance to roads, road density, distance to rivers, geology, land use, elevation,
distance to faults, aspect, fault density SPI, slope, TWI, and curvature.

(2) LSMs were prepared using RF, DT, and SVM models adopting parameter tuning
techniques. According on our research, the RF model performed and outperformed
the DT and SVM models.

(3) According to the landslide susceptibility maps, the most vulnerable locations are
close to roads and follow the density of those roads. They are primarily in the
middle of the research area as a result. The findings of this study can thus assist
land developers, planners, and civil engineers with preliminary slope management
and land-use planning, allowing them to take essential and scientific action to avert
landslide dangers.

The best way to lessen the impact of landslides is to develop a map of landslide sus-
ceptibility at the national, regional, and local levels. This map can be used to identify risky
regions and prevent damage before a disaster strikes. In the future, weight analysis that
accounts for predisposing variables will be used to better study these factors. Furthermore,
we believe that our prediction model will incorporate landslide risk management and LSM
using more potent machine and deep learning architectures.
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