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Abstract: On 6 February 2023, at 1:17:34 UTC, a powerful Mw = 7.8 earthquake shook parts of
Turkey and Syria. Investigating the behavior of different earthquake precursors around the time and
location of this earthquake can facilitate the creation of an earthquake early warning system in the
future. Total electron content (TEC) obtained from the measurements of GPS satellites is one of the
ionospheric precursors, which in many cases has shown prominent anomalies before the occurrence
of strong earthquakes. In this study, five classical and intelligent anomaly detection algorithms,
including median, Kalman filter, artificial neural network (ANN)-multilayer perceptron (MLP), long
short-term memory (LSTM), and ant colony optimization (ACO), have been used to detect seismo-
anomalies in the time series of TEC changes in a period of about 4 months, from 1 November 2022 to
17 February 2023. All these algorithms show outstanding anomalies in the period of 10 days before
the earthquake. The median method shows clear TEC anomalies in 1, 2 and, 3 days before the event.
Since the behavior of the time series of a TEC parameter is complex and nonlinear, by implementing
the Kalman filter method, pre-seismic anomalies were observed in 1, 2, 3, 5, and 10 days prior to the
main shock. ANN as an intelligent-method-based machine learning also emphasizes the abnormal
behavior of the TEC parameter in 1, 2, 3, 6, and 10 days before the earthquake. As a deep-learning-
based predictor, LSTM indicates that the TEC value in the 10 days prior to the event has crossed the
defined permissible limits. As an optimization algorithm, the ACO method shows behavior similar
to Kalman filter and MLP algorithms by detecting anomalies 3, 7, and 10 days before the earthquake.
In a previous paper, the author showed the findings of implementing a fuzzy inference system (FIS),
indicating that the magnitude of the mentioned powerful earthquake could be predicted during
about 9 to 1 day prior to the event. The results of this study also confirm the findings of another
study. Therefore, considering that different lithosphere–atmosphere–ionosphere (LAI) precursors
and different predictors show abnormal behavior in the time period before the occurrence of large
earthquakes, the necessity of creating an earthquake early warning system based on intelligent
monitoring of different precursors in earthquake-prone areas is emphasized.

Keywords: Turkey earthquake; intelligent predictors; earthquake precursor; ionosphere; GPS-TEC

1. Introduction

Due to the heavy damage caused by powerful earthquakes, many efforts have been
made to predict them [1–3]. Since earthquakes occur following the occurrence of complex
and nonlinear behaviors in different physical and chemical parameters in different layers of
the earth, including the lithosphere, atmosphere, and ionosphere, several studies have been
carried out based on monitoring the behavior of earthquake precursors around the time
and location of powerful earthquakes. However, due to the fact that the occurrence of these
anomalies can have non seismic causes as well, so far, it has not been possible to accurately
predict the location, time, and magnitude of earthquakes before the occurrence with low
uncertainty. With the launch of different remote sensing satellites and the collection
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of various image and non-image data with a short temporal resolution, low cost, and
wide coverage, the speed and quality of articles related to earthquake precursors have
significantly improved [4–7]. Since, by relying on the behavior of a single precursor, it
is not reasonable to make decisions about pre-seismic anomalies with low uncertainty, it
is possible to detect seismically prone anomalies with low uncertainty by using different
precursors in different layers of the earth and implementing the data fusion. In addition
to the integration of different precursors, it is possible to reduce the uncertainty in the
detection of pre-seismic anomalies by combining the results of different anomaly detection
algorithms and predictors [8–13]. Essam et al. (2022) suggested artificial neural network
models as a tool for predicting ground motion parameters, namely, earthquake acceleration,
depth, and velocity, in Terengganu. They presented a comparison of the results of ANN
with the results of random forest (RF) [14]. Portillo and Moya (2023) proposed a novel
semi-supervised classification approach for identifying urban changes induced by the 2023
Turkey earthquake between images recorded at different times. The method was applied to
the interferometric coherence computed from C-band synthetic aperture radar images from
Sentinel-1 [15]. Marhain et al. (2021) implemented a few artificial intelligence algorithms,
such as support vector machine, boosted decision tree regression, random forest, and
multivariate adaptive regression spline, to develop the best model algorithm in earthquake
prediction. In their study, meteorological data were collected from several stations in
Terengganu and processed for normalization, and the data were analyzed using algorithms,
and the performance was evaluated [16]. Li et al. (2023) processed Sentinel-1 and GPS
data to derive the complete surface displacement caused by the 2023 Turkey earthquake
sequence [17]. Murti et al. (2022) proposed an earthquake multiclassification detection
with machine learning algorithms that can distinguish earthquake and non earthquake
and vandalism vibration using acceleration seismic waves [18]. In this study, by using
five common and competent classical and intelligent algorithms, and combining their
results, potentially pre-seismic anomalies related to the powerful earthquake in Turkey
(6 February 2023) are discussed.

Case Study

A strong earthquake of Mw = 7.8 magnitude happened on 6 February 2023 at 1:17:34
UT (LT = UT + 3:00) at the geographic location of 37.22◦N and 37.02◦E and a 10.00 km depth
(https://earthquake.usgs.gov/earthquakes/, accessed on 01 May 2023). The mentioned
earthquake was a result of the strike-slip transcurrence of three plates, including African,
Anatolian, and Arabian, among a vertical fault plane. Figure 1 indicates the geographic
location of the registered earthquakes with an M ≥ 4.1 magnitude around the epicenter
from 6 to 17 February 2023. The plate boundaries are shown as red dashed lines and the
two foreshocks as black diamonds.
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2. Data
2.1. TEC Data

Total electron content (TEC) data have played an important role in detecting seismic
ionospheric anomalies [6,21–24].

With the expansion of positioning networks based on GPS receivers, access to iono-
sphere data has been provided. TEC is the number of electrons in a block between the
satellite and the ground station or between the two satellites [25–27]. GPS signals received
by ground stations have several effects, including ionosphere and troposphere. The iono-
sphere, unlike the troposphere, is a dispersive medium, and since GPS satellites send two
signal frequencies, including f1 = 1575.42 MHz and f2 = 1227.60 MHz, by measuring the
modulation on the carrier phases recorded by dual-frequency receivers, the ionosphere
effects can be assessed.

Using about 150 GPS sites of the International GNSS Service (IGS) and other institu-
tions receivers, the NASA Jet Propulsion Laboratory (JPL) has provided a product called
Global Ionospheric Map (GIM). TEC variations can be analyzed using these maps, which
are constructed with a time resolution of 2 h as 5◦ × 2.5◦ (longitude, latitude) grid.

2.2. Solar–Geomagnetic Data

Ionospheric parameters are influenced by the geophysical conditions of the sun and
geomagnetic storms, especially in the polar and equatorial regions. Significant geomag-
netic field disturbances are observed during the periods of solar–terrestrial interactions
and perturbations. Therefore, it is possible that in the absence of seismic activities, due
to solar and geomagnetic conditions, perturbations in ionospheric parameters can be
observed. Therefore, to distinguish the potentially pre-seismo-ionospheric anomalies
from solar geomagnetic disturbances, the solar-geomagnetic indices including F10.7,
Kp, ap, and Dst should be controlled [28]. It should be noted that the ionospheric effect
of solar–geomagnetic storms is global, which is observed all over the world, but the
seismo-ionospheric effect is local and observed only around the epicenter with distance
less than the Dobrovolsky area [29,30]. Each index is more representative of some charac-
teristics of the status of the geomagnetic field; in particular, ap and Kp are global indices
measured from several geomagnetic observatories at different latitudes in linear and
logarithm scales. The Dst index is measured by four geomagnetic observatories around
the dip equator, and in the impact of a geomagnetic storm, its values become negative
and could reach some hundreds of nT of intensity in the function of the strength of
the same perturbation. The F10.7 index represents a measure of diffuse, nonradiative
heating of the coronal plasma trapped by magnetic fields over active regions, and is an
excellent indicator of overall solar activity levels [31].

3. Methods

Since the behavior of the time series of ionospheric precursors is strictly nonlinear
and complex, the use of machine learning and pattern recognition intelligent methods
seems necessary in order to detect unusual patterns. In this study, in addition to the
median method, four other algorithms, including Kalman filter, multilayer perceptron
(MLP), long short-term memory (LSTM), and ant colony optimization (ACO), have also
been implemented to detect pre-seismic anomalies. Figure 2 shows a flowchart of anomaly
detection steps with the mentioned methods.
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3.1. Median

Since the daily variations of the ionosphere do not follow a Gaussian distribution
function, the median and the interquartile range of data are suggested to determine upper
and lower limits (Equations (1)–(3)) and distinguish potentially seismic anomalies from the
other natural and unknown variations.

xhigh = m + k× iqr (1)

xlow = m− k× iqr (2)

Dx =
x−m

iqr
(3)

Here, m, iqr, x, xhigh, and xlow are median, interquartile range, TEC value, upper limit,
and lower limit, respectively. The parameter k can decrease or increase the allowed range
of TEC parameter change. Dx shows the deviation of the desired parameter (TEC) from
the defined permissible limits. If Dx exceeds the defined permissible value, the parameter
value is interpreted as abnormal. If an observed TEC falls out of either the associated
lower or higher bound (|DTEC| > 1), we conclude with a confidence level of about 80–85%
that a lower or higher abnormal signal is detected [22]. The value of k depends on the
magnitude of the earthquake and also the nonlinearity of the parameter changes. It should
be noted that these two parameters, m and iqr values, are calculated for the entire time
period (1 November 2022 to 17 February 2023), but for any interval of 2 h, which is the time
resolution of TEC values.

3.2. Kalman Filter

The Kalman filter can be applied for prediction, filtering, and smoothing [21]. This
filter includes two equations of state and measurement to optimize forecasting equations
by the minimization of error covariance and estimating the state variables. This filter can
be applied for both linear and nonlinear systems and also stationary and dynamic analyses.
In this algorithm, first, a prediction is made, and then the prediction is corrected based on
the observations, and the prediction is made again. In cases where the equations of state
and measurement are nonlinear, the equations can be linearized using the Taylor series
expansion. In this case, this method is called extended Kalman filter, and it is very widely
used for forecasting in nonlinear time series, such as TEC ionospheric variation [14]. If
the difference between the estimated and observed values of TEC exceeds the predefined
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limits (i.e., m± k× iqr; m, iqr, and k indicate the median, interquartile range, and coefficient
parameters, respectively), the observed TEC parameter in a quiet geomagnetic condition
(i.e., F10.7 < 180 SFU, |Dst| ≤ 20 nT, ap < 20 nT, and Kp < 3 nT (solar flux unit)) could be
considered an anomalous value. More details of this method are described in [21].

3.3. ANN-MLP

Artificial neural networks are among the intelligent systems that are able to provide a
model for solving nonlinear problems by creating a relationship between input and output
parameters in various supervised and unsupervised conditions. Although this model is in the
form of a black box, it is possible to obtain an optimal model by tuning different values of
the number of hidden layers and neurons and evaluating the accuracy of the results. ANN
can also be used in time series forecasting. This is done by building the state matrix from the
patterns in the data training section. The most common and successful category of neural
network is the feed forward multilayer perceptron (MLP). Since the author has implemented
this method in other case studies, more details of this method are described in [23].

3.4. LSTM

Due to a lack of vanishing gradient in the recurrent neural network, Hochreiter and
Schmidhuber (1997) developed the long short-term memory (LSTM) algorithm [31]. This
method infers the time dynamic behaviour of time series during running time using the
shared parameters. Similar to RNN, LSTM includes three layers, but in order to control
the pass of information to the memory cells, a hidden layer of LSTM consists of three
units, which are input, forget, and output. More details of this method for time series
forecasting are described in [31]. LSTM, such as ANN, is trained and estimates the values
in time period of the test data, and if the error values obtained via the differences between
estimated and observed values are beyond the predefined limits m± iqr (where m and iqr
are the median and interquartile range, respectively), the anomalous day is hinted.

3.5. ACO

Since animals in nature usually choose the best among different solutions to achieve
the goal, by modelling their behaviors, mathematical algorithms can be provided to solve
optimization problems. One of these algorithms is ant colony optimization (ACO), which
was presented by Dorigo in 1992 [32], based on the natural behaviour of a colony of ants
to find the best path to reach food. This algorithm is based on the idea that ants leave a
trail on the way between the nest and the food by secreting a substance called pheromone,
which causes other ants to follow the pheromone traces to take a shorter path to the food.
The pheromone evaporates and allows other ants to randomly search for other solutions.
Therefore, this algorithm is based on two parameters, pheromone and distance. Some
researchers have suggested the use of this algorithm in the process of forecasting in time
series, the details of which are given, for example, in the article [33].

4. Results

Figure 3a–c represent the geomagnetic indices of Kp, ap, and Dst, respectively, in the
time period of 1 November 2022 to 17 February 2023. The values of geomagnetic indices
are displayed in quiet conditions with green color and in nonquiet geomagnetic conditions
with red color. A black star indicates the earthquake origin time. The horizontal axis shows
the days relative to the day of the earthquake. The y-axis represents the universal time. In
the period before the day of the earthquake, these indices show relatively quiet geomagnetic
activities. However, on the day of the earthquake, the Kp index shows a relatively high
value. Figure 3d indicates the time series of solar radio flux (F10.7) in the time period of
1 November 2022 to 17 February 2023. It can be seen that the earthquake happened after
a high increase in this solar index about 19 to 26 days before the earthquake. In some
previous studies, the possible connection between solar activities and large earthquakes
has been discussed, although this hypothesis has not been proven yet [28]. In this study,
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potentially pre-seismic TEC anomalies are discussed during the quiet solar–geomagnetic
conditions (i.e., F10.7 < 180 SFU, |Dst| ≤ 20 nT, ap < 20 nT, and Kp < 3 nT).
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Figure 3. Geomagnetic indices of (a) Kp, (b) ap, (c) Dst, and (d) F10.7 in the time period of 1 November
2022 to 17 February 2023. The abscissa represents the days relative to the Turkey (6 February 2023)
earthquake day. A black asterisk “*” indicates the earthquake origin time. The values of geomagnetic
indices are displayed in quiet conditions with green color and in nonquiet geomagnetic conditions
with red color.

Figure 4a represents GIM-TEC variations during the period of 1 November 2022
to 17 February 2023. It is difficult to detect preseismic anomalies in quiet geomagnetic
conditions from this figure. After implementing the median anomaly detection method
and defining the upper and lower permissible limits, the amount of deviation of the
TEC parameter from the defined limits (DTEC) is calculated according to Equation (3).
It should be noted that the median method is applying every 2 h (12 times) according
to the time resolution of TEC data during the studied time period (109 days). Figure 4b
shows variations of DTEC in the time period of 1 November 2022 to 17 February 2023. In
Figure 4c, observed TEC anomalies after implementing the median method are shown
when |DTEC| > 1. As mentioned before, the TEC anomalies (DTEC) in Figure 4c are
considered to be potentially seismic anomalies when F10.7 < 180 SFU, |Dst| ≤ 20 nT, ap
< 20 nT, and Kp < 3 nT. The final TEC anomalies are shown in Figure 4d. The striking
anomalies are sharply seen from 1 to 3 days prior to the event. The TEC anomaly asses a
value of 4.1%, 3 days before the earthquake at 16:00 UTC. Additionally, the TEC values
exceed the upper limit (m + iqr), 1 day preceding the main shock at 16:00 and 18:00 UTC
with unusual values of 39.8% and 48.6% from the upper limit. Details of other anomalies
observed by this method are shown in Table 1.
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Figure 4. Results of TEC analysis for the Turkey earthquake (6 February 2023) using the me-
dian method during the period of 1 November 2022 to 17 February 2023. (a) Variations of TEC,
(b) variations of DTEC, (c) observed TEC anomalies regardless the solar–geomagnetic conditions,
and (d) observed TEC anomalies by considering quiet solar–geomagnetic conditions. The x-axis
represents the days relative to the earthquake day. The y-axis indicates the universal time. An asterisk
“*” shows the earthquake origin time.

Table 1. Details of observed anomalies using different predictors. Day is given prior to the event.
DTEC is calculated according to Equation (3).

Method
Anomalous Day and Time

DTEC
Day UTC

Median

−1
16:00 39.8%

18:00 48.6%

−2
16:00 49.6%

18:00 37.1%

−3 16:00 4.1%

Kalman filter

−1 6:00 58.7%

−2
8:00 3.7%

12:00 6.2%

−3
20:00 18.9%

22:00 11%

−5 4:00 30.2%

−10 4:00 38.9%
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Table 1. Cont.

Method
Anomalous Day and Time

DTEC
Day UTC

ANN-MLP

−1

6:00 67.5%

8:00 0.8%

20:00 21.2%

−2 12:00 11.7%

−3
20:00 14.3%

22:00 5.3%

−6 8:00 0.3%

−10 4:00 1.5%

LSTM −10 2:00 1.1%

ACO

−3 20:00 25%

−7 22:00 14.29%

−10 2:00 100%

After applying the Kalman filter, the error values obtained via the differences be-
tween the estimated and observed TEC values during the period of 1 November 2022 to
17 February 2023 are shown in Figure 5a. It should be noted that 60% of the data are
considered for the training stage and determining the optimal parameters. In the next
step, the permissible limits of change for this difference are determined by calculating the
median and the interquartile range for every 2 h and during the period of days under study,
and the amount of deviation from the permissible limits is calculated using Equation (3).
Figure 5b shows the obtained DTEC values. In the next step, in Figure 5c, DTEC values
are shown in conditions where the absolute value is greater than 1 (|DTEC| > 1). Finally,
seismic TEC anomalies in quiet solar–geomagnetic conditions are shown in Figure 5d.
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Figure 5. Results of TEC analysis for the Turkey earthquake (6 February 2023) using the Kalman
filter method during the period of 1 November 2022 to 17 February 2023. (a) Variations of TEC,
(b) variations of DTEC, (c) observed TEC anomalies regardless the solar–geomagnetic conditions,
and (d) observed TEC anomalies by considering quiet solar–geomagnetic conditions.
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The results of implementing the Kalman filter method show that the TEC values in
1, 2, 3, 5, and 10 days before the earthquake have crossed the defined limits. The highest
deviation of TEC from the upper limit of 58.7% is observed 1 day before the main shock at
06:00 UTC. Details of other observed anomalies are given in Table 1.

In order to implement the ANN method, 60% of the data were considered as training
data and the remaining 40% as test data. Figure 6a–l show the observed normalized TEC
values (red curve) and the TEC values predicted by the ANN-MLP method (green curve)
in the time period of test data at a time interval of 2 h according to the time resolution of
the TEC data. Panels a to l in Figure 7 indicate the time series of the error values obtained
via differences between estimated and observed TEC values when applying the ANN
method during the test data at a different UTC. The x-axis indicates the day relative to the
Turkey earthquake (6 February 2023) day. The horizontal red lines represent the lower and
upper bounds (m± iqr). The horizontal green line shows the median value (m). The results
shown in Figure 7 are illustrated as a 2-D image in Figure 8a. By calculating the deviation
of TEC values from the permissible limits defined using Equation (3), DTEC values are
shown in Figure 8b. Figure 8c shows DTEC values when |DTEC| > 1. Seismic TEC
anomalies detected using the ANN-MLP method in quiet solar–geomagnetic conditions
(F10.7 < 180 SFU, |Dst| ≤ 20 nT, ap < 20 nT, and Kp < 3 nT) are given in Figure 8d. By
using this predictor, sharp anomalies are observed in TEC values in 1, 2, 3, 6, and 10 days
before the earthquake. The highest amount of this anomaly with a value of 67.5% is seen
1 day before the event at 06:00 UTC. The characteristics of other anomalies observed by the
ANN method are presented in Table 1. The observed anomalies emphasize that the ANN
method, based on the previous patterns in the time series, has predicted the parameter
value with a large difference compared with the observed value, and the reason for this can
be the existence of an abnormal event at the time in question. If the solar and geomagnetic
conditions are quiet, it can probably be related to the upcoming earthquake.
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Figure 8. Results of TEC analysis for the Turkey earthquake (6 February 2023) using the ANN method
during the period of 1 November 2022 to 17 February 2023. (a) Variations of TEC, (b) variations of
DTEC, (c) observed TEC anomalies regardless the solar–geomagnetic conditions, and (d) observed
TEC anomalies by considering quiet solar–geomagnetic conditions.

LSTM is implemented as a special type of RNN neural network to detect seismic TEC
anomalies. For this purpose, 70% of the data are considered as the training part and 30%
for use in the testing and prediction stage. Figure 9a–l represent the observed TEC values
(red curve) and the TEC values predicted by the LSTM algorithm (green curve) in the
time period of the test data at a time interval of 2 h according to the time resolution of
the TEC data. Figure 10a–l show the time series of the differences between the estimated
and observed TEC values after implementing the LSTM method in the time period of the



Remote Sens. 2023, 15, 3061 11 of 17

test data at different universal times. These obtained difference values are displayed as an
image in Figure 11a. In the next step, the DTEC values are obtained according to difference
values and Equation (3) (Figure 11b). Figure 11c shows the DTEC values that exceed the
defined threshold |DTEC| > 1. In the last step, only DTEC values are displayed that are
detected during quiet times in terms of solar and geomagnetic conditions (Figure 11d). A
striking anomaly is detected 10 days prior to the earthquake at 02:00 UTC when the TEC
parameter exceeds the upper limit with a value of 1.1%.
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Figure 9. Panels (a–l) represent the time series of the predicted TEC values (green curve) when
implementing the LSTM method and also the normalized observed TEC values (red curve) during
the test data at a different UTC. The x-axis indicates the day relative to the Turkey earthquake
(6 February 2023) day.
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Figure 10. Panels (a–l) represent the time series of the error values obtained via differences between
estimated and observed TEC values when applying the LSTM method during the test data at a
different UTC. The x-axis indicates the day relative to the Turkey earthquake (6 February 2023) day.
The horizontal red lines represent the lower and upper bounds (m± iqr). The horizontal green line
shows the median value (m).
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Figure 11. Results of TEC analysis for the Turkey earthquake (6 February 2023) using the LSTM
method during the period of 1 November 2022 to 17 February 2023. (a) Variations of TEC,
(b) variations of DTEC, (c) observed TEC anomalies regardless the solar–geomagnetic conditions,
and (d) observed TEC anomalies by considering quiet solar–geomagnetic conditions.

In order to implement the ACO algorithm, 60% of the data are used to build the state
matrix and create the feature space [33]. It should be noted that the dimensions and nature of
the state matrix play a significant role in finding nonlinear patterns in the data. The red and
green curves in panels a–l of Figure 12, respectively, show the observed and predicted TEC
values by the ACO algorithm in the 109-day period studied. Figure 13 shows the difference
between observed and predicted values in a 2 h time resolution of the TEC data in different
panels. In each panel, by calculating the median and interquartile values, the upper and
lower boundaries are displayed with red horizontal lines. Figure 14a shows the results of
Figure 13 as an image. If the deviation of DTEC values from the defined permissible limits is
calculated, the results can be seen in Figure 14b. Figure 14c shows DTEC values greater than 1.
Figure 14d from the DTEC values observed in Figure 14c shows only the values detected in
quiet conditions in terms of solar and geomagnetic conditions. Figure 14d indicates that the
TEC values in 3 (20:00 UT), 7 (22:00 UT), and 10 (2:00 UT) days before the earthquake, with
values of 25%, 14.3%, and 100%, exceeded the defined permissible limits.
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Figure 12. Panels (a–l) represent the time series of the predicted TEC values (green curve) when
implementing the ACO method and also the normalized observed TEC values (red curve) during
the test data at a different UTC. The x-axis indicates the day relative to the Turkey earthquake
(6 February 2023) day.
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Figure 13. Panels (a–l) represent the time series of the error values obtained via differences between
estimated and observed TEC values when applying the ACO method during the test data at a
different UTC. The x-axis indicates the day relative to the Turkey earthquake (6 February 2023) day.
The horizontal red lines represent the lower and upper bounds (m± iqr). The horizontal green line
shows the median value (m).
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Figure 14. Results of TEC analysis for the Turkey earthquake (6 February 2023) using the ACO
method during the period of 1 November 2022 to 17 February 2023. (a) Variations of TEC,
(b) variations of DTEC, (c) observed TEC anomalies regardless the solar–geomagnetic conditions,
and (d) observed TEC anomalies by considering quiet solar–geomagnetic conditions.

5. Discussion

It should be noted that only ionospheric anomalies in quiet solar–geomagnetic con-
ditions can have the potential of seismic anomalies. Due to the complexities of solar–
geomagnetic activities, it has not been possible to distinguish seismic anomalies from
ionospheric anomalies caused by high solar and geomagnetic activities.

The median method emphasizes the anomalies observed between 1 and 3 days before
the earthquake. Kalman filter, ANN, and ACO methods, while confirming the anomalies
observed by the median method, have detected new anomalies 5, 6, 7, and 10 days before
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the earthquake. LSTM as a deep-learning-based neural network method also confirms
the anomaly observed in 10 days before the event using the Kalman filter, ANN, and
ACO methods. Therefore, by combining the results of different predictors, it is possible to
emphasize the occurrence of abnormal behavior in the time series of the TEC parameter in
the time interval of 10 days before the earthquake. Akhoondzadeh and Marchetti (2022) in
a study [34] presented a fuzzy inference system (FIS) to integrate the results of different
anomalies obtained from different precursors. Additionally, this system can be used to
fuse the results of anomalies obtained from different predictors and algorithms. Figure 15a
shows the number of TEC anomalies detected by different methods in the studied time
period. The accumulation of TEC anomalies in the period of 10 days before the earthquake
is significant. Figure 15b shows the results of integrating anomalies obtained in a fuzzy
inference system and predictable earthquake magnitudes. It can be seen that the FIS
system 10 days before the earthquake, by fusing the detected TEC anomalies, predicts
an earthquake with a magnitude of 7.02 in the forthcoming days. Figure 15c shows the
time series of the maximum recorded magnitude of earthquakes greater than 4.0, by USGS
in the studied time period. In another paper [19], by combining the anomalies detected
by different lithospheric, atmospheric, and ionospheric precursors, in a fuzzy inference
system [31], it has been shown that the approximate magnitude of the earthquake was
predictable from about 10 to 1 day before the main shock. In a previous paper [19], it
was seen that from about 10 days preceding the earthquake, the potential anomalies are
detected in all layers (lithosphere, atmosphere, and ionosphere). In the lithosphere, clear
anomalies were observed 8 days before the event that could be related to the high seismic
activities that led to the release of some gases [35], positive holes [36], or radon [37] in the
atmosphere. It is clear that the effects of these gases as the formation of plasma bubbles
appear as ionospheric anomalies [38]. However, due to the lack of a proven lithospheric–
atmospheric–ionospheric coupling (LAIC) mechanism, it will be challenging to justify the
time lag of anomalies detected by different algorithms. In the mentioned article [19], the
results of the atmospheric precursors were more reliable, but in this study, the results of
the TEC ionospheric precursor in comparison with the results of swarm precursors in the
paper [19] are better and acknowledge the results of the previous article.
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Figure 15. (a) Variation in the number of detected anomalies using different methods (green bars),
(b) variation in the predicted earthquake magnitude (red bars), and (c) variation in the registered
earthquake magnitude (blue bars) for the Turkey earthquake (6 February 2023) from 1 November
2022 to 17 February 2023. In all panels, the x-axis represents the day relative to the earthquake day
indicated as a vertical dotted line.
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6. Conclusions

As mentioned in the previous sections, since the behavior of TEC time series is nonsta-
tionary and nonlinear, in order to detect seismic anomalies, it is necessary to use pattern
recognition methods based on machine learning algorithms. To achieve this goal, in this
study, five methods, including median, Kalman filter, ANN-MLP, LSTM, and ACO, were
used; in other words, a multipredictor analysis was performed. By using these various
methods and detecting anomalies with different patterns and behaviors, it is possible to
discuss seismic TEC anomalies with lower uncertainty. Therefore, to create an efficient
earthquake early warning system, it is recommended to analyze several precursors and
several predictors together. If the use of anomaly detection algorithms in time series is lim-
ited, it is recommended to use algorithms that are more sensitive to nonlinear and complex
behaviors in the data. The results of anomalies detected by different predictors in this paper
confirm the observations of another paper [19] with a different method. For future works,
it is suggested to implement other methods of anomaly detection based on deep learning.
By using the Google Earth Engine and Giovanni platforms, it is possible to increase the
number of precursors, and while reducing uncertainty, according to the sequence of ob-
served anomalies, a robust mechanism for LAIC can be proposed. Additionally, if the data
of GPS stations close to the study area are available, a better analysis of the anomalies can
be performed due to the better spatial and temporal resolution of the GPS data. The main
goal of this article is to show that since the behavior of ionospheric precursors is complex
and nonlinear, it is necessary to use different classical and intelligent predictor algorithms.
According to the capabilities of each of the predictors, they can detect different possible
seismic anomalies. It is clear that the anomalies detected by a method, such as mean and
median, are different from a method, such as the artificial neural network. In the neural
network algorithm itself, different results are obtained by changing parameters, such as the
number of hidden layers, the number of neurons, and inputs. Therefore, it is necessary to
propose methods for fusing the results of these predictors and detecting seismic anomalies
with high probability in future studies. In this case, the uncertainty in detected anomalies
and false alarms are reduced. It is important to mention that the results of this article can
be effective in proving and justifying a robust LAIC mechanism and relating anomalies
observed in different layers to each other before the occurrence of large earthquakes.
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