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Abstract: The issue of urban air quality in China has become increasingly significant due to in-
dustrialization and rapid urbanization. Although PM2.5 is the major air pollutant in most cities of
northern China and has a direct negative impact on human health, there is a problem of under-
representativeness at Chinese monitoring stations. In some cities, due to the relatively fewer national
control stations and the fact that the stations are located closer to pollution sources, under the current
assessment system, the monitoring data are not sufficient for the fairness of air quality assessment
in different cities. In this article, the multispectral data of Landsat 8 data, air quality data, and
meteorological data from ground monitoring stations have been integrated together and imported
to different PM2.5-estimation models established based on the multi-layer back propagation neural
network (MLBPN), support vector regression (SVR), and random forest (RF), respectively. According
to the evaluation indices of R2, RMSE, and ME, the estimation model based on the MLBPN revealed
the best PM2.5 estimation results and was therefore employed for the regional representativeness
analysis in the study area of Xi’an, Shaanxi, China. The annual average PM2.5 concentration in the
study area is depicted after error correction using Kriging interpolation, which can be further used
to evaluate and analyze the representativeness of monitoring stations in Xi’an. By calculating the
difference between the actual station annual average and the annual average of estimated PM2.5

concentration in the whole region, it can be found that the regional annual average value of PM2.5 in
Xi’an is overestimated. To sum up, this article proposes a feasible method for the spatial positioning
of the air quality monitoring stations to be established.

Keywords: machine learning; PM2.5 concentration estimation; regional representativeness

1. Introduction

PM2.5 is harmful to human health because it can easily enter the human body. Al-
though the national ground monitoring stations can meet several requirements for envi-
ronmental monitoring, there are still drawbacks such as inadequate representativeness,
imperfect monitoring grids, limited monitoring coverage, and inconsistent monitoring
standards. Therefore, it is of utmost importance to analyze the representativeness of the
current monitoring stations.

Ground monitoring and remote sensing monitoring are two main categories of PM2.5
monitoring techniques. Ground monitoring relies on stations to maintain round-the-
clock continuous observation, allowing for the direct acquisition of PM2.5 concentrations at
various times. However, because they are dispersed and few in number, ground monitoring
stations are unable to reliably collect data on the ongoing changes in the spatial and
temporal distribution of PM2.5. Wide data coverage, ease of access, low acquisition costs,
and thorough coverage of spatial areas are all characteristics of satellite remote sensing
imagery. Through satellite remote sensing monitoring, which enables the investigation
and analysis of pertinent environmental concerns on a broader spatial scale, it is possible
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to acquire the continuous variation of the spatial and temporal distribution of PM2.5
concentration values [1,2]. As a result, a prominent topic in atmospheric remote sensing is
the estimation of PM2.5 concentrations from satellite remote sensing images [3].

Since the 1990s, satellite remote sensing techniques have been utilized to estimate
PM2.5 [4–9]. Wang and Christopher (2003) performed an inversion of PM2.5 concentrations
in Alabama based on MODIS AOD products and achieved a correlation coefficient of 0.70
between simulated and actual values [10]. In studies conducted by Engel-Cox et al. (2005)
and Gupta et al. (2006) [11,12], high correlations were obtained between AOD and PM2.5
concentrations, which laid the foundation for the inversion of PM2.5 concentrations by
AOD. Since then, the estimation of PM2.5 concentrations from AOD has utilized more
complex nonlinear regression models, such as the generalized additive model (GAM) and
geographically weighted regression (GWR) [13–21].

In earlier investigations, AOD served as the primary foundation for retrieving PM2.5
concentrations. Despite the fact that the AOD-based PM2.5 estimation algorithm is widely
used, the results of the PM2.5 concentration estimation obtained by the AOD method are
greatly influenced by the parameter settings and values, which are not only time-consuming
to calculate but also significantly vary in different regions and are not applicable globally.
Therefore, new methodological models for estimation investigations of PM2.5 using remote
sensing images still need to be investigated.

In recent years, some scholars have started to try to use machine learning methods
to explore the correlation between PM2.5 concentrations and the relevant bands of multi-
spectral satellite remote sensing data and use them as the basis for inversion studies of
PM2.5 concentrations. For example, Zhang et al. (2019) constructed a PMx estimation model
based on the back-propagation neural network commonly used in machine learning with
the reflectance of different bands in Landsat 8 remote sensing images as the main basis
and selected the Beijing area for testing, and they obtained more satisfactory estimation
results [22]; Ma et al. (2022) tried to use multiple linear regression, K-nearest neighbor,
support vector regression, decision tree, random forest, back-propagation neural network,
and other different machine learning methods for PM2.5 estimation of Landsat 8 remote
sensing image data, and in the test with Hangzhou as the target area, the random forest
method achieved the best estimation results [23].

However, although some progress has been made in PM2.5 estimation based on
machine learning, the current research mainly focuses on model building, and there are
fewer studies on error correction and representative analysis of monitoring stations. Based
on Google Earth Engine (GEE), this article obtained Landsat 8 satellite image data of
Xi’an for five consecutive years from 2017 to 2021, combined with PM2.5 concentration
monitoring data from the China National Environmental Monitoring Center (CNEMC)
and meteorological data issued by the China Meteorological Administration (CMA) and
data released through the National Oceanic and Atmospheric Administration (NOAA) of
the U.S. federal government. The three methods of support vector regression (SVR), the
multi-layer back propagation neural network (MLBPN), and random forest (RF) have been
employed for PM2.5 estimation. By comparing the evaluation indices of R2, RMSE, and
ME to select the optimal model, the air pollutant concentrations in Xi’an were estimated,
and after error correction using Kriging interpolation, they can be further used to evaluate
and analyze the representativeness of monitoring stations. On this basis, a quantitative
evaluation of regional representativeness is supplied by comparing the average value of
the estimated pollutant concentration in the region with the average value of the pollutant
concentration at the station, and a suggestion for station selection is provided.

2. Materials and Methods
2.1. Study Area

Xi’an is located in the central part of the Guanzhong region, between longitude
107.40◦E to 109.49◦E and latitude 33.42◦N to 34.45◦N, with 11 municipal districts and
2 counties. Xi’an is located in the southern part of the center of the Guanzhong Plain in
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Shaanxi Province, which has an alluvial plain in the north and denuded mountains at
higher elevations in the south. The general topography is high in the southeast and low in
the northwest and southwest. The Guanzhong Plain is a basin with a static atmosphere
in winter, which is not conducive to the diffusion of pollutants, but it is easy to form a
pile-up effect, so the haze is more difficult to dissipate. The Qinling Mountains straddle the
southern part of Xi’an, with ridges ranging from 2000 to 2800 m above sea level, and they
are an important geographical dividing point between the north and south of China. As
shown in Figure 1, there are 13 CNEMC stations and 1 CMA-NOAA station.
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Figure 1. Distribution of CMA-NOAA and CNEMC stations in Mainland China and the study area.

2.2. Data Collection and Preprocessing

As shown in Table 1, the data used in this article mainly include the following:

• Satellite remote sensing data of Landsat 8;
• PM2.5 concentration data released by the China National Environmental Monitoring

Center (CNEMC);
• Meteorological data issued by the China Meteorological Administration (CMA) and

released through the National Oceanic and Atmospheric Administration (NOAA) of
the U.S. federal government.

Table 1. Data used in this article.

Category Variable Unit Resolution Source

Landsat 8 Landsat 8 OLI
NDVI

Band
Value 16 day GEE

PM2.5 concentration data PM2.5 µg·m−3 1 h CNEMC

Meteorological data

WD
WS
PRS
RH

TEM

m/s
◦

Pa
%
°C

3 h CMA-NOAA

2.2.1. Satellite Remote Sensing Data

The satellite data used in this project are Landsat 8 data. Landsat 8 is the eighth satellite
in the U.S. Landsat program and was launched by NASA on 11 February 2013. Landsat 8
has two sensors, including TIRS and OLI. Landsat 8 has a spatial resolution of 30 m and a
revisit period of 16 days in mainland China. Since its launch, Landsat 8 satellite data have
been well used in the fields of land use type extraction, water environment monitoring,
vegetation cover, biomass estimation, and surface temperature estimation. Based on some
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of the literature published so far [22,24], B1 (0.43–0.45 µm), B3 (0.53–0.59 µm), B7 (2.11–
2.29 µm), and the calculated NDVI based on the B4 (0.64–0.67 µm) and B5 (0.85–0.88
µm) of Landsat 8 are strongly relevant to the PM2.5 concentrations. Therefore, B1, B3, B7,
and the NDVI of Landsat 8 were selected as the primary input parameters for the PM2.5
concentration estimations.

2.2.2. PM2.5 Concentration Data

As a public institution directly under the Ministry of Ecology and Environment, PRC,
the China National Environmental Monitoring Station (CNEMC) received approval to be
built at the end of 1979 and was formally established in 1980. Its primary responsibilities
include carrying out national ecological and environmental monitoring tasks, driving the
development of technologies related to ecological and environmental monitoring, providing
reports, monitoring data, and technical support for national environmental management
and decision-making, and providing technical guidance for national ecological environment
monitoring work.

As the technical center, network center, data center, quality control center, and train-
ing center of national ecological environment monitoring, the CNEMC provides ground
monitoring data of urban air quality PM2.5, PM10, SO2, NO2, CO, and O3, and publishes
them to the public. There are more than 1500 CNEMC stations in Mainland China and
13 monitoring stations in Xi’an (Figure 1).

2.2.3. Meteorological Data

The National Oceanic and Atmospheric Administration (NOAA) is part of the U.S.
Department of Commerce, which has five operational scientific units: the National Weather
Service, the National Ocean Service, the National Marine Fisheries Service, the National
Environmental Satellite, Data, and Information Administration, and the Institute of Oceanic
and Atmospheric Research. A cooperation agreement between the China Meteorological
Administration (CMA) and NOAA was signed in 2013 and allows for the public distribution
of China meteorological data for the continental region, which is released every three hours.
There are more than 300 CMA-NOAA stations in Mainland China, and 1 CMA-NOAA
station in Xi’an, see the distribution in Figure 1. PRS (pressure), RH (relative humidity),
TEM (temperature), WD (wind direction), and WS (wind speed) are the meteorological
factors chosen [22,25].

2.2.4. Data Preprocessing and Integration

The pertinent data from various sources must be preprocessed and combined in order
to verify the uniformity of the samples. Firstly, the function of the mask algorithm (FMask)
provided by GEE is employed to remove clouds, and a circular buffer zone with a radius of
15 m is established with each CNEMC monitoring station as the center. The reflectivity of
each band of the Landsat 8 image in the circular buffer zone is extracted. The mean value
of the band reflectivity in the circular buffer zone is calculated, and it is assigned to the
corresponding CNEMC monitoring station to realize the fusion of Landsat 8 data and PM2.5
concentrations. Through the statistical analysis of the distances between the CNEMC and
the CMA-NOAA stations using NAA (near analysis algorithm), the nearest CMA-NOAA
station to the CNEMC station can be identified, and thus the meteorological data of the
CMA-NOAA station are treated as the meteorological attributes of the CNEMC station.

In addition, the meteorological data with incomplete data on atmospheric pressure,
temperature, humidity, etc., the PM2.5 data with abnormal pollutant concentrations, and
the satellite data heavily affected by clouds (BQA 6= 2720) were filtered to enhance the
quality of the sample data for machine learning using the tools provided by GEE. A total of
974 samples were obtained.
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2.3. Methodology

The research methodology employed in this article can be divided into six main stages:
(1) collection and fusion of multi-source data, including satellite remote sensing data, PM2.5
concentration data, meteorological data, and spatio-temporal data; (2) modeling based on
support vector regression (SVR), the multi-layer back propagation network (MLBPN), and
random forest (RF); (3) selection of the optimal model for estimating the PM2.5 surface
concentration in Xi’an according to the evaluation indices; (4) correction of PM2.5 surface
concentration values using Kriging interpolation to obtain a continuous spatial distribution
of PM2.5 surface concentrations; (5) superposition of multiple estimation results; and
(6) plotting PM2.5 concentration contours to analyze the regional representativeness of
monitoring stations in Xi’an. The technology roadmap is shown in Figure 2.
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2.3.1. Multi-Layer Back Propagation Neural Network (MLBPN)-Based PM2.5
Estimation Method

The MLBPN constructed in this article consists of an input layer, multiple hidden
layers, and an output layer [26]. The units in each layer are connected to all units in the
neighboring layers, but no connection exists between units in the same layer. In this project,
the input layer is the meteorological data of atmospheric pressure, wind, wind direction,
temperature, relative humidity, and satellite remote sensing data, and the output layer is
the pollutant concentration estimation value.

In Figure 3, X1, X2, . . . , Xm represent the input value of this neural network, and Y
represents the output value of this neural network, sl represents the number of neurons in
the lth hidden layer, and wl

ij represents the connection weight of the j-th neuron in the l-1th
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hidden layer to the i-th neuron in the lth hidden layer, bl
i , and then denotes the bias of the

i-th neuron in the l-th hidden layer, satisfying Equations (1) and (2).

bl
i = f

(
netl

i

)
(1)

netl
i =

sl−1

∑
j=1

wl
ijh

l−1
j + bl

i (2)

where netl
i is the input value of the i-th neuron in the l-th layer and f(·) denotes the

activation function.
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2.3.2. Support Vector Regression (SVR)-Based PM2.5 Estimation Method

Support vector machine (SVM) is a novel machine learning technique developed based
on statistical learning theory [27,28]. By introducing an insensitive loss function, it can be
used for curve fitting to create support vector regression (SVR).

The SVR-based PM2.5 estimation model (Figure 4) changes the traditional empirical
risk minimization principle and minimizes the expected risk by minimizing the confidence
interval as the optimization objective. To calculate the PM2.5 concentration values from
satellite remote sensing images, the model uses a non-linear function to map the sample
points in the low-dimensional space to the high-dimensional space and constructs a linear
regression function in the high-dimensional space [28]. The penalty coefficient C and the
kernel parameter gamma are selected by iterative selection of the best. The accuracy of
support vector regression depends mainly on C and gamma, which are two important
model parameters.

In addition, in the process of solving the optimal function using the support vector
regression model, an appropriate kernel function needs to be selected to replace the vector
inner product in the high-dimensional space, and the commonly used kernel functions are
polynomial kernel function, linear kernel function, and radial basis function (RBF). Since
the RBF has better generalization ability and can realize nonlinear mapping, the RBF is
chosen in this article with the following equation [29].

k(x, xi) = exp

{
−
∣∣∣∣x− xi

∣∣∣∣2
2σ2

}
(3)

where σ is the kernel function, x is the predictor variable, and xi is the sample factor variable.
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2.3.3. Random Forest (RF)-Based PM2.5 Estimation Method

The random forest (RF) [30] method is an advanced machine learning technique that
optimizes the decision tree method. The RF-based PM2.5 estimation model (Figure 5)
consists of multiple decision trees, each of which achieve a certain level of accuracy. The
overall accuracy is determined by averaging the results of multiple decision trees using
the majority voting method. Each decision tree in the random forest model is a binary tree,
which follows the top-down recursive splitting growth rule. The nodes in each tree split
based on the minimum impurity principle to achieve better accuracy.
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2.3.4. Validation

The training and validation datasets were chosen by multiple random sampling using
the “leave-out method”, which is frequently used in machine learning, in order to assess
the accuracy of the PM2.5 estimation methods based on the three models. The following
three evaluation indicators are also taken into account:

ME =
1
N ∑N

1 (PMF − PMS) (4)

RMSE =

√
∑ (PMF − PMS)

2

N
(5)
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R2 =
cov(PMF − PMS)√
var[PMF]var[PMS]

(6)

where PMS is the estimated PM2.5 value; PMF is the measured PM2.5 value; and N is the
number of samples.

When selecting the best estimation technique, the fundamental performance of the
model is typically evaluated using the mean error (ME), the root means square error
(RMSE), and the coefficient of determination (R2). The guiding principle is that “the larger
R2, smaller ME and RMSE suggest that the estimated value of the estimation model is
closer to the actual value.”

2.3.5. Error Correction

Due to the inherent errors in the estimated results and the limited nature of remote
sensing image data, the superimposition of remote sensing images can only reflect the
average value of PM2.5 at a few time points, instead of the annual average value. Therefore,
it is necessary to correct errors in the estimated results.

Interpolation methods can be divided into deterministic interpolation and geosta-
tistical interpolation according to their mathematical nature. Inverse distance weighting
(IDW) is an interpolation method that uses a mathematical function to create an estimated
surface. However, the ground statistical interpolation takes into account the autocorrelation
between points, and the surface data are obtained according to the statistical characteristics.
The commonly used method is Kriging interpolation.

As a random interpolation method based on the generic least squares algorithm and
employing the variance map as a weight function, Kriging interpolation, also known as
spatial local interpolation, can be used to estimate the distribution of any point data on
the surface of the globe. The Kriging method is a true value estimator, and its research
can be traced back to the 1950s; the algorithm prototype is the ordinary Kriging method.
At present, the ordinary Kriging method is one of the most commonly used methods in
Kriging interpolation. According to the principle of the Kriging method, the value of the
estimated random field at the sample point is consistent with the corresponding actual
measured value. The advantage of this property is that the estimation of the Kriging
method is always close to the measured value, not too far away from the actual situation,
but the estimated value is always between the measured values and cannot simulate drastic
changes. This provides an idea for estimating the error value.

In the process of using IDW, it is required that the monitoring points must be dense
enough to cover the range of the estimation surface. The denser the monitoring points,
the more accurate the estimation results. The values of monitoring points cannot have
large and irregular differences in the estimation range, otherwise, the estimation results
are likely to be untrue. Lloyd et al. (2004) conducted spatial interpolation analysis on the
concentration of atmospheric pollutants in the UK, using the ordinary Kriging method
and the IDW method, and the results showed that the interpolation effect of the ordinary
Kriging method is better than that of the IDW method [31].

Considering that the estimated PM2.5 concentration could be different from the actual
value, it is necessary to correct the errors in the estimated results. Therefore, a method
of Kriging interpolation has been proposed to enhance the estimation accuracy of PM2.5
concentration. The specific process of error-correction method is depicted in Figure 6: firstly,
calculate the difference (ref. δ in Figure 7) between the actual value and the estimated value
of the PM2.5 concentration at each station (ref. S in Figure 7), then, the difference values are
employed as the input data for the interpolation in the study area by the Kriging method;
after that, one image depicting the spatial distribution of the differences (δ) can be achieved,
which will be superimposed to the estimated image of the PM2.5 concentration and thus the
estimation errors could be corrected. As depicted by Figure 7, the leave-one-out method
is employed to validate the effectiveness of Kriging interpolation, where one station is
randomly selected for verification (ref. the red point S6 in Figure 7) and the difference
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values of several other stations are used for interpolation. By comparing the absolute value
of error before (δ6) and after error correction (δ6

′), the feasibility will be verified.
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2.3.6. Superimposition of Multiple Estimated Results

Due to the better data quality in 2018, this article selected the images of this year for
further analysis. After correcting the errors of the daily estimated images of the PM2.5
concentration in 2018, they were superimposed and averaged to obtain the annual average
pollutant distribution image. After extracting the annual average PM2.5 concentration
value of the estimated image at one station, the difference to the actual annual average
monitoring value of the corresponding station can be calculated, which will be taken as the
input data to conduct the Kriging interpolation for the error correction in the study area.
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2.3.7. Representativeness Analysis

At present, there are 13 national ground monitoring stations in Xi’an, mainly located
in Weiyang District, Xincheng District, Beilin District, Yanta District, and other areas, with
fewer suburban and field environmental monitoring stations. Because of Xi’an’s unique
geographical location, it is difficult to set up monitoring stations in the southern Qinling
Mountains, making pollutant monitoring work in the Qinling Mountains more difficult. It
is currently proposed to establish a surface environmental monitoring network through
collaborative prevention and control and to judge the environmental data of southern Xi’an
using monitoring data from other cities. However, the terrain in the west of Xi’an is flat,
and many enterprises have built factories here to discharge sewage. What is more, there are
relatively few monitoring stations in this location, and the other four cities in Guanzhong
have not set up environmental monitoring stations in the nearby borders, which has caused
certain difficulties in pollutant monitoring.

This project visualizes the estimated value and makes a contour map of pollutants in
Xi’an. What is more, a method of station representativeness analysis has been proposed, as
shown in Figure 8. By comparing the average value of the estimated pollutant concentration
in the region with the average value of the pollutant concentration of 13 stations separately,
a quantitative evaluation of regional representativeness can be provided. If the difference
between the regional average value and the station average value is small, it can be
considered that the representativeness of the monitoring station is good. If the gap is large,
the reason should be analyzed in combination with the location of the station.
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3. Results
3.1. Analysis of Estimation Accuracy

Band 1, Band 3, Band 7, the NDVI of the Landsat 8 satellite, and meteorological factors
obtained from CMA-NOAA were used as input parameters to MLBPN, RF, and SVR to
obtain the PM2.5 estimation model. Table 2 shows the accuracy evaluation of different
models. According to the principle of “the larger R2, smaller ME and RMSE suggest that
the estimated value of the estimation model is closer to the actual value”, and as shown in
the scatter plot of correlation between estimated and actual values (Figure 9), it can be seen
that the MLBPN-based PM2.5 estimation model performs better than both of the RF-based
and the SVR-based PM2.5-estimation models.

Table 2. Accuracy evaluation of different models.

Model R2 ME/µg·m−3 RMSE/µg·m−3

MLBPN 0.90 −1.01 20.57
RF 0.82 4.02 23.04

SVR 0.79 −2.15 27.60
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Figure 9. Correlation between the estimated and monitored values of PM2.5 concentrations.
(a) MLBPN. (b) RF. (c) SVR.

Figure 10 compares the agreement between the estimated PM2.5 concentrations and
the actual monitoring values of the three models. The blue lines in the figure represent
the actual monitored values, and the red circles represent the estimated values. Overall,
when the PM2.5 concentration is high, the estimated values have a larger error than the
actual values. Meanwhile, the consistency between the estimated and actual monitored
values of the MLBPN-based PM2.5 estimation model is better than that of the RF-based
PM2.5 estimation model and the SVR-based PM2.5 estimation model. In summary, the
MLBPN-based PM2.5 estimation model was selected for the next study in this article.
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3.2. Error Correction

Due to the better data quality in 2018, the annual Landsat 8 remote sensing images,
corresponding meteorological data, and PM2.5 concentrations at monitoring stations in
Xi’an for this year were selected to estimate pollutant concentrations with the trained
MLBPN-based PM2.5 estimation model to obtain annual PM2.5 estimation images. After
extracting the pollutant concentration values for each station individually, the differences
were calculated based on the actual monitoring values for the corresponding stations
on that day. The obtained differences were then subjected to Kriging interpolation to
estimate the errors for the purpose of error correction. In order to verify the feasibility of
the Kriging interpolation method, the 1463A station was randomly selected to perform
Kriging interpolation with the difference values of other stations. Some study cases were
randomly picked out as shown in Table 3; they indicated that the value after error correction
is closer to the actual value. By comparing the absolute value of error before and after error
correction of 1463A, as shown in Table 4, the absolute value of mean error before error
correction is 18.78 µg·m−3, and the absolute value of mean error after error correction is
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2.08 µg·m−3, indicating that using Kriging interpolation can improve the accuracy, and the
error correction method proposed in this article is also feasible to other areas.

Table 3. Comparison before and after error correction of 1463A.

Date Actual
Value/µg·m−3

Estimated
Value/µg·m−3

|Actual Value
-Estimated Value|

/µg·m−3

Interpolation
Value/µg·m−3

The Value After
Error Correction

/µg·m−3

20180215 84.00 106.97 22.97 25.30 81.67
20180303 189.00 153.74 35.26 35.42 189.16
20180522 93.00 70.66 22.34 21.75 92.41
20180623 48.00 33.94 14.96 12.16 46.10
20180725 13.00 19.03 12.45 9.03 10.00
20180826 38.00 21.15 16.85 14.52 35.67
20180911 16.00 4.67 11.32 6.16 10.83
20181016 43.00 57.04 14.05 12.92 44.12

Table 4. Comparison of the absolute value of error before and after error correction of 1463A.

Date The Absolute Value of Error
before Error Correction/µg·m−3

The Absolute Value of Error
after Error Correction/µg·m−3

20180215 22.97 2.33
20180303 35.26 0.16
20180522 22.34 0.59
20180623 14.96 1.90
20180725 12.45 3.00
20180826 16.85 2.33
20180911 11.32 5.17
20181016 14.05 1.12

The average 18.78 2.08

To make more precise evaluations, the study case was randomly picked out in the test
area, as shown in Figure 11. In addition, Table 5 shows the PM2.5 concentrations estimated
by Landsat 8 in Xi’an at UTC 3:19 on 14 January 2018, and the results were obtained by
correcting the errors through Kriging interpolation. By comparing the corrected pollutant
concentrations with the originally estimated pollutant concentrations, it shows that the use
of Kriging interpolation can effectively correct the experimental errors to a certain degree.
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Table 5. Landsat 8-estimated PM2.5 concentration and correction in Xi’an at UTC 3:19 on
14 January 2018.

Station ID Actual
Value/µg·m−3

Estimated
Value/µg·m−3

|Actual Value-
Estimated Value|

/µg·m−3

The Value after
Error Correction

/µg·m−3

1462A 279.00 210.19 68.81 272.76
1463A 239.00 188.26 50.74 232.63
1464A 231.00 230.92 0.08 237.08
1465A 275.00 207.26 67.74 268.68
1466A 262.00 221.73 40.27 286.50
1468A 304.00 224.55 79.45 291.68
1469A 218.00 172.68 45.32 222.44
1470A 309.00 233.02 75.98 307.55
1471A 191.00 221.54 30.54 193.12
1472A 326.00 248.69 77.31 311.79
1473A 284.00 233.71 50.29 276.47
1474A 234.00 201.06 32.94 231.52

The annual average PM2.5 estimation map for 2018 was created in order to more
intuitively evaluate the representativeness of the monitoring stations in Xi’an, and the
experimental error was further corrected using Kriging interpolation. After extracting the
annual average PM2.5 concentration values of pollutants at the stations, the differences were
made with the actual annual average monitoring values at the corresponding stations. The
obtained difference values were employed as the input data of the Kriging interpolation
to correct the errors, as shown in Figure 12. As can be seen from Table 6, for the annual
average PM2.5 in Xi’an, the error between the corrected and actual values is reduced after
correction. Through calculation, the corrected value has an RMSE of 2.11 µg·m−3 and an
ME of 0.12 µg·m−3 with the actual value, which is much more accurate.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 19 
 

 

  

(a) (b) 

Figure 12. Comparison before and after error correction of annual pollutant concentration distri-
bution in Xi’an in 2018. (a) Estimated annual value. (b) The annual value after error correction. 

Table 6. Landsat 8-estimated annual average PM2.5 concentration and correction in Xi’an in 2018. 

Station ID 
Actual  

Value/µg·m−3 
Estimated  

Value/µg·m−3 

|Actual Value-
Estimated 

Value| 
/µg·m−3 

The Value after 
Error Correc-
tion/µg·m−3 

1462A 64.60  100.24  35.64  61.00  
1463A 54.77  97.29  42.52  57.79  
1464A 63.65  101.78  38.13  60.56  
1465A 61.29  100.44  39.15  61.91  
1466A 63.04  99.07  36.03  60.02  
1467A 60.24  98.84  38.60  59.88  
1468A 63.24  105.55  42.31  63.71  
1469A 58.60  100.55  41.95  59.85  
1470A 73.33  110.36  37.03  71.77  
1471A 54.16  107.10  52.94  57.02  
1472A 61.53  106.63  45.11  63.44  
1473A 60.05  98.42  38.37  59.45  
1474A 58.73  102.26  43.52  59.34  

3.3. Representativeness Analysis 
Based on the spatial distribution of the revised annual average PM2.5 estimation con-

centration of Xi’an in 2018 (ref. Figure 12b), the pollutant contour map was drawn with a 
contour spacing of 10 µg·m−3 (ref. Figure 13). As depicted in Figure 13, the PM2.5 concen-
tration in northwest region is significantly higher than southwest region, which is con-
sistent with the characteristics of population and industrial distributions in the study area. 

The annual average PM2.5 concentration monitored at the station is 61.33 µg·m−3, and 
the estimated station annual mean is 61.21 µg·m−3 (after error correction), which indicates 
that the estimation method proposed in this article has good arithmetic results. In contrast, 
the annual average PM2.5 estimation concentration in the whole region of Xi’an is 49.89 
µg·m−3; by calculating the difference with the actual annual average value of each station, 
it can be seen from Table 7 that the difference of the 1471A station is 7.13 µg·m−3, which is 
the smallest and indicates that the representativeness of the station is relatively good, and 
the regional annual average value of PM2.5 in Xi’an is overestimated by 14.29%. Followed 

Figure 12. Comparison before and after error correction of annual pollutant concentration distribution
in Xi’an in 2018. (a) Estimated annual value. (b) The annual value after error correction.

3.3. Representativeness Analysis

Based on the spatial distribution of the revised annual average PM2.5 estimation
concentration of Xi’an in 2018 (ref. Figure 12b), the pollutant contour map was drawn
with a contour spacing of 10 µg·m−3 (ref. Figure 13). As depicted in Figure 13, the PM2.5
concentration in northwest region is significantly higher than southwest region, which
is consistent with the characteristics of population and industrial distributions in the
study area.
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Table 6. Landsat 8-estimated annual average PM2.5 concentration and correction in Xi’an in 2018.

Station ID Actual
Value/µg·m−3

Estimated
Value/µg·m−3

|Actual Value-
Estimated Value|

/µg·m−3

The Value
after Error

Correction/µg·m−3

1462A 64.60 100.24 35.64 61.00
1463A 54.77 97.29 42.52 57.79
1464A 63.65 101.78 38.13 60.56
1465A 61.29 100.44 39.15 61.91
1466A 63.04 99.07 36.03 60.02
1467A 60.24 98.84 38.60 59.88
1468A 63.24 105.55 42.31 63.71
1469A 58.60 100.55 41.95 59.85
1470A 73.33 110.36 37.03 71.77
1471A 54.16 107.10 52.94 57.02
1472A 61.53 106.63 45.11 63.44
1473A 60.05 98.42 38.37 59.45
1474A 58.73 102.26 43.52 59.34
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The annual average PM2.5 concentration monitored at the station is 61.33 µg·m−3,
and the estimated station annual mean is 61.21 µg·m−3 (after error correction), which
indicates that the estimation method proposed in this article has good arithmetic results. In
contrast, the annual average PM2.5 estimation concentration in the whole region of Xi’an is
49.89 µg·m−3; by calculating the difference with the actual annual average value of each
station, it can be seen from Table 7 that the difference of the 1471A station is 7.13 µg·m−3,
which is the smallest and indicates that the representativeness of the station is relatively
good, and the regional annual average value of PM2.5 in Xi’an is overestimated by 14.29%.
Followed by 1463A, the difference is 7.90 µg·m−3, overestimating the regional annual
average value of PM2.5 in Xi’an by 15.83%. Furthermore, 1474A, 1473A, 1469A, and 1467A
have differences between 9.45 µg·m−3 and 9.99 µg·m−3, which overestimate the regional
annual average value of PM2.5 in Xi’an from 18.94% to 20.02%. Then, 1466A, 1464A, 1462A,
1465A, 1472A, and 1468A have differences between 10.13 µg·m−3 and 13.82 µg·m−3, which
overestimate the regional annual average value of PM2.5 in Xi’an from 20.30% to 27.70%.
The 1470A station has the largest difference of 21.88 µg·m−3, which overestimates the
regional annual average value of PM2.5 in Xi’an by 43.86%.
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Table 7. The difference between the actual station annual average and the annual average of estimated
PM2.5 concentration in the whole region.

Station ID The Station Annual
Average/µg·m−3 The Difference 1/µg·m−3 Percentage of Error

1462A 61.00 11.11 22.27%
1463A 57.79 7.90 15.83%
1464A 60.56 10.67 21.39%
1465A 61.91 12.02 24.09%
1466A 60.02 10.13 20.30%
1467A 59.88 9.99 20.02%
1468A 63.71 13.82 27.70%
1469A 59.85 9.96 19.96%
1470A 71.77 21.88 43.86%
1471A 57.02 7.13 14.29%
1472A 63.44 13.55 27.16%
1473A 59.45 9.56 19.16%
1474A 59.34 9.45 18.94%

1 The difference = the actual station annual average. The annual average of estimated PM2.5 concentration in the
whole region (49.89 µg·m−3).

Monitoring stations need to have good representativeness, which can objectively reflect
the level and variation of ambient air quality in a certain spatial range and objectively
evaluate the urban and regional ambient air conditions and the impact of pollution sources
on ambient air quality, so as to meet the needs of providing health guidance for the public.
Through the analysis, it can be concluded that the average value of the estimated pollutant
concentration in the region is quite different from the annual average value of each station.
On the whole, the regional annual average value of PM2.5 in Xi’an will be overestimated.
It can be seen from the map that the monitoring stations in Xi’an are concentrated in the
main urban area and distributed densely. Due to the influence of the Qinling Mountains,
the PM2.5 concentration in Xi’an is quite different between the north and the south. The
monitoring stations concentrated in the main urban area find it difficult to reflect the PM2.5
pollution level in Xi’an, and the representativeness is not good enough. In order to provide
a scientific basis for the station selection of monitoring stations, taking the annual average
PM2.5 estimation concentration in the whole region of Xi’an as the standard, the area
with the contour value of 50 µg·m−3 was selected. This area is the mean value region of
pollutants and has good representativeness. Therefore, the mean value region was selected
as a representative station location for reference, as shown in Figure 13.

4. Discussion

In this article, we collected Landsat 8 remote sensing image data of Xi’an for five
years from 2017 to 2021 on the GEE platform, integrated air quality data from CNEMC and
meteorological data from CMA-NOAA, and constructed PM2.5 estimation models based on
MLBPN, RF, and SVR. The R2 of PM2.5 estimation models based on MLBPN, RF, and SVR are
0.90, 0.82, and 0.79, based on ME, they are −1.01 µg·m−3, 4.02 µg·m−3, and −2.15 µg·m−3,
and based on RMSE, they are 20.57 µg·m−3, 23.04 µg·m−3, and 27.60 µg·m−3, respectively.
According to the evaluation principles, the MLBPN-based PM2.5 estimation model was
selected as the optimal model. The PM2.5 concentration distribution map obtained in
this article has a spatial resolution of 30 m, which is more accurate than other PM2.5
concentration distribution maps obtained based on satellite images. Moreover, the data
selected in this article are all open source, which makes the model highly versatile. In this
article, PM2.5 was selected as a representative pollutant for the study, but the model is also
applicable to PM10, O3 and other pollutants.

This article proposes a novel method to correct errors in PM2.5 estimation using
Kriging interpolation, which significantly improves the accuracy of the estimation model.
Meanwhile, due to the better data quality in 2018, the images in this year were selected for
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further analysis. From the contour maps of pollutants and the comparison of the actual
annual average PM2.5 concentrations monitored at the stations, the estimation station
annual average value, and the annual average PM2.5 estimation concentrations in Xi’an,
it is clear that the estimation model created in this article has accurate results and strong
application value.

However, the article also highlights the inadequate representativeness of monitoring
stations in Xi’an, and they will overestimate the regional annual average value of PM2.5 in
Xi’an. In this article, the annual average PM2.5 estimation concentration in the whole region
of Xi’an was used as the standard to select the median pollutant area. The mean value
region was selected as the better representative station location. Although we selected
images in 2018 for further analysis, the method is equally applicable to successive years
of images. In summary, this article can provide decision support for the site selection of
well-represented monitoring stations.

5. Conclusions

In this article, the multispectral data of Landsat 8 data, air quality data, and meteo-
rological data from ground monitoring stations were integrated together and imported
to different PM2.5-estimation models based on the multi-layer back propagation neural
network (MLBPN), support vector regression (SVR), and random forest (RF), respectively.
As measured by the evaluation indices of R2, RMSE, and ME, the estimation model based
on the MLBPN produced the best PM2.5 estimation results and was thus employed for the
regional representativeness analysis in the study area of Xi’an, Shaanxi, China. The annual
average PM2.5 concentration in the study area was depicted after error correction using Krig-
ing interpolation, which can then be used to evaluate and analyze the representativeness of
Xi’an’s monitoring stations.

This article presents a comprehensive approach to addressing the problem of the
under-representativeness of monitoring stations in urban areas of China, particularly for
PM2.5. The proposed MLBPN-based PM2.5 estimation model, with the additional Kriging
interpolation method for error correction, has demonstrated high accuracy in comparison
to other estimation models. Moreover, contour maps based on the estimated annual
average PM2.5 values are also useful for judging the regional representativeness of the
environmental monitoring stations in the study area. By calculating the difference between
the actual station annual average and the annual average of estimated PM2.5 concentration
in the whole region, it can be found that the regional annual average value of PM2.5
in Xi’an is overestimated, indicating the inadequate representativeness of the stations.
Based on the annual average PM2.5 estimation concentration in the whole region of Xi’an
and the median area of pollutants, the authors selected the locations of the stations with
better representativeness.

To sum up, the article scientifically evaluates and analyzes the regional representa-
tiveness of the stations in Xi’an and provides new methods for the siting of environmental
monitoring stations. The model proposed in this article has strong versatility, can obtain
continuous pollutant distribution maps, and provides decision support for the site selection
of new stations. The well-represented stations can objectively reflect the ambient air quality
level within a specific spatial range, objectively evaluate the regional ambient air conditions,
and meet public health guidance needs for ambient air conditions. It must be mentioned
that although only the PM2.5 concentration distribution was analyzed in this article, a
similar approach can be employed to analyze some other air pollutants in the future, such
as PM10 and O3, so as to evaluate the representativeness of air quality monitoring stations
more comprehensively.
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