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Abstract: A conventional way to monitor severe convective weather is using the composite reflectivity
of radar as an indicator. For oceanic areas without radar deployment, reconstruction from satellite
data is useful. However, those reconstruction models built on a land dataset are not directly applicable
to the ocean due to different underlying surfaces. In this study, we built reconstruction models based
on U-Net (named STR-UNet) for different underlying surfaces (land, coast, offshore, and sea), and
evaluated their applicability to the ocean. Our results suggest that the comprehensive use of land,
coast, and offshore datasets should be more suitable for reconstruction in the ocean than using the
sea dataset. The comprehensive performances (in terms of RMSE, MAE, POD, CSI, FAR, and BIAS)
of the Land-Model, Coast-Model, and Offshore-Model in the ocean are superior to those of the
Sea-Model, e.g., with RMSE being 5.61, 6.08, 5.06, and 7.73 in the oceanic area (Region B), respectively.
We then analyzed the importance of different types of features on different underlying surfaces for
reconstruction by using interpretability methods combined with physical meaning. Overall, satellite
cloud-related features are most important, followed by satellite water-related features and satellite
temperature-related features. For the transition of the model from land to coast, then offshore, the
importance of satellite water-related features gradually increases, while the importance of satellite
cloud-related features and satellite temperature-related features gradually decreases. It is worth
mentioning that in the offshore region, the importance of satellite water-related features slightly
exceeds the importance of satellite cloud-related features. Finally, based on the performance of
the case, the results show that the STR-UNet reconstruction models we established can accurately
reconstruct the shape, location, intensity, and range of the convective center, achieving the goal of
detecting severe convective weather where a radar is not present.

Keywords: radar; U-Net; Himawari-8; CREF; DeepLIFT

1. Introduction

Severe convective weather refers to convective weather accompanied by thunderstorm,
gale, hail, tornado, local heavy precipitation, and other severe weather phenomena. It
is a typical small to medium scale disastrous weather event that seriously threatens the
safety of aviation, ship navigation, and occurs frequently in the sea [1–3]. The accurate
monitoring and forecasting of severe convective weather are difficult and significant [4].
At present, one of the main means to monitor severe convective weather is achieved by
monitoring radar echoes. Radar composite reflectivity >35 dBZ is generally considered as
an indicator of the occurrence of severe convective weather [5]. However, in some regions,
such as oceans, radar cannot be deployed.
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It has been shown that radar echoes (e.g., composite reflectivity, vertically integrated
liquid), precipitation, and other data can be inverted to monitor severe convective weather
based on satellite data with wide coverage [6]. For example, some scholars proposed the
Geostationary Operational Environmental Satellites (GOES) Precipitation Index (GPI) by
using the physical properties of cold and warm clouds to establish the relationship between
cloud top infrared temperature and rainfall probability and intensity [7–9]. Then, in order
to improve the inversion accuracy, the results obtained by the GPI method are accumulated
over a longer time scale [10,11]. Further, researchers introduced more characteristic vari-
ables, such as relative humidity and precipitable water, and developed the Hydro-Estimator
algorithm [12]. On this basis, some scholars used exponential functions and quadratic
curves to estimate the rainfall intensity, and improved the satellite inversion precipitation
algorithm using humidity correction factors and cloud growth rate correction factors [9,13].
Traditional satellite inversion methods are usually based on the understanding of physical
processes, and rely on parametric relationships between cloud properties and rainfall and
convective processes [14].

With the development of artificial intelligence science and technology, machine learn-
ing algorithms have been gradually introduced into the field of atmospheric science in the
context of meteorological big data. Machine learning has nonlinear mapping capability and
is good at finding patterns in input and output signals, which can better solve nonlinear
problems compared with traditional statistical regression methods [15]. Several studies
have shown that models based on deep learning network structures outperform traditional
methods in experiments to invert severe convective weather [16]. For example, some schol-
ars have conducted preliminary research on precipitation reconstruction based on artificial
neural networks (ANN), and the results show that the performance of ANN satellite inver-
sion algorithms is superior to traditional linear methods [17,18]. Later, with the emergence
of convolutional neural networks (CNN) [19], more and more scholars have used CNN to
invert precipitation and vertically integrated liquid [20,21], demonstrating the effectiveness
of CNN in fusing spatial data under different underlying surfaces, and combining data
with the physical multichannel inputs in infrared spectroscopy precipitation estimations.
On this basis, for the improvement and development of CNN, U-Net is widely used in the
field of image segmentation [22]. The U-Net-based reconstruction algorithm is also used to
reconstruct radar reflectivity fields to improve short-term convective-scale forecasts of high
impact weather hazards and to identify the location, shape, and intensity of convective
systems [23–27].

However, most studies that use satellite information to reconstruct data such as radar
echoes and precipitation to monitor severe convective weather are based on data from the
land area in order to construct the reconstruction model. These studies have defaulted that
the models can be applied directly to the oceanic area, whereas there is no assessment of the
applicability of the reconstruction model to the ocean. Due to the existence of underlying
surface differences, differences in climate situations, lightning, and storm characteristics
can occur. This indicates that it is not rigorous to apply the satellite reconstruction model
constructed by datasets in non-maritime regions to the oceans directly. However, there
are also many problems if radar data from ocean are directly used for data reconstruction.
Given that the radar base stations are located on land, with the increase in offshore distance,
the elevation of radar detection radiation is too high, and the composite reflectivity of the
area far from the radar base station only contains a small amount of the basic reflectivity
factors of elevation, which is biased from the real data [28]. The accuracy of radar data
in oceanic surface is affected. Therefore, it is urgent to find a data reconstruction method
suitable for the ocean.

In addition, with the rapid development of deep learning, it is difficult for us to un-
derstand the deep learning model and fully trust it. Therefore, the interpretability of the
model has also been highly valued by scholars. In 2004, the academic community proposed
the concept of interpretable artificial intelligence [29]. After that, methods of interpretable
research such as Local Interpretable Model-Agnostic Explanations (LIME), Layer-wise Rel-
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evance Propagation (LRP), Shapley Additive Explanation (SHAP), saliency map, attention
mechanism, and DeepLIFT were proposed [30–36]. In previous reconstruction studies,
few studies have focused on the differences in the feature importance of models when
underlying surface conditions change. Due to the differences between land and ocean, it is
extremely necessary to conduct interpretable research on deep learning models generated
on different underlying surfaces.

In this study, we build deep learning models for the reconstruction of composite
reflectivity from satellite bright temperature data using U-Net with jump connections under
different underlying surfaces (land, coast, offshore, and sea). The accuracy is compared to
derive a deep learning reconstruction method that is relatively more applicable to the ocean.
Then, the importance of the features on different underlying surfaces is analyzed to obtain
an interpretable reconstruction model. The model achieves more accurate and credible
monitoring of severe convective weather in remote areas without radar deployment.

2. Materials and Methods
2.1. Materials

This study uses Himawari-8 satellite data as a model input to reconstruct the radar
composite reflectivity (CREF, unit dBZ), which is the maximum reflectivity from any of
the reflectivity angles of the weather radar. Usually, when the CREF > 35 dBZ, a severe
convective weather (SWC) can be considered to occur.

2.1.1. Himawari-8 Satellite Data

The Himawari-8 satellite data can be downloaded from http://www.eorc.jaxa.jp/
ptree/index.html, accessed on 1 June 2020, which includes visible bands (central wave-
length ranges from 0.47 to 0.64 µm), near-infrared bands (central wavelength ranges from
0.86 to 2.3 µm), and infrared bands (central wavelength ranges from 3.9 to 13.3 µm), with
a total of 16 bands and by collecting data on the distribution of clouds, air temperature,
wind, precipitation, and aerosols. In order to produce a generalized model that can be used
during both daytime and nighttime, only infrared bands were chosen in this study. Band
12 is abandoned because it characterizes O3 content.

In addition, the brightness temperature differences (BTDs) between bands can also
characterize cloud property information and facilitate the capture of severe convective
regions [37]. Therefore, according to previous studies [37–39], 17 bands in total are chosen
or calculated as the model input, including 9 single infrared bands, and 8 BTD bands, as
shown in Table 1.

Table 1. 17 satellite bands selected or calculated in this study, along with physical meaning of each
band. ‘-’ indicates minus. E.g., tbb08-tbb10 (Band 08 minus Band10) indicates the BTDs between
band 08 and band 10.

Band Central Wavelength Physical Meaning Type

Band 07 3.9 Shortwave infrared window, low
clouds, fog Cloud

Band 08 6.2 Mid and high level water vapor Water
Band 09 6.9 Middle level water vapor Water
Band 10 7.3 Middle and low level water vapor Water
Band 11 8.6 Water vapor, Cloud phase state Water, Cloud
Band 13 10.4 Cloud imaging Cloud
Band 14 11.2 Surface temperature Temperature
Band 15 12.4 Surface temperature Temperature
Band 16 13.3 Temperature, Cloud top height Temperature, Cloud

Band 08-14 6.2–11.2 Temperature, Cloud top height Temperature, Cloud
Band 10-15 7.3−12.4 Temperature, Cloud top height Temperature, Cloud
Band 08-10 6.2–7.3 Water vapor detection above cloud top Water

http://www.eorc.jaxa.jp/ptree/index.html
http://www.eorc.jaxa.jp/ptree/index.html
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Table 1. Cont.

Band Central Wavelength Physical Meaning Type

Band 08-13 6.2−10.4 Water vapor detection above cloud top Water
Band 11-14 8.6−11.2 Cloud phase state Cloud
Band 14-15 11.2−12.4 Cloud phase state Cloud
Band 13-15 10.4–12.4 Detection of ice cloud Cloud
Band 13-16 10.4–13.3 Detection of ice cloud Cloud

The temporal resolution is 10 min and the spatial resolution is 2 km. The latitude and
longitude ranges of 20◦N–40◦N, and 110◦E–130◦E are used in this study.

2.1.2. Composite Reflectivity (CREF)

The output variable used in the reconstruction model in this study is the composite
reflectivity (CREF), which is obtained from the China Meteorological Administration. The
CREF data have a 10 min time interval before June 2016, 6 min time interval in July 2016
and beyond, and the spatial resolution is 1 km. The latitude and longitude ranges of the
study area are consistent with the selected range of Himawari-8 satellite data, specifically
20◦N–40◦N, and 110◦E–130◦E.

The data (both the satellite data and the CREF) from May to October for the period
2016–2018 are used in this study.

2.1.3. GPM Precipitation Data

The Global Precipitation Measurement (GPM) is the next generation of the Global
Satellite Precipitation Measurement Program carried out in collaboration with NASA and
JAXA. The precipitation and radar CREF have a certain correlation, although the data of
GPM are difficult to fully quantify in regard to the effectiveness of CREF reconstruction,
the data can qualitatively verify the effectiveness of the models in areas without radar
coverage, which can be used as supplementary information to indicate the area of severe
radar echoes [26].

2.1.4. Data Preprocessing
Spatial and Temporal Matching

The Himawari-8 satellite data are matched with the spatial and temporal resolution of
CREF data as features and labels of the model, respectively. At the temporal level, satellite
data and radar data that do not match are discarded to ensure that they are consistent in
time (the time difference is less than 5 min). Spatially, the CREF data are sampled onto a
network with a spatial resolution of 2 km, maintaining the same spatial resolution as the
Himawari-8 satellite data.

Normalization

Data standardization processing can increase the learning ability of the model, improve
the speed of the convergence, and avoid the difficulty of the model’s training due to the
non-uniformity of magnitudes.

In this study, both the satellite data and the CREF data are normalized by z-score
normalization. The formula is as follows:

x∗ =
x− µ

σ
(1)

where µ and σ are the mean and variance of the original data, respectively. x denotes the
original data, and x* denotes the result after z-score normalization.
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2.2. Method
2.2.1. Satellite to Radar U-Net

U-Net has been shown to demonstrate good performance in the reconstruction of the
radar data in previous studies [23–27]. We use the U-Net architecture to construct a CREF
reconstruction model, namely satellite-to-radar U-Net (STR-UNet, Figure 1).
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Figure 1. The STR-UNet architecture.

Overall, the STRU-Net designed in this study is of an encoder–decoder structure [27].
The left side of the network is often referred to as the contracting path and the right side is
referred to as the expanding path. The shortcut in the middle is called the jump connection
layer, which is also known as the feature splicing layer.

The left half of the model (contracting path) is used for feature extraction, which is
repeatedly composed of convolution blocks and 2 × 2 pooling layers, and each convolution
block contains the 3 × 3 convolution layer, batch normalization layer, and ReLU activation
function. The input size of the model is a 64 × 64 × 17 satellite image, where 64 × 64
represents the length and width of the satellite image after padding, and 17 represents the
number of input channels (i.e., bands). Then, after each convolution block and pooling, the
number of feature maps is doubled and the length and width are halved, respectively.

The right half of the model (expanding path) performs the up-sampling operation,
which is composed of several transposed convolution layers, feature splicing layers, and
convolution blocks repeatedly, and the convolution block also encapsulates the batch nor-
malization layer, 3 × 3 convolution layer, and ReLU activation function. In the expanding
path, first we perform transposed convolution on the feature map obtained on the contract-
ing path; next, the obtained feature map is spliced on the channel with the feature map
at the corresponding position on the contracting path; then, the convolution operation is
performed on the feature map after splicing, and so on and so forth. After each transposed
convolution and convolution block, the number of feature maps is halved, and the length
and width are doubled. In the last layer of the model, a 1 × 1 convolution layer maps the
tensor of 32 channels to 1 channel, which in turn yields a target image of size 64 × 64 × 1.
For this study, the reconstruction of CREF data is completed.

STRU-Net combines the low-resolution information in down-sampling process and
high-resolution information in up-sampling process, and applies long-range jump connec-
tion combined with the feature details from the shallow convolution layer at the bottom of
the satellite images, which can effectively compensate for the lack of spatial information
of satellite images during the down-sampling process, and help the network to achieve
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more accurate localization. It is very important for reconstructing accurate radar data and
boundary information.

2.2.2. Research Scheme of the CREF Reconstruction

This paper aims to construct a satellite reconstruction model with satellite data that is
suitable for monitoring severe convective weather in the ocean without deploying a radar.
In order to achieve this objective, we designed the following research scheme, as shown in
Figure 2.
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Step 1. Preprocess the dataset, as described in Section 2.1.4.
Step 2. Build four STR-UNet models with different underlying surfaces. As shown in

Figure 3 (Left), Region A includes four different underlying surfaces: land, coast, offshore,
and sea. Four STR-UNet models, namely Land-Model, Coast-Model, Offshore-Model, and
Sea-Model, are constructed.

Step 3. Train and test the STR-UNet models. The first 24 days of each month (May
to October) in 2016 and 2017 are used as the training set, and the remaining days of these
months are used as the validation set. The data in 2018 are used as the test set. It is worth
noting that each model is trained and tested on its own underlying surface data. For
example, the Coast-Model is trained and tested by using the data from the coastal area.

Then, the performances of the four STR-UNet models on the oceanic areas are assessed.
The orange box regions, as shown in Figure 3 (Right), are defined as oceanic areas that are
not overlapping with the “offshore” areas shown in Figure 3 (Left). It is difficult for us to
obtain radar CREF from the ocean, and at this time, the offshore radar CREF has relatively
high accuracy and its data comes from the ocean, which means it has data features of
oceanic underlying surface. Based on this, we assume that Region B can represent the
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“ocean” underlying surface. The performance of the four models will be evaluated based
on the test set (2018) in this area.

Step 4. Perform interpretability study of STR-UNet. See Section 2.2.4 for more details.
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Figure 3. Schematic diagram of Region A (left) and Region B (right). Region A includes four different
underlying surfaces: land (yellow box), coast (green box), offshore (cyan box), and sea (blue box).
Region B only includes one underlying surface: offshore, and it does not coincide with the four
underlying surfaces of Region A.

2.2.3. Evaluation Metrics

In this study, root mean square error (RMSE) and mean absolute error (MAE) are used
to quantitatively verify the performance of the four STR-UNet models built in this paper.
RMSE and MAE can measure the deviation between the reconstructed CREF and the radar
CREF. The equations are as follows:

RMSE =
1
n

√
n

∑
i=1

(
y′i − yi

)2 (2)

MAE =
1
n

n

∑
i=1

∣∣y′i − yi
∣∣ (3)

where n represents the number of samples, y′i represents the reconstructed CREF value,
and yi represents the radar CREF value.

The classification metrics used in this study include probability of detection (POD),
false alarm ratio (FAR), and critical success index (CSI), BIAS, as shown in Table 2. The
model’s ability to reconstruct for CREF above 35 dBZ, a critical issue for many industries,
including aviation and ship navigation, was evaluated using the classification criteria.

POD =
Hits

Hits + Misses
(4)

CSI =
Hits

Hits + Misses + False alarms
(5)

CSI =
Hits

Hits + Misses + False alarms
(6)

BIAS =
Hits + False alarms

Hits + Misses
(7)
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Table 2. Contingency table of the classification score parameters.

Reconstructed CREF (<35 dBZ) Reconstructed CREF (≥35 dBZ)

True CREF (<35 dBZ) Correct negatives False alarms
True CREF (≥35 dBZ) Misses Hits

2.2.4. Interpretability

In recent years, with the rapid development of deep learning, the interpretability of
models has received more and more attention from scholars at home and abroad. Most deep
learning models are “black box” models [40]. Their “black box” nature makes it difficult
for scholars to understand the decision logic of the models in many cases, and thus they
cannot fully trust the deep learning models. In order to improve the interpretability and
transparency of deep learning models, this study investigates the interpretability of models.

For this study, a total of 17 features of satellite data were used as the input, after
obtaining a model in different underlying surfaces, respectively, besides being interested in
the effect of the model, it was essential to determine which features played an important
role in the reconstruction.

In this paper, the DeepLIFT algorithm is used to conduct interpretability research on
the above models. The DeepLIFT [36] method allocates the prediction results of the neural
network to each dimension of the input. Its working principle is to compare the activation
of each neuron with its “reference” activation, and back propagate the importance signal in
order to assign a contribution score based on the difference. In essence, this is a method of
tracing the internal feature selection of the algorithm, which uses the input differences of
some “reference” inputs to explain the output differences of some “reference” outputs.

In this study, for each band feature, first, we conducted the normalization on Region
B, and the vector with the “reference” value of all zeros was set to calculate the attribution
of each feature, which is the contribution of each input feature to the results. Finally, the
absolute value of attribution was taken, and the ratio of the absolute value of each feature
attribution to the sum of the absolute values of all feature attributions was expressed as the
importance of the feature.

Based on this method, several more important features on different underlying surfaces
can be selected, and whether surface information affects the band selection of the model
can be analyzed. Finally, we explored the relationship between the importance of bands
and underlying surfaces, as well as the reasons why different underlying surfaces differed
in importance.

3. Results
3.1. Performances of the Four STR-UNet Models

The performances of the four STR-UNet models are shown in Table 3.
First, in the process of advancing from land to coast, to offshore, and then to ocean,

it can be found that the RMSE and MAE are getting smaller on the test set in Region A.
However, it does not indicate that the model’s performance is getting better. The main
reason is that the CREF refers to the ratio of the radar waves reflected from clouds of
different heights within a certain range received by the meteorological radar. With the
increasing distance from the coastline to the ocean, the radiation elevation of the radar
is also increasing. It means that at a distance from the radar, the CREF is only calculated
based on a small number of basic reflectivity factors of higher elevations. As a result, the
proportion of CREF larger than 35 dBZ decreases significantly as one moves from land to
coast, offshore, and finally to the ocean, as depicted in Figure 4. Especially for the sea areas
in Region A, the proportion of CREF larger than 35 dBZ is only a few tenths of that of the
other three areas.
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Table 3. Performances of the four STR-UNet models.

Model Metric

Region A Test
(on Each of the Four
Underlying Surfaces,

Respectively)

Region B Test
(Ocean)

Land-Model

RMSE 7.4392 5.6120
MAE 3.2353 1.8542

POD (35 dBZ) 0.1478 0.1815
CSI (35 dBZ) 0.1274 0.1484
FAR (35 dBZ) 0.5195 0.5509
BIAS (35 dBZ) 0.3076 0.4042

Coast-Model

RMSE 7.1517 6.0755
MAE 3.0315 2.1929

POD (35 dBZ) 0.2663 0.2954
CSI (35 dBZ) 0.2177 0.1958
FAR (35 dBZ) 0.4560 0.6327
BIAS (35 dBZ) 0.4895 0.8042

Offshore-Model

RMSE 5.0824 5.0591
MAE 1.4646 1.4444

POD (35 dBZ) 0.2107 0.2144
CSI (35 dBZ) 0.1755 0.1703
FAR (35 dBZ) 0.4879 0.5469
BIAS (35 dBZ) 0.4115 0.4732

Sea-Model

RMSE 4.1744 7.7300
MAE 0.7019 2.1525

POD (35 dBZ) 0.0000 0.0000
CSI (35 dBZ) 0.0000 0.0000
FAR (35 dBZ) 0.0000 0.0000
BIAS (35 dBZ) 0.0000 0.0000

Then, we observe the performance of the four models on the test set in Region B.
For all the metrics, it can be seen that when the models are evaluated in Region B, the
performances of the Land-Model, Coast-Model, and Offshore-Model are significantly better
than those of Sea-Model. Four metrics (POD, CSI, BIAS and FAR) of the Sea-Model are
0, and the RMSE and MAE are the largest among all these models. It indicates that the
Sea-Model does not have the ability to reconstruct the CREF.

Since the Offshore-Model’s data selection resembles that of Region B (without overlap),
it can serve as a proxy for the highest level of precision that the reconstruction model is
capable of. Compared to the Offshore-Model, the Land-Model’s performances are a little
worse on the test set in Region B for all the evaluation metrics.

It is a little complicated to evaluate the performance of the Coast-Model compared to
the Offshore-Model. The RMSE, MAE, and FAR of the Coast-Model are a little larger (worse)
than those of Offshore-Model. However, the Coast-Model has better POD, CSI, and BIAS
than the Offshore-Model. This is due to the fact that, as shown in Figure 4, the coastal area
has the highest fraction of CREF larger than 35 dBZ compared to the other three areas. It
denotes a complicated meteorological situation affected by the complex underlying surface
of the coast [41,42]. Thus, compared to the Offshore-Model, the prediction of Coast-Model
is bolder.
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In conclusion, a mix of land-dataset, coast-dataset, and offshore-dataset can be taken
into consideration when employing satellite data to reconstruct radar data. The Offshore-
Model can give the medium results, while the Coast-Model can give bolder results. Due
to the abundance of data on land area, the Land-Model can provide a good baseline for
reconstructing the radar data, despite being slightly inferior to the Offshore-Model on the
test set in Region B.

3.2. Case Study

In order to demonstrate the actual combat effect of the models, we selected several
severe convective weather cases from the test set (UTC) to visually show the reconstruction
effect of the models.

Typhoon is one of the important disastrous weather systems that affects the safety
of people’s lives and property. It often brings rainstorm, strong wind, and secondary
disasters [43]. Typhoon “Yagi” was generated on 7 August 2018 (Beijing time, the same
below) with the intensity of a tropical depression. The intensity of “Yagi” increased to a
tropical storm on 8 August, moving towards the north by east, turning to the northwest
at night on 9 August, and entering the eastern region of the East China Sea at night on
11 August [44]. During the influence of “Yagi”, extreme precipitation and a large-scale
rainstorm had been brought to the cities along the way, resulting in heavy economic losses.
Figure 5 shows the GPM precipitation and radar echo distribution of severe convective
events that occurred in the research area in the test set. It can be seen that the models
can more accurately reconstruct the shape, location, intensity, and range of the convective
center, whether it is a slightly lower intensity convective event or a severe convective event
such as a typhoon. In addition, for areas beyond the radar coverage, the radar echoes can
be also reconstructed, and the distribution of reconstructed CREF is quite consistent with
the pattern of the GPM precipitation.
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Figure 5. Radar echo map: comparative study of observation and reconstruction. The first column
shows GPM precipitation distribution at different times; the second column shows the radar echo
observed; the gray areas on the map represent areas outside the radar deployment range. The
third, fourth, and fifth columns show the reconstructions of the Land-Model, Coast-Model, and
Offshore-Model, respectively, and the last column represents the average of the three reconstructed
models mentioned above.
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3.3. Results of Interpretability

For the models selected above: Land-Model, Coast-Model and Offshore-Model, the
DeepLIFT method is adopted to analyze the differences in feature importance under
different underlying surfaces (land, coast, and offshore). The results are shown in Figure 6.
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According to the previous description, and their physical meaning (Table 1), the
17 input features of satellite bands can be classified as satellite cloud-related features,
satellite water-related features, and satellite temperature-related features. It is worth
mentioning that for bands with more than one type of physical meaning, such as Band 11,
the center wavelength is 8.6 µm, which can both measure water vapor and cloud phase state.
When classifying the input features, Band 11 is classified as both satellite water-related
features and satellite cloud-related features. It means that after calculating the importance
of Band 11 using the DeepLIFT method, we will calculate the average importance of satellite
water-related features along with other bands that measure water vapor. At the same time,
the importance of Band 11 will be used along with bands that measure the cloud phase
state to calculate the average importance of satellite cloud-related features. Similarly, we
calculated the average value of the importance of the bands under each type. For the land’s
underlying surface, it can be intuitively seen that satellite cloud-related features are more
important to the reconstruction, far outweighing the importance of satellite water-related
features and satellite temperature-related features.

Overall, satellite cloud-related features are the most important, followed by satellite
water-related features, and satellite temperature-related features are the least important.
When the underlying surface changes to the coast, then to the offshore, the importance of
satellite cloud-related features gradually decreases, but they still play an important role in
reconstruction, while the importance of satellite water-related features gradually increases,
which is also important for reconstruction. When the underlying surface is located on
the ocean, it is clear that satellite water-related features are more important than satellite
cloud-related features. The importance of satellite temperature-related features gradually
decreases as the model changes to the ocean, compared with the former two, they are
relatively unimportant in reconstruction.

In summary, during the transition of the model from the land to the ocean, for all
the underlying surface cases, clouds have a great impact on the amount of solar radiation
reaching the Earth and play a crucial role in the water cycle of the climate system [45,46];
the cloud phase state can also reflect the temperature and humidity state, and dynamic
characteristics of the atmosphere to a certain extent [47]. In addition, water vapor has a



Remote Sens. 2023, 15, 3065 13 of 15

strong correlation with severe convective weather; the increase in water vapor content
is conducive to the development of convective weather and it can easily cause the rapid
growth of convective weather. Therefore, the satellite features characterizing cloud amount,
cloud phase state, and water vapor play an important role in reconstruction. Secondly,
for the underlying surface of the ocean, because the ocean has the characteristics of high
heat capacity and high thermal inertia, it means that it needs more energy to make its
temperature change greatly. Therefore, compared with the land’s underlying surface,
satellite temperature-related features have a lower significance in the reconstruction of
severe convective weather.

4. Conclusions

In this study, we, respectively, sampled land, coast, offshore, and sea areas in the
eastern area (20◦N–40◦N, 110◦E–130◦E), built four deep learning models using U-Net,
and compared their accuracy. The results show that a mix of land-dataset, coast-dataset,
and offshore-dataset can be taken into consideration when deploying satellite data to
reconstruct radar data. This allows for more accurate reconstruction and monitoring of
severe convective weather in the ocean without radar deployment.

In addition, in previous studies, there was a lack of research on the interpretability of
the models. In this paper, the DeepLIFT method was used to obtain the feature importance
ranking and the differences in different underlying surfaces. Overall, satellite cloud-related
features are most important, followed by satellite water-related features, and satellite
temperature-related features are the least important. The importance of satellite water-
related features gradually increases, and the importance of satellite cloud-related features
and satellite temperature-related features gradually decreases as the model changes from
land to ocean. Then, the reasons for this phenomenon are briefly analyzed in combination
with physical meaning. It is beneficial to the research in the oceanic area, which is of
great significance for aviation, navigation, and the maintenance of people’s lives and
property safety.

In addition to the research tasks outlined in this study, future research will be con-
ducted from the following aspects.

Firstly, the data used in this paper are infrared band data, while the data used in
previous studies include lightning and other data. In subsequent studies, we will also
increase the data types in order to further reduce the error and improve the reconstruction
effect. Secondly, we used the DeepLIFT method to preliminarily analyze the differences
in feature importance caused by the differences in the underlying surfaces of the model.
However, using only one method to study the interpretability means the results lack
credibility [48]. In the future, we will use more interpretable methods and optimize them to
obtain more convincing interpretable conclusions. We hope the reconstruction method we
have proposed will spur new developments in the deep learning and meteorological fields.
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