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Abstract: Understanding the evolution of river morphology is crucial for comprehending changes
in water resources and implementing development projects along rivers. This study proposes an
integrated approach utilizing remote sensing image data combined with deep learning and visual
interpretation algorithms to analyze continuous-type changes in river morphology. This research
focuses on the lower reaches of the Minjiang River in China and comprehensively analyzes the
river’s morphological evolution from 1986 to 2021. The results show that the proposed method of
river water identification in this study demonstrates high accuracy and effectiveness, with an F1
score and Kappa coefficient greater than 0.96 and 0.91, respectively. The morphology of the river
channel remains stable in the upstream and estuarine sections of the study region while undergoing
substantial alterations in the middle section. Additionally, this study also identifies several factors
that significantly impact the evolution of river morphology, including reservoir construction, river
sediment mining, river training measures, geological conditions, and large flood events. The findings
of this study can provide some insights into the management and conservation of water resources.

Keywords: river morphology; water body identification; remote sensing; UNet; MobileNet;
Minjiang River

1. Introduction

Water is a crucial natural resource that underpins human life and well-being [1,2]. To
accomplish sustainable, high-quality developments of socio-economic and environmental
systems, water resources management problems must be prioritized, their status must
be systematically monitored, their allocation must be optimized, and they must promote
sustainable growth [3,4]. Rivers, as the main carriers of surface water resources, undergo
morphological changes due to regime shifts in water resources [5], which have impacts
on ecological environments, hydraulic engineering, and hydrological meteorology [6].
Monitoring rivers and examining their morphological evolution can enable us to better
understand water resource trends and develop more effective river-based engineering
projects, thereby promoting efficient water use, river regulation, and societal stability [7].

Traditional field surveys offer high precision but require significant effort and resources
to measure complex river morphology, hindering continuous, high-temporal-resolution
monitoring. Remote sensing images, however, provide extensive coverage, frequent revisits,
and low-cost measurements, enabling periodic observations of surface features [8-11]. In
hydrological remote sensing, these images have been widely employed for monitoring
coastal changes and large lakes [12,13].

The launch of satellites, such as Landsat, Sentinel, SkySat, and SuperView, has sig-
nificantly improved the spatial resolution of remote sensing imagery [14]. Specifically,
the SkySat-1 and SkySat-2 have a GSD of 0.86 m for panchromatic bands and 1.1 m for
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multi-spectral bands, while the SuperView-1 captures images with a 0.5 m resolution for the
panchromatic channel, and 2 m resolution for the blue, green, red, and NIR multi-spectral
channels [15,16]. Unfortunately, these satellites” data are not currently available for free. On
the other hand, the Landsat and Sentinel satellite series provide high-resolution imagery
data with spatial resolutions of 30 m and 10 m, respectively, which offer detailed topograph-
ical, vegetative, and hydrological information [17]. Furthermore, these data are available
to the public for free, making them more suitable for broad scientific research. Through
digitizing and analyzing remote sensing imagery, researchers can identify and analyze the
geomorphic features of rivers, allowing for effective monitoring and analysis of the process
of a river’s morphology evolution. However, the traditional methods used to identify
water bodies have limitations, including low accuracy in single-band threshold methods,
complex calculations involved in multi-spectral band methods, and difficulties in deter-
mining water body boundaries when they appear fuzzy using water index methods [18].
The rise of machine learning algorithms offers innovative approaches for water body
recognition and river morphology analysis [19-22]. With modern computers’ powerful pro-
cessing capabilities, high-precision automatic interpretations of remote sensing images are
achievable, and the introduction of residual connection mechanisms further propels image
recognition into deep learning territory. Deep neural networks, utilizing large-scale param-
eters for data fitting and training, can surpass humans’ visual interpretation ability with
sufficient data [23].

The Minjiang River basin, located in Fujian Province, China, is a major inlet to the
East China Sea [24]. Since the 1990s, significant downstream changes have occurred due to
the Shuikou Reservoir completion and rapid socio-economic development [25-27]. These
changes manifest as altered water and sediment conditions, hydrodynamic conditions, and
impacts on flood control, water supply, and coastal socio-economic development.

For the first time, this study proposes and applies an approach combining remote
sensing images (1986-2021), deep learning algorithms, and visual interpretation techniques
to examine the morphological evolution and underlying causes of the Minjiang River’s
downstream region over the past 35 years. This study enables us to enhance our comprehen-
sion of the river’s present condition and future trajectories, systematically track variations
in water resources, and provide crucial data to support river management initiatives.

2. Study Area and Based Data
2.1. Study Area

The downstream area of the Minjiang River is located in Fuzhou City of Fujian
Province, China (Figure 1), spanning between 25°15’ and 26°39'N in latitude and 118°08’
and 120°31'E in longitude. This region is characterized by a subtropical monsoon climate
with warm temperatures and abundant rainfall, averaging between 1400 and 2300 mm
annually [28]. The study area encompasses the main stream of the Minjiang River, which
flows from the Shuikou Reservoir to the sea, passing through Minqging (MQ), Houguan (HG),
Mawei (MW), and Tingjiang (TJ) counties. Fuzhou City covers an area of 11,575 km?, and the
region had an estimated population of 7.34 million in 2019. The downstream channel of
the Minjiang River is characterized by a complex river network, abundant water resources,
and diverse ecological environment, making it an important water resource in the region.

The schematic diagram and the DEM of the study area are shown in Figures 1 and 2,
respectively. The MQMH section is the river section between Shuikou Reservoir and HG;
the rivers are mostly mountainous type rivers, which are relatively less directly influenced
by human activities. In the vicinity of HG, the Minjiang River is divided into two sections:
the NG section and the BG section. The BG section passes through urban areas and serves
as a typical waterway for urban locales. In contrast, the NG section has a relatively wider
river channel with a slower river flow. Subsequently, the NG and BG sections converge
near MW, causing the river flow to change direction from southeast to northeast. After
passing through TJ, the river is separated by Langqi Island before flowing into the East
China Sea via the Meihua waterway and Changmen waterway.



Remote Sens. 2023, 15, 3093

30f24

Shuikou Reservoir

26°5'0"N  26°10'0"N  26°15'0"N

Legend R, awc ¥ ihua~ |
B BG Section . :

MQMH Section
Bl NG Section

MW Section 0 2 4 8 Miles

| N S S

25°55'0"N  26°0'0"N

118°50'0"E 119°0'0"E 119°10'0"E 119°20'0"E 119°30'0"E 119°40'0"E

Figure 1. Schematic diagram of the study area.

118°50'0"E 119°0'0"E 119°10'0"E 119°20'0"E 119°30'0"E 119°40'0"E
T T T T T T

N

Elevation(m)

CJ-142--39 EW349-450
F [J-38-33 B 45.1-59.6
[C)34-84 [ 59.7-80.3
C1s85-120 8 80.4-109.7
B i2i-145 [EW1098-1514
M 146-163 WM 151.5-2106
M 164188 210.7 -294.7
0 189-224 [3294.8-4140

25°55'0"N  26°0'0"N  26°5'0"N 26°10'0"N 26°15'0"N 26°20'0"N
25°55'0"N  26°0'0"N  26°5'0"N 26°10'0"N 26°15'0"N 26°20'0"N

| [225-275 [J4141-5834 8 Miles A
B 276-348 [1583.5-8239 [N )
L L L A A A
118°50'0"E 119°0'0"E 119°10'0"E 119°20'0"E 119°30'0"E 119°40'0"E

Figure 2. The DEM of the study area.

The vast upstream watershed and the influence of frontal rainfall make floods a fre-
quent occurrence in this watershed. Since 1986, the watershed has experienced significant
floods in 1992, 1998, 2002, 2005, 2006, and 2010. These floods resulted in a significant loss
of lives and property, with the flood peak flow at Zhugqi hydrological station reaching
33,800 m3/s on several occasions. In light of these challenges, comprehending the evo-
lution of the river morphology of the Minjiang River is crucial for rational planning and
development of water resources, as well as supporting the regulation of the river in the
downstream section of the Minjiang River.

2.2. Based Data
2.2.1. Remote Sensing Image Data

In this study, remote sensing images from Landsat 5, Landsat 8, and Sentinel 2 satellites
were used to study the evolution of river morphology in the lower Minjiang River, covering
the period from 1986 to 2021. Due to the combined effects of satellite operating time and
weather conditions, remote sensing images may be subject to interference, such as cloud
cover and uneven lighting. Therefore, we screened the collected remote sensing image data
to ensure their accuracy and reliability. Additionally, April data were specifically chosen
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to ensure temporal consistency and avoid the impact of occasional factors, such as floods.
Ultimately, 14 complete remote sensing image data were obtained (Table 1).

Table 1. Remote sensing image statistics table.

Satellite Sensors Time Spatial Resolution (m)
Sentinel2 1 April 2021 10
Sentinel2 7 April 2019 10
Landsat8 18 April 2017 30
Landsat8 13 April 2015 30
Landsat8 23 April 2013 30
Landsat5 2 April 2011 30
Landsat5 12 April 2009 30
Landsat5 4 April 2006 30
Landsat5 12 April 2003 30
Landsat5 3 April 2000 30
Landsat5 11 April 1997 30
Landsat5 19 April 1994 30
Landsat5 21 April 1990 30
Landsat5 29 April 1986 30

2.2.2. Model Training Dataset

To train our model, we sourced water body samples from two different methods:
geographic country survey (China) and manual annotation. The geographic country survey
data are overlaid onto remote sensing images of varying resolutions using ArcGIS software.
After careful inspection and refinement, the resulting vector data are converted into a
binary mask map. Similarly, manually labeled images are created using ArcGIS software to
generate water body vector data, which are converted into binary mask maps and cropped
into 256 x 256 size training data.

To improve the model’s recognition ability under diverse conditions, we expanded the
dataset using image enhancement techniques such as random rotation, contrast adjustment,
horizontal and vertical flipping, and brightness contrast adjustment [29,30]. By combining
these data pre-processing steps, we obtained a total of 138,000 and 61,380 sets of Landsat
and Sentinel data, respectively. These were then divided into training and test sets at a
9:1 ratio.

3. Method
3.1. Remote Sensing Image Pre-Processing

The pre-processing of remote sensing images includes several steps. First, area network
leveling is performed using the panchromatic image to match connection points and ensure
an error of fewer than 3 pixels (Landsat-8 images only). Orthorectification is then carried
out using surface control points and resampling the image into an orthophoto, utilizing
Eurasian 30 m DEM data. The Landsat and Sentinel-2 sensor bands are then resampled to a
resolution of 30 m and 10 m, respectively, using the nearest neighbor interpolation method.
To achieve overall color balance, the hue, saturation, contrast, and brightness are adjusted
based on grayscale characteristics of the remote sensing image and reference image. Color
uniformity is achieved by applying a color uniformity template to each image block to
avoid interpretation errors caused by excessive color differences during interpretation.
Finally, through digital processing such as geometric mosaic, tonal adjustment, and de-
overlap, a new mosaic network is generated, and mosaic splitting is performed to stitch the
simultaneous remote sensing images into a complete image.

3.2. River Water Identification Method

Remote sensing image interpretation is carried out by combining neural network and
visual interpretation method in this study. Firstly, the neural network utilizes multi-band
data from remote sensing images as inputs and is trained with water and non-water labels
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to automatically recognize water bodies. Specifically, the bands 1-5 and 7 of Landsat 5
images, bands 2-7 of Landsat 8 images, and bands 2-5, 9, and 10 of Sentinel-2 images
are used as inputs, respectively. Additionally, based on high-definition remote sensing
images, visual interpretation method is used for secondary correction of local areas with
poor automatic recognition effects to improve the recognition effect of water bodies. Finally,
GIS tools are used to calculate the morphological information of characterized rivers.

The water body identification in Landsat remote sensing images uses the UNet neural
network. UNet is a highly symmetric encoder—decoder network widely used in image
recognition fields such as biomedical, unmanned, and feature classification [31]. The model
encoder layer comprises two convolutional layers of 3 x 3 size to extract features, and a
2 x 2 size maximum pooling module is employed to down-sample the extracted features.
Each module in the decoder layer incorporates an up-sampling operation, which first
employs a depth-space transformation through a 2 x 2 sized deconvolution module, and
constructs a residual convolution layer connection at the same level to enable fusion of
features across different scales. Finally, the decoded code is mapped to the water body
identification result via a fully connected layer. Schematic diagram of UNet network
structure as shown in Figure 3.
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Figure 3. Schematic diagram of UNet network structure.

Up-sampling Unit

The identification of water bodies in Sentinel 2 remote sensing images utilizes a combined
MobileNetV2 backbone network and DeeplabV3+ network proposed by Luo et al. [32] (Mo-
bileNetV2 is a lightweight and efficient convolutional neural network that achieves high
accuracy with fewer parameters, making it suitable for real-time processing of remote sens-
ing images). On the other hand, DeeplabV3+ is a powerful semantic segmentation model
that accurately classifies and segments objects in images, thanks to its encoder-decoder
architecture with deconvolution and skip connections that capture multi-scale contextual
information and enhances spatial resolution. Combining these two networks results in a
high-accuracy model with low computational costs. The MobileNetV2 backbone network
efficiently extracts features, while the DeeplabV3+ network leverages the feature maps
for accurate semantic segmentation. This combination is particularly useful for real-time
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processing of large remote sensing datasets, specifically for water body identification. The
specific structure of the proposed model is shown in Figure 4.
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Figure 4. The combined model based on MobileNetV2 and DeepLabV3+.

3.3. Beaches and Sandbars Identification Method

Distinguishing sandbars and beaches from adjacent riverbanks and land in multi-band
images can be challenging due to their various shapes. To address this issue, we utilize a
visual interpretation method to manually delineate the range of sandbars and beaches in the
study area, resulting in more precise edge curves. Landsat 5 and Landsat 8 images are then
extracted using a combination of bands 543 (band 5 for red, band 4 for green, and band 3
for blue in RGB), while Sentinel remote sensing images are identified using bands 654
(band 6 for red, band 5 for green, and band 4 for blue in RGB). Beaches are typically found
in curved portions of the river and appear as gray-white with high brightness. In contrast,
sandbars of different sizes and shapes are distributed throughout the river channel and
display a dark red color.

3.4. Evaluation of the Effect of Remote Sensing Image Interpretation

In order to comprehensively evaluate the effect of remote sensing interpretation,
accuracy, precision, recall, F1 index, and Kappa [33] coefficient are used to analyze the
effect of water body identification in this study.

Accuracy is the proportion of correctly classified samples to the total number of sam-
ples, and a value closer to 1 indicates better model performance. It is useful when the
classes are well-balanced and the cost of false positives and false negatives is similar. Preci-
sion is the proportion of true positive samples to the total number of predicted positive
samples, and it is a useful metric when the cost of false positives is high. Recall is the
proportion of true positive samples to the total number of actual positive samples, and it
measures the ability of the model to identify positive samples. It is useful when the cost
of false negatives is high. F1 score is the harmonic mean of precision and recall, and it
provides a balanced evaluation of the model’s performance. It is particularly useful when
the classes are imbalanced. Kappa coefficient is a statistic that measures the agreement
between the predicted and actual classifications of a model, taking into account the pos-
sibility of agreement by chance. The value of kappa ranges between —1 and 1, with a
value of 1 indicating perfect agreement and a value of 0 indicating agreement by chance.
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Equations (1)—(5) can be used to express accuracy, precision, recall, F1 score, and Kappa
coefficient, respectively.

TP+TN

A —
CUrY = TPy TN+ FP+ FN

)

. TP
Precision = TP L EP (2)

TP

Recall = ———
= TPIEN

3)
2 x Precision x Recall

F1
Precision + Recall

)

_ TP + TN
PO= TP T FP T EN T TN
_ (TP + FN) x (TP + FP) + (TN + FN) x (TN + FP) 5
Pe = (TP + FP + EN + TN)? ©)
__ Po — pe
K=h-L

where F1 represents the F1 score; K represents the Kappa coefficient; TP represents the
number of positive samples classified correctly; TN represents the number of negative sam-
ples classified correctly; FP represents the number of positive samples classified incorrectly;
and FN represents the number of negative samples classified incorrectly.

3.5. River Morphology Change Parameters

In this study, curvature coefficient, fractal dimension, land use transfer matrix, and
the area change in sandbars and beaches are selected to characterize the morphological
evolution of the river.

3.5.1. Curvature Coefficient

The curvature coefficient is used to characterize the degree of river curvature, with a
higher value indicating greater curvature, which can be mathematically expressed using
Equation (6).

L

K=o (6)

where L is the length of the centerline of the river section; LR is the straight-line distance
from the beginning to the end of the river section; and K is the curvature coefficient of
the river surface. Meanwhile, for the river with many branches and complex morphology,
the curvature of the primary channel is mainly considered in this study, i.e., only the
length of the primary channel is calculated, so as to characterize the curvature of the
primary channel.

3.5.2. Fractal Dimension

The fractal dimension is used to describe the complexity and irregularity of the river
morphology [34]. Box counting method was used to calculate the fractal dimension of the
river. Different grid lengths of square fishing nets were created using ArcGIS software, and
the nets were cut by the river surface file; after that, counting the number of nets obtained
by cutting, the fractal dimension calculation can be expressed by Equation (7).

FD = _1im 8N ()
r—0 lg(r)

@)

where N(r) is the minimum number of grids covering the river in the corresponding year;
r is the size of the square grid covering the river; and FD is the fractal dimension of the
river. By varying the size of r, IgN(r) is linearly related to Ig(r), and FD is the absolute value
of the slope of the line after linear regression of IgN(r) and 1g(r).
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3.5.3. Land Use Transfer Matrix

The land use transfer matrix is a valuable tool for analyzing changes in land cover
over time in a specific area. It is often represented as a 2D matrix. By integrating the land
use transition image with the transfer matrix, it is possible to identify the location and
area of land type conversion between two different times. This approach allows for the
observation of both the static distribution of various land types in a fixed area and the
dynamic changes in the area of each land type over time. As a result, the land use transfer
matrix is widely used in analyzing land use change [35,36].

This study first obtains the distribution of river water, riverbanks, and sandbars in
each year through remote sensing image identification. The land use transfer image is then
created using ArcGIS software, and the transfer matrix is constructed by calculating the
conversion area between each land block type. The mutual conversion process between
different land use types is subsequently quantitatively analyzed using the transfer matrix.
The transfer matrix calculation is represented by Equation (8).

Si1 S12 o+ S
Ss1 S 0 Sm

Sij =1 . S ®)
Snl Snz te Snn

where S denotes the area of each land use type, while i and j, respectively, represent the
land use type before and after conversion. The total number of land use types is denoted
by n.

4. Results
4.1. Reliability Assessment of Water Body Identification Algorithms

The study randomly deploys 1200 points to quantify the effects of remote sens-
ing image spatial resolution on river water body identification. Among these points,
800 are identified as water bodies and 400 as non-water bodies through visual inspection,
as displayed in Figure 5.

Legend
Not Wator
® Water

Figure 5. Schematic diagram of random sites in the study area.

Table 2 displays the accuracy, precision, recall, F1 index, and Kappa coefficient of the
identification results of the remote sensing images. The F1 score of Sentinel-2 image exceeds
0.97, and the recall rate surpasses 0.95. The accuracy, recall, and F1 index of Landsat-8
image are 0.960, 0.943, and 0.969, respectively. Furthermore, the Kappa coefficients of
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Sentinel image and Landsat image are 0.924 and 0.912, respectively, which indicated that
the identification results are reliable.

Table 2. Analysis of water extraction for the downstream watershed of the Minjiang River.

Landsat Sentinel
Accuracy 0.960 0.966
Precision 0.997 0.986
Recall 0.943 0.963
F1 0.969 0.974
Kappa 0.912 0.924

4.2. Overall Evolutionary Characteristics of the Downstream of Minjiang River

Figure 6 presents the annual variations in runoff and sediment transport at the Zhugqi
hydrological station from 1986 to 2021. Over this timeframe, the annual runoff displays
a fluctuating pattern, with the highest value in 2016 and the lowest in 1991, without a
significant overall trend. There are some fluctuations in the annual sediment transport
from 1986 to 1992, which decreases significantly after 1993. Moreover, the relationship
between flow and sediment during the periods of 1986-1992 and 1993-2021 is shown in
Figure 7. A strong linear relationship is observed between annual runoff and sediment
transport from 1986 to 1992, with a linear regression R2 value of 0.985. However, after 1993,
this relationship decreases, with an R2 value of 0.544. Additionally, the annual sediment
transport shows a more obvious decreasing trend under the same annual runoff conditions.
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Figure 6. Annual runoff and sediment transport at Zhugi station.
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Figure 7. Correlation between annual runoff and sediment transport at Zhugi Station.
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Figure 8 shows a distinct trend in the water area of the lower Minjiang River, with
an initial increase, followed by a decrease and eventual stabilization. The water area
increased during 1986-1997 and experienced a decline during 2000-2003. Since 2003, there
has been a tendency toward stabilization in the overall water area, with the declines being
comparatively smaller. The sandbar area has remained stable over the last 35 years, with
an average annual area of 24.58 km?. In contrast, there has been a significant reduction in
the beach area, which went from 37.09 km? in 1986 to 16.44 km? in 2021, representing a
decline of approximately 20.65 km?.

50 370
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Figure 8. The changes in water body, beach, and sandbar areas in the downstream of Minjiang River.

The transformation of land use during 1986-2021 can be observed in Figure 9, where
the most significant change takes place in the NG section. Numerous beaches are converted
into water bodies in the upper part of the NG section, and the change in river morphology
downstream of the NG section is also complex, with major transformations between
sandbars, beaches, and water bodies.

Land use transformation from 1986 to 2021 ‘N\

Legend
- ‘Watcr-Water
- Water-Sandbar
|:[ ‘Water-Beach
I:I Sandbar-Water
I:l Sandbar-Sandbar
I:[ Sandbar-Beach
- Beach-Water
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0 225 45
Miles

Figure 9. The land use transformation from 1986 to 2021 (the blue and orange circled areas represent
the northern and southern part of the NG section, respectively).

Between 1990 and 1994, there was a particularly drastic exchange between beaches
and water, with approximately 12.25 km? of beaches being converted into water, while
the area transformed into sandbars during the same period was only 0.73 km?. From
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1994 to 2000, 9.90 km? and 7.40 km? of sandbars and beaches were converted into water
bodies, respectively. However, there was a significantly decreased area of water bodies
during 2000-2006, with about 10.35 km? and 9.95 km? converted into beaches and sandbars,
respectively. Over the period of 20062021, there was relatively less variation in land use
changes, with the conversion between all types of parcels remaining within 5 km?.

4.3. Evolutionary Characteristics of the River Sections

To obtain a more detailed understanding of the changes in the Minjiang River, the
study area is divided into four distinct sections, as displayed in Figure 1. These sections
include the following: MQMH section, NG sections, BG sections, and MW.

4.3.1. MQMH Section

The primary channel of the MQMH section is narrow and elongated. To comprehen-
sively analyze variations within MQMH, twenty-nine cross-sections (MQ1-MQ29) were
established, and the evolution of each cross-section is illustrated in Figure 10. While the up-
stream segment of MQMH remains relatively stable, with minimal interannual variability
in its main channel, there are more significant oscillations in the downstream areas at the
river bends. Between 1986 and 2003, the river’s course in the MQ25-MQ29 cross-section
exhibited significant fluctuations characterized by amplitudes exceeding 100 m, alternating
between swings to the left and right banks. Since 2003, the river has been stabilizing,
leading to a decrease in the overall amplitude of the river’s swing.
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Figure 10. Main channel changes in the MQMH section.

Based on the topographical changes observed in the river’s cross-section, the upstream
river in the MQMH section has been gradually deepening, with fewer changes in the sub-
merged topography of the river occurring after 2016 (Figure 11). Similarly, the downstream
channel of the MQMH section (MQ27, MQ28) has also experienced a deepening trend
overall, with some oscillation, particularly in MQ28. At the position of the deep flood line,
MQ28 oscillated by over 100 m from 2008 to 2016. The degree of change in the river’s
underwater topography decreased after 2016.

The distribution of river water, sandbars, and beaches in the MQMH section is depicted
in Figure 12, showing a significant reduction in the beach area over the last 35 years.
Figure 13 depicts a decrease in the prevalence of sandbars throughout the section. During
this period, the total water area experiences two significant fluctuations: a gradual decrease
between 1986 and 1990, a notable increase from 1990 to 1994, and another gradual decrease.
Starting in 2003, the water area began to increase again, stabilizing after 2019. The beach area
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shows a marked decline. As of 2021, the beach area had decreased to 5 km?, representing a
reduction of around 12.09 km? from its 1986 level of 17.09 km?.
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Figure 11. Topographical changes in cross-section in MQMH section (the starting point is located on
the left bank). (a) MQ4; (b) MQ10; (c) MQ27; (d) MQ28.
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Figure 12. Distribution of water, sandbars, and beaches of the river in MQMH section.

The MQMH section of the river channel is moderately curved, with an overall cur-
vature range of 1.25 to 1.29 degrees (Appendix A Figure Al). The curvature increased
from 1986 to 2003, reaching a maximum value of 1.29 degrees. However, after 2011, the
changes in curvature became less pronounced and stabilize at approximately 1.26 degrees.
Compared to the measurements taken in 1986, the channel’s curvature has decreased by
approximately 0.01.

Fractal dimension calculations reveal that the river channels underwent significant
changes before 2003. Specifically, between 1990 and 1994, the fractal dimension of the
channel increased sharply from 1.46 to 1.55 degrees, resulting in a curvier overall channel
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shape. Subsequently, during 1994-2003, the fractal dimension exhibited an overall decreas-
ing trend, reaching 1.47 degrees by 2003. After 2003, changes in the fractal dimension
of the channel became less significant, following a pattern of fluctuating increases before
eventually stabilizing.
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Figure 13. Land used transformation of MQMH section from 1986 to 2021.

4.3.2. BG Section

The upper reaches of the BG section are relatively narrow, while the lower reaches
exhibit a comparatively wider profile, averaging around 618 m in width over multiple
years. Except for the pronounced curvature near the upstream entrance (about 90°), the
majority of the river appears relatively straight.

To understand variations in BG section, twenty-eight cross-sections (BG1-B(G28) are
established, and the corresponding layout and changes in width for each cross-section are
illustrated in Figure 14. Differing from the MQMH section, there is an overall decreasing
trend in the change in the channel width in the BG section. BG19 experiences the most
significant shift in cross-sectional width, with a cumulative decrease of about 378 m over
the past 35 years. In contrast, BG4 is observed to be the most stable section, exhibiting a
cumulative change of only 259 m over the same period. Ultimately, the river’s average
width has decreased by approximately 200 m from 1986 to 2021, dropping from the initial
measurement of 708 m to 500 m.
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Figure 14. Main channel changes in the BG section.
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Figure 15 shows the distribution of water, sandbars, and beaches of the river in the BG
section, and Figure 16 presents variations in the area of the BG section, revealing that the
water area has been declining over time. Although the watershed area increases from 1990
to 1997, it shows a decreasing trend from 1997 to 2011, and the area stabilizes thereafter.
By 2021, the overall decrease in the water body area is about 6.73 km? compared to 1986.
The area of the sandbar initially experiences a growth phase from 1986 to 1990, followed
by an oscillating downward trend. Until 2015, the magnitude of changes in the area of the
sandbars began to decrease, and a certain degree of increased trend appeared. The beach
area significantly decreased between 1986 and 1990, partially recovering between 1990 and
1994. Similar to the changes in the sandbar area, it showed a fluctuating downward trend
until 2009. After that, the beach area gradually increased and recovered to 1.78 km? in 2021.
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Figure 15. Distribution of water, sandbars, and beaches of the river in BG section.
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Figure 16. Land used transformation of BG section from 1986 to 2021.

The curvature of the BG section has remained relatively stable over the past 35 years,
ranging from 1.13 to 1.15, indicating that the river has remained relatively straight
(Figure A1). The fractal dimension of the river ranges from 1.47 to 1.54, with an increase
of about 0.02 between 1990 and 1997, but it shows an overall decreasing trend. By 2021,
the fractal dimension of the river decreased to 1.47, indicating that the overall shape of the
river tends to be stable and continuous, and the fragmentation of the river has decreased.
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4.3.3. NG Section

The remote sensing images show that the NG section has a wider river channel and a
complex downstream river morphology.

Using the method of equidistant division, twenty-eight characteristic cross-sections
are identified in the NG section (Figure 17). On average, the cross-sections are approx-
imately 1539 m wide, with the widest part of the channel measuring 3400 m at NG17.
Compared to the BG section, the NG section displays more significant channel variations.
Over the past 35 years, approximately 11 cross-sections have experienced an accumulated
change distance exceeding 2500 m, with the greatest change distance recorded at NG2
measuring 3557 m. The river’s centerline oscillation is most pronounced at NG5-NG10
in the BG section. Prior to 2009, the river underwent violent oscillations with amplitudes
exceeding 100 m.
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Figure 17. Main channel changes in the NG section.

Figure 18 illustrates the topographical changes in some cross-sections in this section.
Between 2003 and 2008, the NG2 cross-section experienced significant erosion, resulting in
the lowest point of the riverbed reaching an elevation of nearly —20 m. Afterward, from
2008 to 2016, the main channel experienced sedimentation, with a maximum sediment
height exceeding 10 m. Similarly, the NG6 and NG9 cross-sections experienced significant
erosion between 2003 and 2016, and the depth of the riverbed increased until the river
stabilized after 2016, whereas the main channel at NG17 continued to be eroded from 2003
to 2020, while the shoal area showed some sedimentation after 2008.

The distribution of water, sandbars, and beaches of the river in NG section are shown
in Figure 19. Between 1986 and 2021, the water surface width showed an oscillating trend
of growth. The average cross-sectional width increased by 253 m during 1990-2000. In
contrast, the average channel width decreased by 121 m between 2000 and 2011. Thereafter,
the rate of channel width change gradually slowed down, with an average increase of
about 28 m between 2011 and 2021.

The water area of the NG section underwent a slight decrease from 1986 to 1990 (from
61.14 km? to 60.49 km?), followed by a significant increase between the early 1990s and 2000
(Figure 20). Subsequently, the water area decreased markedly between 2000 and