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Abstract: Understanding post-fire forest recovery is critical to the study of forest carbon dynamics.
Many previous studies have used multispectral imagery to estimate post-fire recovery, yet post-fire
forest structural development has rarely been evaluated in the Great Xing’an Mountain. In this study,
we extracted the historical fire events from 1987 to 2019 based on a classification of Landsat imagery
and assessed post-fire forest structure for these burned patches using Global Ecosystem Dynamics
Investigation (GEDI)-derived metrics from 2019 to 2021. Two drivers were assessed for the influence
on post-fire structure recovery, these being pre-fire canopy cover (i.e., dense forest and open forest)
and burn severity levels (i.e., low, moderate, and high). We used these burnt patches to establish a
25-year chronosequence of forest structural succession by a space-for-time substitution method. Our
result showed that the structural indices suggested delayed recovery following the fire, indicating
a successional process from the decomposition of residual structures to the regeneration of new
tree species in the post-fire forest. Across the past 25-years, the dense forest tends toward greater
recovery than open forest, and the recovery rate was faster for low severity, followed by moderate
severity and high severity. Specifically, in the recovery trajectory, the recovery indices were 21.7%
and 17.4% for dense forest and open forest, and were 27.1%, 25.8%, and 25.4% for low, moderate,
and high burn severity, respectively. Additionally, a different response to the fire was found in the
canopy structure and height structure since total canopy cover (TCC) and plant area index (PAI)
recovered faster than relative height (i.e., RH75 and RH95). Our results provide valuable information
on forest structural restoration status, that can be used to support the formulation of post-fire forest
management strategies in Great Xing’an Mountain.

Keywords: GEDI metrics; time-series Landsat data; post-fire structure recovery; burn severity;
pre-fire canopy cover

1. Introduction

In the past three decades, over 2.5 million hectares of forests have been damaged by
wildfires across the Great Xing’an Mountain region. These high intensity and frequency fire
events have significantly altered forest structure, causing direct carbon emission from forest
fire of about 0.48 Tg carbon year−1 [1–3]. Understanding post-fire forest structural response
is crucial for sustainable forest management, as it impacts a wide range of ecosystem
processes [4]. However, follow-up management such as removal of burned wood, replant-
ing of seedlings, fertilization, and irrigation, etc., is often limited, leading to the gradual
degradation of burned areas into large, low-productivity forests, particularly those initiated
by lightning strikes in remote regions that are difficult to access. Therefore, characterizing
post-fire forest structure recovery under various environmental conditions is challenging
to achieve through field investigation alone.

Landsat data are the most commonly used source of imagery for detecting burn
area, burn severity, and post-fire recovery at a regional scale [5–7]. These data provide
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more than four decades of land surface observations, giving a convenient and consistent
approach for forest disturbance detection at long-term scales [8]. Spectral indices and
tasseled cap transformations (TCT) have long been used to estimate influence factors (e.g.,
burn severity and pre-fire site conditions) related to vegetation recovery [9,10]. For example,
DaSilva et al. [11] proposed a new application of TCT that improved the estimation of
burn severity in semi-arid coastal regions. Viana-Soto et al. [1] established a support
vector regression model using a set of Landsat-derived spectral indices and TCT to spatially
extrapolate the LiDAR-derived tree height and canopy cover. However, despite the Landsat
data being well-suited for describing the characteristic of forest fires, the lack of three-
dimensional (3D) information limits the ability to assess the structural dynamic change
induced by forest fires using Landsat data alone [12]. In contrast, light detection and
ranging (LiDAR) sensors are capable of penetrating through vegetation and recording
forest structural characteristics [13]. Therefore, the fusion of Landsat time series and LiDAR
provides the opportunity to help bridge these knowledge gaps [14–17]. For example, Bolton
et al. [12] utilized a time series of Landsat data to ascertain the conditions of burned areas,
while airborne LiDAR was employed to evaluate the structural response. This approach
allowed for the characterization of forest structure recovery subsequent to high-severity
fires. Additionally, Landsat imagery can be used to extrapolate LiDAR-derived structural
variables, proving to be an effective approach to describe post-fire forest structure recovery.
García et al. [17] demonstrated the feasibility of extrapolating LiDAR-derived structural
variables using Landsat images over time.

Space-based LiDAR data directly provide abundant information on vertical vegetation
structure, including canopy structure [18], canopy height [19], biomass [20], and species
richness [21], exceeding the capabilities of ground-based in situ observations. In September
and December 2018, a new space-based laser altimetry mission, the Global Ecosystem
Dynamics Investigation (GEDI) instrument, was launched. It consisted of three lasers that
produced a total of eight ground transects, with each transect sampling eight footprints of
approximately 25 m in size. These footprints were spaced approximately every 60 m along
the track, allowing for global data collection between latitudes 51.6◦N and 51.6◦S. Such wide
coverage of GEDI data offers unprecedented opportunities to characterize global ecosystem
structure and dynamics and fundamentally improve the quantification and understanding
of Earth’s carbon cycle and biodiversity [22]. The integration use of GEDI measurement
and Landsat imagery has been explored to detect forest structure change. Francini et al. [23]
integrated Landsat imagery and GEDI metric to detect biomass increase following forest
disturbances across Italy. Although there have been a variety of GEDI-based approaches in
mapping forest structures, long-term forest structure recovery following fire has seldom
been assessed by GEDI data due to the limitation of data acquisition time. Space-for-time
substitutions, also known as ergodic gradient studies, are often used for vegetation status
estimation during the recovery process in the absence of long-term data sets [24], that
provide an opportunity to observe successional changes in the forest structure in Great
Xing’an Mountain.

This study aimed to assess the capability of integrating GEDI metrics with Landsat
time-series data to capture the dynamics of post-fire forest structure across the Great
Xing’an Mountain under varying site conditions. We constructed a 25-year structural
development chronosequence to explore the following questions: (1) Do GEDI metrics
capture the recovery of forest structure using the space-for-time substitution method?
(2) How do burn severity and pre-fire canopy cover affect forest structure recovery and
pattern of succession after a fire? To address the first question, we calculated the percentage
of GEDI metrics of burned patches to the corresponding unburned patches. The second
question was addressed by integrating Landsat time-series data to assess burn severity
level and pre-fire canopy cover.
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2. Materials and Methods
2.1. Study Area

The study area (50◦10′–51◦6′N, 120◦12′–122◦53′E) is located in the northwest of the
Great Xing’an Mountains. The forests in Great Xing’an Mountain were originally occupied
by the Gmelin’s larch (Larix gmelinii), accounting for 80% of the cover [25]. The primary
deciduous broadleaf species following fire disturbances is white birch (Betula platyphylla),
which is usually a pioneer successional species [26]. In this region, wildfires are generally
characterized by frequent surface fires and infrequent stand-replacing crown fires, with fire
recurrence intervals varying from 30 to 120 years [26]. According to the fire registration
statistics of the Forestry Bureau, since the 1960s, as many as 126 fires have been recorded in
this area, including 21 major forest fires. In this study, we focused on the fire events that
occurred from 1987 to 2019 within the spatial distribution range of GEDI data (i.e., within
51.6◦N latitude).

2.2. Dataset and Preprocessing
2.2.1. GEDI Data

To describe the post-fire forest structure dynamics, the GEDI level 02A (L2A) and level
02B (L2B) product data over the study area were obtained for the growing seasons of June
to August from 2019 to 2021. The general information for each product is shown in Table 1.
L2A/L2B products covering the study area were available from the NASA/USGS Land
Processes Distributed Active Archive Center (LPDAAC, https://e4ftl01.cr.usgs.gov/GEDI/)
(accessed on 23 November 2022). We then used a Python script (GEDI Subsetter) to spatially
clip the GEDI product and output the desired parameters as GeoJSON files for further
visualization and analysis. To select the highest quality data, the GEDI data were further
filtered to remove abnormal waveforms for measuring forest structure. The quality of each
GEDI shot is checked by a “quality flag” and “sensitivity”, that allows one to easily remove
erroneous or lower-quality waveforms [27]. To eliminate the effect of environmental noise and
steep slope, we selected only the power beam mode (i.e., full-strength lasers) at night with
quality flag = 1, beam sensitivity ≥ 0.95, and slope ≤ 15◦. A total of 90,472 sample footprints
containing valid measurements were used for subsequent analyses.

Table 1. GEDI data products information used in this study.

Products Description Spatial Resolution Data Acquisition

GEDI02A Level 2A Elevation and Height Metrics 25 m
LP DAACGEDI02B Level 2B Canopy Cover and Vertical Profile Metrics 25 m

2.2.2. Landsat Data

Annual composites of Landsat TM and OLI surface reflectance for the period 15 June–15
August 1986–2020 were generated through the Google Earth Engine (GEE) platform using
a median selection process [28], filtering by cloud cover (less than 20%). To reduce the
differences among the spectral characteristics of Landsat ETM + and OLI datasets, inter-sensor
harmonization was conducted by the LandsatLinkr package in R language developed by
Vogeler et al. [29]. A set of spectral indices were computed to assess burn severity and
retrieve pre-fire tree canopy cover: the normalized difference vegetation index (NDVI) [30],
the enhanced vegetation index (EVI) [31], the soil adjusted vegetation index (SAVI) [32],
normalized difference moisture index (NDMI) [33] and the normalized burn ratio (NBR) [34].
Tasseled cap transformations (brightness, greenness, and wetness) were calculated using the
coefficients derived by Baig et al. [35].

2.2.3. Tree Canopy Cover

The Global Forest Cover Change GFCC dataset available for four epochs centered on
the years 2000, 2005, 2010, and 2015 was obtained from the Google Earth Engine (GEE)
platform. This dataset contains estimates of the percentage of horizontal ground in each

https://e4ftl01.cr.usgs.gov/GEDI/
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30 m pixel covered by woody vegetation greater than 5 m in height that are based on
Landsat satellite images. To restrict the analysis to areas that were forested prior to burning,
according to Bolton et al. [12], we determined the 20–50% and greater than 50% canopy
cover classes as “open” and “dense” forests, respectively.

2.3. Fire Detection and Burn Severity Classification

The detection of burn patches was conducted by yearly-time series of Landsat data.
To avoid the interference signal due to phenological differences, only the available data
within the growing seasons (15 June–15 August) were selected for annual composites. The
change in NBR from bi-temporal imagery, known as the dNBR (Equation (1)), has been
shown to correlate well with both burn area and burn severity detection [5,36]. Therefore,
the dNBR at each composite image time-step was calculated for detecting burned patches.

dNBR = NBRpre − NBRpost (1)

When identifying burned areas using dNBR, we applied a threshold to prevent subjective
decisions by utilizing the Otsu method [37]. The Otsu algorithm uses bimodal histogram
processing to create a binary image (i.e., only two classes of pixels: burned and unburned) and
finds the optimal threshold that minimizes the intra-class variance [35]. Specifically, the Otsu
algorithm assumes that the difference image has L grey levels [1, 2, . . . , L]. According to the
Otsu algorithm, the image can be divided into the burned and unburned area classes by a
threshold t (1 < t < L). The between-class variance g is defined as:

gt = wb,t × wnb,t × (µb,t − µnb,t)
2 (2)

where wb and wnb represent the proportions of burned and unburned areas. µb and µnb are
the mean values for two class samples. Finally, the optimal threshold T maximizing the
interclass variance is estimated by an iterative process:

T = argmax{gt} (3)

To remove small-area disturbances and image noise, we applied multiple noise-
filtering steps. The first filtering removed non-forest regions using the pre-fire GFCC
values of less than 20%. The second filtering removed the small burned patches by calcu-
lating the burned areas less than 10 ha. Additionally, areas that burned more than once
between 1986 and 2020 were also not included, as the structural response of vegetation
could be more complicated in these cases. The process of Otsu analysis and noise filtering
was conducted through the GEE platform.

Burn severity is defined as fire-induced changes in vegetation structure and assessed
by a certain amount of time having elapsed after a fire, which is directly determined by the
rate of post-fire forest regeneration [38,39]. After burned patches detection, four discrete
levels of high severity (dNBR ≥ 0.6), moderate severity (0.6 > dNBR ≥ 0.3), low severity
(0.3 > dNBR ≥ 0.1), and unburned (dNBR < 0.1) for each fire site were further classed using
the thresholds of the dNBR that have been proposed by Chu et al. [25] for the burn severity
assessment in Great Xing’an region.

2.4. The Pre-Fire Tree Canopy Cover

To ensure that the analysis was restricted to forested areas and differentiate the struc-
tural response to pre-fire canopy cover conditions, information on the canopy cover prior to
the fire was required. A classification model was developed for three canopy cover classes
(non-forest: 0–20%, open patches: 20–50%, and dense patches: >50%) based on GFCC and
pre-fire Landsat data. The training samples on canopy cover were derived from multiple
target dates of GFCC products in the years 2000, 2005, 2010, and 2015. To ensure that the
value distributions of the training set accurately represent our study area, we generated a
total of 1000 random sample points within fire perimeters that occurred after the year 2000.
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These points were selected to be more than 50 m away from the polygon edge. Sample
points were located >100 m apart to minimize the effect of spatial autocorrelation. These
samples would be further used as a point of interest to extract the predictive variables for
RF model construction.

In order to encompass the diversity of vegetation characteristics, a series of spectral
bands, spectral indices, and TCT were used to develop the RF classification. RF is a
machine learning technique that exhibits improved performance in dealing with high-
dimensional regression issues [40]. In this study, a total of 14 candidate variables were
used for the RF model establishment (Table 2). After the best variable subset has been
selected, we established an RF regression model to estimate the canopy cover. The RF
regression algorithm is based on bootstrap resampling and the decision tree method, which
is controlled by three key parameters: the number of decision trees (Ntree), the number of
node splits per tree (Mtry), and node size. The accuracy of model prediction was validated
by independent samples using the coefficient of determination (R2) and the root means
square error (RMSE). The R-package Random Forest (version 4.6-14) regression procedure
was used to complete this analysis.

Table 2. Fourteen candidate variables were used for random forest model estimation.

Indices Predictor Description

B1, B2, B3, B4, B5, B7 Spectral Bands
NDVI Normalized Difference Vegetation Index, (B4− B3)/(B4 + B3)
NDMI Normalized Difference Moisture Index, (B4− B5)/(B4 + B5)
NBR Normalized Burned Ratio, (B4− B7)/(B4 + B7)
EVI Enhance Vegetation Index, 2.5·((B4− B3)/(B4 + 6·B2− 7.5·B1 + 1))

SAVI Soil Adjusted Vegetation Index, (1 + L)·(B4− B3)/(B4 + B3 + L)
TCW Tasseled Cap Wetness
TCG Tasseled Cap Greenness
TCB Tasseled Cap Brightness

2.5. Assessing Post-Fire Structural Response to Fire
2.5.1. Structural Metrics from GEDI Data

The GEDI products provide high-quality measurements of forest vertical structures
that have been widely used to produce high-accuracy maps of key forest structure attributes
(e.g., tree height, canopy cover, plant area index, biomass, etc.) [19,20,22,23]. The analysis
focuses on GEDI metrics that describe tree height and canopy profiles, as these metrics
are commonly used to estimate carbon stock and assess tree mortality resulting from
fire disturbances [1,12]. Each metric is separately derived from the information stored
in footprint datasets of processing levels: L2A and L2B. The L2A product is primarily
composed of 100 relative height (RH) metrics (RH0, RH1, . . . RH100), corresponding to
the height of waveform energy cumulative from 0% to 100%. In this study, the 75th (RH75)
and 95th (RH95) height percentile were assessed as stand height metrics, because the RH95
metric has the highest correlation with the forest canopy height [19] and the RH75 is more
likely related to vegetation regrowth [12]. As for the canopy profiles, the L2B product
stores the metrics including total canopy cover (TCC), plant area index (PAI), and foliage
height diversity (FHD). Among them, the TCC is the percent of the ground covered by
the vertical projection of canopy structures (i.e., leaves, branches, and stems) [41]. PAI
describes the horizontal projected area of plant elements per unit of ground area (m2m−2)
within a volume of the canopy [41], and the PAI at any given height can be calculated from
waveform data with the equations:

gap(z, θ) = 1− Rv(z)
Rv(0) + Rg × ρv

ρg

, (4)
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PAI =
−1[ln(Pgap(θ))− ln(Pgap(θ))]

G(θ)Ω(θ)
, (5)

where Rv(z) is the integral of reflected energy from canopy elements from the canopy
top down to the given height (z). Rg is the integral of reflected energy from the ground.
∆z is the height increment at which PAI is calculated. Canopy-to-ground reflectance
ratio

(
ρv/ρg

)
, a nadir view angle (θ), a spherical leaf angle distribution (G(θ)), and a

random spatial distribution of canopy elements (Ω(θ)) are defaulted as 1.425, 0, 0.6, and 1,
respectively. FHD is a canopy structural index that describes the vertical heterogeneity of
foliage profile [41].

FHD = −∑
i

Ni × log(Ni), (6)

where Ni is the proportion of the vertical PAI profile that lies in the ith of the chosen
horizontal layers.

2.5.2. Construction of Post-Fire Forest Structural Chronosequence

Site conditions and pre-fire stand composition have been shown to strongly influence
post-fire stand succession patterns [42,43]. Therefore, we, respectively, assessed post-
fire forest structure response to different burn severity levels and pre-fire canopy cover
conditions. To avoid the complex interaction between burn severity and canopy cover
conditions, we only analyzed forest structure response to different burn severity levels
within the pre-fire dense forest patches and forest structure response to pre-fire canopy
cover conditions in high burned severity patches. As the GEDI data were limited to the
acquisition time after 2019, the chronosequence of forest structural recovery consisted of
GEDI lidar metrics (i.e., RH95, RH75, TCC, PAI, and FHD) of different fire events from 1987
to 2019 using space-for-time substitution. To reduce the bias of stand growth induced by
different site conditions, each LiDAR metric for neighboring unburned patches was also
calculated for each fire event. By applying the canopy cover classification to each pre-fire
imagery, the selected unburned patches should be spectrally similar to the burned forest
patches prior to the fire. We used the percentage indices that were computed from the
GEDI metrics using the selected burned and unburned patches (Equation (7)):

PILM =
∑n

i=1 LMburned,i/n
∑m

j=1 LMunburned,j/m
× 100, (7)

where PILM is the percentage indices of a given GEDI LiDAR metric, and LMburned,i and
LMunburned,i represent the value of the GEDI metric of burned and unburned patches. n
and m represent the number of GEDI samples for burned and unburned patches. Then,
we calculated the year since the fire (YSF) for each fire by subtracting the year that the fire
occurred in from the year of GEDI data acquisition (2019, 2020, and 2021). The average
values of these percentage indices were calculated for each fire and then we further counted
the average and standard deviation every 5 years as indicators of the levels of recovery in
relation to YSF.

3. Results
3.1. Fire Detection and Burn Severity Mapping

Over 80 fire events were detected totaling over 480,000 hectares of forest burn areas
across Landsat scenes within the GEDI data acquisition range from 1986 to 2019 (Figure 1).
Burned areas are concentrated and distributed in the latitude range of 51◦N to 52◦N,
especially in the west and east of Great Xing’an Mountain.
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Figure 1. Spatial distribution of burn patches by the year of detection across the Great Xing’an Mountain.

The examples of burned severity maps with GEDI footprints are shown in Figure 2.
Most of the fires appeared in red tones indicating that a high proportion of high burn
severity class has occurred (Table 3, Figure 2). These maps were used to stratify the GEDI
samples for tracking the temporal patterns of the forest at different burn severity levels.
RH75 metrics tend to be lower in the burned areas, especially in the high burn severity
class. These GEDI footprints were also used as a region of interest to extract burn severity
levels and pre-fire canopy cover openness for further statistics.

Table 3. Statistic of the burned area by 11-year time intervals and burned severity from 1987 to 2019.

Burn Severity
Burned Area (hm2)

1987–1997 1998–2008 2009–2019

Low 23,469 117,964 9976
Moderate 19,733 126,476 10,295

High 27,421 136,392 17,250
Total 70,623 380,832 37,521

The annual burn classifications showed different spatiotemporal distribution patterns
of burned area (Figures 1 and 3). For instance, in the period of 1987–1997, fewer fire patches
with a wide range of sizes and scattered distribution occurred (Figure 1). During the time
period of 1998–2008, fire incidents occurred annually, resulting in an overall increase in
the total burned area (Figure 3). Fires were concentrated in the west and east side of Great
Xing’an Mountain, especially in 2003 and 2006 (Figure 1). During the period from 2009
to 2019, there was a decrease in the burned area. However, smaller patches of fire were
still evident within the Great Xing’an Mountain (Figure 1). Examining the dynamic trends
in burned areas over 11-year intervals, we observed that the burned area increased from
70,623 hectares in the period of 1987–1997 to 380,832 hectares in 1998–2008. However, it
subsequently decreased to 37,522 hectares in the period of 2009–2019 (Table 3; Figure 3).



Remote Sens. 2023, 15, 3107 8 of 17
Remote Sens. 2023, 15, x FOR PEER REVIEW  8  of  18 
 

 

 

Figure 2. Examples of burn severity maps and GEDI footprints for 12 fires across the Great Xing’an 

Mountain. 

The annual burn  classifications  showed different  spatiotemporal distribution pat‐

terns of burned area (Figures 1 and 3). For instance, in the period of 1987–1997, fewer fire 

patches with a wide range of sizes and scattered distribution occurred (Figure 1). During 

the time period of 1998–2008, fire incidents occurred annually, resulting in an overall in‐

crease in the total burned area (Figure 3). Fires were concentrated in the west and east side 

of Great Xing’an Mountain, especially in 2003 and 2006 (Figure 1). During the period from 

2009 to 2019, there was a decrease in the burned area. However, smaller patches of fire 

were still evident within the Great Xing’an Mountain (Figure 1). Examining the dynamic 

trends in burned areas over 11‐year intervals, we observed that the burned area increased 

from 70,623 hectares in the period of 1987–1997 to 380,832 hectares in 1998–2008. How‐

ever, it subsequently decreased to 37,522 hectares in the period of 2009–2019 (Table 3; Fig‐

ure 3). 

Figure 2. Examples of burn severity maps and GEDI footprints for 12 fires across the Great Xing’an Mountain.

Remote Sens. 2023, 15, x FOR PEER REVIEW  9  of  18 
 

 

 

Figure 3. Annual statistics of the burned area across burn severity class in the study region from 

1986 to 2019. The break interval omits the value from 0.2 to 0.21 × 104 hm2 and the interval is subse‐

quently increased from 0.22 to 3 × 104 hm2/year. 

3.2. Tree Canopy Cover Estimation 

Figure 4 compares the predicted canopy cover (CC) using the RF model and the ref‐

erence CC using the independent GFCC data. The model‐estimated CC is consistent with 

the referenced CC with relatively high precision (R2 = 0.71, RMSE = 8.6). We then catego‐

rized  the canopy cover  into non‐forest (CC < 20%), open  forest  (20% < CC < 50%), and 

dense forest (CC > 50%). Produce accuracy (PA), user accuracy (UA), and overall accuracy 

(OA) were used to evaluate the classification of forests into the three categories described 

above (Table 4). This resulted in an overall cross‐validated accuracy of 69.6%. Among the 

three classes, the non‐forest class has higher PA (71.8%) and UA (77.7%) than the open 

forest class (PA = 70.3%, UA = 66.6%) and dense forest class (PA = 67.2%, UA = 69.0%). 

 

Figure 4. The RF model fitted accuracy using independent GFCC‐validated samples. 
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to 2019. The break interval omits the value from 0.2 to 0.21× 104 hm2 and the interval is subsequently
increased from 0.22 to 3 × 104 hm2/year.



Remote Sens. 2023, 15, 3107 9 of 17

3.2. Tree Canopy Cover Estimation

Figure 4 compares the predicted canopy cover (CC) using the RF model and the reference
CC using the independent GFCC data. The model-estimated CC is consistent with the referenced
CC with relatively high precision (R2 = 0.71, RMSE = 8.6). We then categorized the canopy
cover into non-forest (CC < 20%), open forest (20% < CC < 50%), and dense forest (CC > 50%).
Produce accuracy (PA), user accuracy (UA), and overall accuracy (OA) were used to evaluate
the classification of forests into the three categories described above (Table 4). This resulted in
an overall cross-validated accuracy of 69.6%. Among the three classes, the non-forest class has
higher PA (71.8%) and UA (77.7%) than the open forest class (PA = 70.3%, UA = 66.6%) and
dense forest class (PA = 67.2%, UA = 69.0%).
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Table 4. Cross-validated accuracy assessment for classifying canopy cover using the random forest
model. Correctly classified pixels are underlined. Three 2000, 2005, 2010, and 2015 GFCC reference
data were used to construct this table.

Reference Data

>50% 20–50% <20% Total

Classified data >50% 4684 2025 73 6785
20–50% 2199 6744 1178 10,121
<20% 85 828 3182 4095
Total 6968 9597 4433 20,998

Producers 67.2 70.3 71.8
Users 69.0 66.6 77.7

Overall accuracy 69.6

3.3. Assessment of Forest Structure Recovery

Due to the small number of detected fire events prior to 1995 (Figure 3), the fires of
25–35 YSF were not used in the construction of the forest structure recovery sequence.
We estimate the mean and standard deviation for each YSF group under different site
conditions. These groups are arranged in chronological order to obtain recovery sequences.

3.3.1. Forest Structure Recovery under Different Pre-Fire Canopy Cover

Two stand height indices showed slightly different recovery trends (Figure 5a,b). The
percentage of RH75 was the lowest at 5–10 YSF for dense forest patches and 10–15 YSF for
open forest patches, while the percentage of RH95 was the lowest at 5–10 YSF for both dense



Remote Sens. 2023, 15, 3107 10 of 17

and open forest patches. Compared with RH95, RH75 showed a delayed recovery trend
with no significant increase until 15 YSF. For open forests, the difference between 0–5 YSF
and 5–10 YSF groups of RH75 was less pronounced while RH95 showed an obvious decline.
Overall, the extent of RH75 and RH95 recovery is not more than 60% in the observed YSF.
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Three canopy indices were used to describe the pattern and extent of forest structure
recovery (Figure 5c–e). TCC and PAI indicate similar recovery trends (Figure 5c,d) for both
open and dense forests. The open forest indicates a delayed recovery with percentages
lowest at 10–15 YSF compared with 5–10 YSF for dense forest. The dense forest recovery
trend is faster in the 5–10 YSF and 15–20 YSF periods but slower between the 15–20 YSF and
the 20–25 YSF periods. Although the declines of TCC and PAI are higher than stand tree
height, TCC and PAI have significantly faster recovery trends than the tree height indices
and increased sharply between 15–20 and 20–25 YSF for open patches. In contrast, FHD
has the smallest change relative to an unburned area with the lowest percentage of 53%
for dense forests and 57% for open forests. FHD of the open forest shows no significant
recovery trend after a fire compared with the dense forest.

Among all percentage indices, we found on average, greater losses and faster re-
coveries in dense forest patches relative to open forest patches in the early successional
stage (10–20 YSF), and delayed recovery in all percentage indices for both open and dense
patches, i.e., the recovery trend was not detected until 10 years after the fire. The stan-
dard deviations (SD) of the various indices were lower for the 10–20 YSF compared with
0–10 YSF and 20–25 YSF.
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3.3.2. Forest Structure Recovery under Different Burned Severity

The indicated forest structure recovery under different levels of burned severity is
displayed in Figure 6. The percentage value of RH95 is generally greater than that of RH75,
and the values of RH95 remained significantly higher (i.e., 80–120%) at 0–5 YSF in low
burned severity patches. For patches with low and moderate severity, the lowest values are
found in the 10–15 YSF group, while for patches with high severity, the lowest values are
observed in the 5–10 YSF group.
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For three foliage indices, we found low and moderate severity TCC and PAI did not
decrease significantly between 0–5 and 5–10 YSF, and there was an increase for PAI. Similar
to the stand height indices, for percentage indices of TCC, PAI, and FHD, the lowest value
was in the 10–15 YSF group for low and moderate burn severity patches and the lowest
value was in the 5–10 YSF for high severity patches. The percentage indices of TCC and
PAI values were lower when compared to the stand height indices.

There were differences in the average structure recovery patterns amongst the three
burn severity classes. In the 25–year chronosequence, the percentages indices were rela-
tively high for low burned severity, and then decreased for moderate and then high severity
classes. We found that the low and moderate-burned patches had a later recovery trend
than high-burned patches. The average increase (AI) in indices was highest for low burned
severity (AI = 27.06%), followed by moderate (AI = 25.7%) and high burned (AI = 18.7%)
severities between 10–15 YSF and 15–20 YSF. Standard deviations were relatively high in
0–5 YSF and 20–25 YSF.
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4. Discussion
4.1. Forest Structural Response to Pre-Fire Canopy Cover

Forest structure immediately after the severe fire is usually characterized by standing
dead wood and canopies remain relatively open for a short period after the fire [44].
Johnstone et al. [45] found that it might take about 3–7 years for most trees to become
established following the fire at boreal sites. Therefore, instead of detecting new tree
growth, GEDI metrics were sensitive to the loss of residual structure during the early post-
fire successional stage, as further decreasing trends were observed both in the structure of
tree height and canopy structure (Figure 5). With new trees growing to a certain height,
the subsequent increasing trends start to be captured by the percentage of GEDI metrics,
forming a concave trajectory of forest structure recovery. This result was consistent with
Bolton et al. [12] who found a similar concave recovery trajectory for canopy cover and stand
height in high-severity burn patches. The field photos collected from the 2018 historical fire
investigation across study areas can also explain this concave recovery trajectory in relation
to percentage indices (Figure 7). Within eight years of the fire (Figure 7a–c), we can see the
residual structure such as dead wood and snags begin to fall, and the new tree regrowth
starts from the understory stratum, demonstrating the decreasing trends in relation to tree
height (RH75 and RH95) and canopy profile (TCC, PAI, and FHD). Fifteen years after the
fire (Figure 7d–f), the new sprout trees gradually grew from open space to canopy closure,
indicating the increasing trends of tree height (RH75 and RH95) and canopy profile (TCC,
PAI, and FHD) in this period.
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Dense and open patches have a similar percentage of GEDI metrics loss in the first
five years, while indices were further decreased more for dense patches than for open
patches. The probable reason is that the indices we used are relative to the unburnt patches
with similar pre-fire canopy cover conditions, implying that as residual structure in high
burn severity patches gradually collapses, forming open spaces, dense patches have a
greater proportion of structural loss compared to open patches. Differences in recovery
rates between dense and open patches were further confirmed by percentage indices. Dense
patches exhibited faster growth and recovery compared to open patches in the subsequently
increased trends, possibly because pre-fire canopy attributes can reflect growth environment
so that more productive sites with higher canopy cover reestablish cover more quickly after
fire than less productive sites [46]. Bolton et al. [12] also proved faster tree recovery under
pre-fire dense canopy cover conditions than that under open conditions. These findings
demonstrate that forest canopy cover prior to fire is an important indicator of structural
response post-fire, limiting the growth of new trees following the fire.
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Canopy cover metrics (TCC and PAI) and tree height metrics (RH75 and RH95) dis-
played a different response to disturbance in our observed time sequences. The result
indicates that TCC and PAI can recover more with a higher value than RH75 and RH95,
which is likely explained by the rapid development of foliage of trees [12] while vertical
tree growth and biomass gains are much slower processes [47,48]. Martín-Alcon et al. [49]
and Matasci et al. [50] both agree on the marked differences in the evolution of canopy
cover and height estimates in boreal forests, where tree cover reached pre-fire values earlier
but canopy height did not recover. As for the recovery of the vertical profile, high FHD
value in forest ecology often results from more complex forest structures (e.g., caused by
multiple canopy layers) [41]. Therefore, the recovery trend of FHD is slow in the observed
successional stage, as trees are even-aged and maximum tree size is limited by a short
growth period [51]. Johnston et al. [52] also found early successional stands to be less FHD
than late successional stands.

4.2. Forest Structural Response to Burn Severity

Burn severity is another key factor that determines the survival rate of trees and
interacts with the physical environment affecting post-fire forest structural recovery [53,54].
Different degrees of structure loss in three levels of burn severities were further confirmed
by GEDI metrics, as the percentage values of GEDI metrics are highest in low burn severity
levels, followed by moderate and low burn severity. In terms of the recovery trajectory, we
also found a concave trend for low- and moderate-severity patches with the lowest value
for 10–15 YSF, indicating that regardless of the severity of the fire, GEDI metrics are more
sensitive to residual structure decomposition in the short term after the fire than vegetation
recovery. Karna et al. [46] also found a persistent reduction in canopy cover of eucalypt
forests under different burn severities for at least seven years, especially for moderate- and
high-burn severity. Further decreasing trends were observed between 5–10 and 10–15 YSF
in low- and moderate-severity patches. This may be attributed to the fact that, compared
to high-severity patches, low- and moderate-severity patches retain a greater number of
live trees in their canopy structure, which restricts the regeneration of new trees and the
decomposition of residuals in the short-term following the fire. As a result, it takes a longer
time for GEDI metrics to detect an increasing trend. On the other hand, post-fire artificial
regeneration measures, such as residual wood removal and replanting, are more likely to be
implemented in severely burned patches. This difference can be further confirmed by the
field observation in Figure 8. We can see that the residual structures (i.e., fallen logs, snags)
still remain in the moderate burn severity plot (Figure 8a) and new trees tend to grow faster
in the high burn severity plot (Figure 8b). In terms of dynamic change in percentage of GEDI
metrics, post-fire tree height in three burn severity levels displayed that RH75 has a lower
percentage value than that of RH95. This is consistent with the widespread observation
that fire thins from below by removing smaller trees [55,56]. Besides, we noticed that the
percentage TCC and PAI of low and moderate burn severity patches showed no difference
or even an increasing trend between 0–5 and 5–10 YSF groups and then decline between
5–10 and 10–15 YSF groups, probably because the canopy foliage recovered faster from live
trees in the short-term after the fire while the dead residual structure would continue to
decompose after 10 years since the fire.

4.3. Limitation

The application used of GEDI metrics for post-fire forest recovery quantification is
limited. We only used the GEDI dataset collected from 2019 to 2021, and the statistical
results of percentage indices are influenced by the number of fire events within one YSF
group. In terms of chronosequence construction, our result showed that these indices
have relatively high variability in 0–5 YSF, 5–10 YSF, and 20–25 YSF groups. Although
we have controlled variables in the analysis of post-fire forest structure recovery, the use
of space-for-time substitution method along a broad latitudinal gradient from 47.27◦ to
51.66◦ would lead to the high variability of percentage indices in one YSF group. On one
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hand, our structure recovery trajectory might be compounded by differences in climatic
conditions across the landscape [57], causing a great difference in vegetation regrowth
over the same period of time. For example, Jiang et al. [57] revealed that the radial
growth of larch might be decreased by warmer temperatures and decreasing precipitation.
Similarly, tree regeneration after disturbances could be limited under post-fire drought
events since droughts constrain seedling establishment and growth [58]. On the other
hand, variability in species composition across the landscape could also contribute to the
structural differences within one YSF group. As post-fire tree establishment is strongly
linked to pre-fire species composition [43,59], structural differences between stands could
redevelop during the early stages of succession. Besides, GEDI data cannot provide wall-to-
wall maps of the forest stand (Figure 2), implying that discrete GEDI data have limitations
in describing the complete characteristics of a burn area, leading to bias in characterizing
the post-fire forest structure change.
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In addition to the uncertainties due to the use of GEDI data by space-for-time sub-
stitution method, the post-fire forest structure recovery can be also distorted by the de-
termination of recovery drivers. The post-fire structural development depends largely
on burn severity, due to its relation to tree seedling densities after fire, depending on
pre-fire vegetation composition, seedling mortality, and reestablishment processes [60–63].
In this study, the assessment of burn severity level was accomplished by applying a fixed
dNBR threshold since many researchers found a high relationship between dNBR and
burn severity [36]. However, a number of factors can confound the distinction of burn
severity levels such as vegetation characteristics, the acquisition time of pre- and post-fire
imagery, and soil properties [16,64]. Moreover, it should be mentioned that burn severity
might be easily underestimated, especially for low and moderate levels, since burn severity
assessments based on the spectral index were mainly determined by upper canopy spectra
and the actual damage of under- or mid-story vegetation cannot be captured correctly [65].
Therefore, when a single threshold of dNBR was applied to classify the burn severity level
across a wide range of areas, the confusion of severities may be included in this analysis,
leading to the variability in structural responses observed. The classification accuracy of
pre-fire patches into dense or open forests based on Landsat and GFCC data could also
contribute to the variability in structure response. In our study, the values of PA and UA
were lower than 80%, indicating that there is mutual confusion among different pre-fire
patch types in the classification results.

5. Conclusions

In this study, we assessed post-fire forest structure development after fire across the
Great Xing’an Mountain region using a combination of time series Landsat data and GEDI
data. Our results suggest that burn severity and pre-fire canopy conditions have a strong
influence on post-fire stand development. In terms of burn severity, the percentage of each
metric is highest in low burn severity followed by moderate and high burn severity. A more
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delayed recovery was found in low and moderate burn severity but with a faster recovery
when compared to high burn circumstances. In terms of pre-fire canopy conditions, dense
forests displayed a larger loss but faster growth and recovery than open forests. Additionally,
noticeable different recovery patterns between stand mean height (i.e., RH95) and canopy
cover metrics (i.e., TCC and PAI) were found in high burn severity patches, as the percentage
of TCC and PAI recovered more than that of tree height within the observed time sequence.
The largest proportion of PAI and TCC is over 75% in the 20–25 YSF group while RH95 is
less than 60%. Although the 25-year chronosequence is composed of multiple fire events
using the space-for-time substitution method, an obvious transition from open canopies
of residual structure to canopies closed by new trees could be captured by GEDI metrics.
As the amount of GEDI data increase, a long-term observation of post-fire forest structural
recovery for a specific site can be obtained, avoiding the need to resort to space-for-time
substitutions. Our work provides the first step in characterizing the post-fire succession of
forest structure. It can provide useful information about forest structural restoration status
to support the post-fire restoration activities in Great Xing’an Mountain.
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