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Abstract: Ship detection using synthetic aperture radar (SAR) has been extensively utilized in both
the military and civilian fields. On account of complex backgrounds, large scale variations, small-scale
targets, and other challenges, it is difficult for current SAR ship detection methods to strike a balance
between detection accuracy and computation efficiency. To overcome those challenges, ESarDet, an
efficient SAR ship detection method based on contextual information and a large effective receptive
field (ERF), is proposed. We introduce the anchor-free object detection method YOLOX-tiny as a
baseline model and make several improvements to it. First, CAA-Net, which has a large ERF, is
proposed to better merge the contextual and semantic information of ships in SAR images to improve
ship detection, particularly for small-scale ships with complex backgrounds. Further, to prevent
the loss of semantic information regarding ship targets in SAR images, we redesign a new spatial
pyramid pooling network, namely A2SPPF. Finally, in consideration of the challenge posed by the
large variation in ship scale in SAR images, we design a novel convolution block, called A2CSPlayer,
to enhance the fusion of feature maps from different scales. Extensive experiments are conducted on
three publicly available SAR ship datasets, DSSDD, SSDD, and HRSID, to validate the effectiveness
of the proposed ESarDet. The experimental results demonstrate that ESarDet has distinct advantages
over current state-of-the-art (SOTA) detectors in terms of detection accuracy, generalization capability,
computational complexity, and detection speed.

Keywords: ship detection; synthetic aperture radar (SAR); contextual information; effective receptive
field; you only look once (YOLO)

1. Introduction

Nowadays, remote sensing technologies are widely used for cartography, military
reconnaissance, ocean monitoring, and other purposes due to its wide coverage and ability
to quickly collect data [1,2]. Among them, synthetic aperture radar (SAR) is an essential
research branch, which is an active earth observation system that can be installed on
different flight platforms. SAR employs the principle of synthetic aperture to accomplish
high-resolution microwave imaging, allowing it to monitor the Earth around-the-clock
and in any condition. Moreover, SAR has a certain penetration capability, so SAR is
widely utilized in various sectors, such as ship monitoring [3], environment monitoring [4],
resource surveying [5], and crop estimation [6]. Its advantages of all-day, all-weather, high-
resolution, and large-format work especially play an essential role in ship monitoring. It
shows unique advantages in tasks such as marine traffic control [7], fishery supervision [8],
and military operations [9] and performs better in comparison with remote sensing methods.
Nowadays, more and more scholars are conducting studies on ship monitoring using SAR
to improve the detection accuracy of ships.

Initially, the constant false alarm rate (CFAR) algorithm was introduced for detecting
targets in SAR images [10]. The CFAR-based detection methods can adaptively calculate the
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detection threshold by estimating the statistical arithmetic of background clutter. The CFAR
algorithm has low computational complexity and is slightly robust to local uniform clutter.
This algorithm, nevertheless, has a poor generalization ability and a low detection accuracy
in complex scenes. In [11–13], to polish up the detection performance of CFAR, different
statistical models were added to CFAR. The detection performance of the improved CFAR
algorithm is robust in simple scenes. However, due to the difficulty of modeling, when
small ships are present in SAR images or the scene is complex, these models perform poorly
in detection accuracy.

Recently, methods for detecting targets based on deep learning have advanced sig-
nificantly regarding detection efficiency and precision. Therefore, many researchers have
introduced deep learning-based methods into the study of SAR ship detection. Current
SAR ship detection methods based on deep learning can be broadly classified as either
anchor-based or anchor-free [14]. Refs. [15–18] introduced anchor-based target detection
methods for SAR ship detection. These methods outperform traditional methods in de-
tection precision. Nevertheless, anchor-based methods rely on fixed, manually designed
anchors, resulting in a significant decrease in detection precision when the scale of ship
targets varies significantly. To accommodate the extensive scale variation of ships in SAR
images, Refs. [19–23] introduced anchor-free methods to detect ships. The anchor-free
method overcomes the challenge of detecting ships in different scales and improves de-
tection accuracy. Nevertheless, its high computational complexity makes efficient ship
detection difficult. Methods for SAR ship detection based on deep learning significantly
improved detection performance. However, existing SAR ship detection methods still have
difficulty in striking a balance between detection precision and speed due to the following
challenges [16,20,24]:

1. The background in SAR images is complex. Due to the clutter caused by SAR, imaging
principles, land structures, and other factors make it difficult for existing detection
methods to differentiate the targets from the background.

2. The scale of ships in SAR images, particularly small ships, is highly variable. Due
to the varied scales of the ships in SAR images, it is challenging to extract efficient
features from SAR images with existing methods.

3. SAR is deployed on flight platforms, which have limited computational resources. Exist-
ing methods make it challenging to perform accurate ship detection in such conditions.

To overcome the aforementioned challenges, we propose an efficient SAR ship detec-
tion method, ESarDet, which is based on the anchor-free object detection method YOLOX-
tiny [25] with a number of improvements to expand the effective receptive field (ERF) and
to extract contextual information. The main contributions of this paper are shown below:

1. For the characteristics of ships in SAR images, such as complex backgrounds, large
scale variations, and small-scale targets, we propose ESarDet, a novel SAR ship
detection method based on contextual information and a large effective receptive field.

2. The context attention auxiliary network (CAA-Net) is proposed to improve the merg-
ing of contextual and semantic information in order to detect small ships in SAR
images. Atrous attentive spatial pyramid pooling fast (A2SPPF) is designed to avoid
loss of detail information and to improve the computational efficiency. In addition,
the atrous attentive cross-stage partial layer (A2CSPlayer) is proposed to dynamically
adjust the dilation rate to achieve efficient fusion of feature maps at different scales.

3. We conduct extensive experiments to validate the effectiveness of the proposed
ESarDet on three SAR ship datasets: DSSDD, SSDD, and HRSID. In addition to
the ablation and comparison experiments, we conduct exhaustive experiments to
evaluate the generalization ability and robustness of the proposed ESarDet.

This paper contains six sections. In Section 2, we present recent advances in deep-
learning-based ship detection methods as well as techniques for detecting small targets.
In Section 3, we elaborate on the proposed method in detail. In Section 4, the evaluation
metrics, experimental design, and experiment results are presented. In Section 5, we discuss
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the experimental results, the limitations of ESarDet, and future work. The conclusion is
presented in Section 6.

2. Related Work
2.1. SAR Ship Detection Methods Based on Deep Learning

In recent years, deep learning (DL) has risen to the forefront of computer vision. After
the proposal of AlexNet [26], convolutional neural network (CNN)-based target detection
methods generally outperformed traditional methods in many aspects. However, current
DL-based methods generally had unperceived imbalance problems such as image sample
imbalance, ship-scale feature imbalance, etc. Therefore, how to handle those imbalances
while improving the efficiency of ship detection without sacrificing accuracy is the latest
research direction for DL-based methods. Lately, the DL-based methods for SAR ship
detection have mainly been divided into anchor-based methods and anchor-free methods.

The anchor-based method generates prediction frames based on manually pre-designed
anchors. Jiang et al. [15] refined the YOLOv4-light network with a multi-channel fusion
SAR image processing method to extract features more effectively. As a result, the im-
proved YOLOv4-light could not only make up for the loss of accuracy due to the original
lightweight network but also implemented real-time ship detection. Based on the Cascade
Mask R-CNN model, Xia et al. [16] innovatively integrated the merits of Swin Transformer
and CNN, coming up with a brand-new backbone, CRbackbone. By taking great advantage
of contextual information, the detection accuracy of ships at different scales was enhanced,
while the training cost was also increased. For scatters and noises in SAR images and
densely distributed small ships, Bai et al. [17] designed a feature-enhanced pyramid and
shallow feature reconstruction network (FEPS-Net). Although retaining shallow high-
resolution features could effectively improve the detection performance, the computational
cost was correspondingly multiplied. To directly apply the detection method with strong
performance to SAR ship identification, Muhammad et al. [18] introduced an upgraded
YOLOv5s using the C3 convolution and a new neck structure created by combining FPN
and PAN. Though the network performance was further enhanced by the addition of an
attention mechanism, it is still hard to achieve efficient detection of ships in SAR images in
the face of complex situations such as azimuth ambiguity, wave measurement, and sea state.
Anchor-based detectors eliminate the need to scan images with sliding windows, which
effectively raises detection efficiency. However, these anchor-based detectors still have
shortcomings and problems in terms of detection accuracy. First, the detection performance
of anchor-based detectors is dependent on the quantity of anchors, making it difficult to
adjust parameters. Second, due to the fixed size of anchors, the robustness of the anchor-
based method is not strong when encountering a significant deformation of the ship targets.
Finally, anchor-based methods may cause sample imbalance and complex computation.

In contrast to anchor-based methods, anchor-free methods are based on point-to-
predict frames. For the two difficulties of small ships with low resolution and complex
overland backgrounds, Guo et al. [19] proposed an effective detector called CenterNet++.
On the basis of CenterNet, three modules were added to address the above issues: the
feature refinement module, the feature pyramid fusion module, and the head enhancement
module. Yet, it performed poorly on detecting the adjacent ships. In order to strike a balance
between accuracy and speed without limiting the detection performance, Wan et al. [20]
set YOLOX as the basic framework, which redesigned the backbone into the lightweight
MobileNetV2S. Moreover, channel and spatial attention mechanisms called CSEMPAN
and a new target detection head ESPHead were brought up to mitigate the scattering
characteristics of SAR images and to extract features from different scales, respectively.
Hu et al. [21] put forward an anchor-free method based on a balance attention network
to enhance the generalization capability of multiscale ship detection. In this network, a
local attention module was designed to further enhance the robustness of the network. A
nonlocal attention module was also introduced to effectively derive nonlocal features from
SAR images. While this is an approach to detecting ships of different sizes by extracting
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multiscale features, features from different scales may be not strictly aligned, which would
interfere with the detection results. To deal with this problem, Xiao et al. [22] proposed an
anchor-free model, namely power transformations and feature alignment-guided network
(Pow-FAN). Li et al. [23] improved YOLOX to tackle the challenges in SAR ship detection
and to achieve a high detection accuracy. The application of high-frequency sub-band
channel fusion mitigates the issues of speckle noise and blurred ship contour. In addition,
an ultra-lightweight backbone, including GhostCSP and a lightweight spatial dilation
convolution pyramid, was designed to improve detection performance. Compared with
anchor-based methods, anchor-free methods better locate the scattered and sparse ships in
SAR images. Nevertheless, anchor-free methods require strong semantic information to be
extracted from the backbone, resulting in its high computational complexity. Therefore, it is
still a struggle for existing anchor-free methods to effectively detect ships from SAR images.
Considering the aforementioned methods with low detection efficiency, we propose an
efficient anchor-free SAR ship detection model that can effectively extract valuable feature
information from SAR ship images while reducing model computational complexity.

2.2. Small Object Detection Methods

One of the biggest challenges of ship detection in SAR images is detecting small-scale
ships in clutter and complex backgrounds. In recent years, considerable work has taken
place concerning the development of a better small object detection method, which can be
separated into three main categories: increasing the resolution of input images, augmenting
the data, and optimizing the network structure [27]. However, the first two methods
significantly increase the parameters and lead to computation inefficiency. Therefore, this
subsection concentrates on several foundational optimization network-based approaches
in small object detection.

Yu et al. [28] developed a new convolution block that applied dilated convolutions to
process multi-scale prediction by aggregating contextual information in different scales.
Dilated convolution increased the respective fields and avoided the loss of contextual
information. Lin et al. [29] designed the feature pyramid network (FPN), a top-down
feature fusion network, to fuse feature maps from different scales. The fusion factor
in the FPN was implemented to regulate the transmission of information from deep to
shallow layers, which made the FPN adaptive to small object detection. While, unlike
FPN, Wu et al. [30] variegated the feature diversity by integrating a spatial-frequency
channel feature (SFCF). In an SFCF, pixel-wise spatial channel feature and region-based
channel feature representations are extracted to emphasize small mutations in the image’s
smooth area and to better obtain the semantically contextual information, respectively.
Moreover, the abilities feature learning and refinement are enhanced for the robustness
of the ORSIm detector. To avoid the intensive computational cost in image pyramids,
Singh et al. [31] developed the algorithm SNIPER for efficient multi-scale training, which
processes context regions around ground-truth instances in appropriate proportions. This
method adaptively adjusts the number of chips according to the complexity of the scene
in the image. Lim et al. [32] proposed FA-SSD, which combines feature fusion and the
attention mechanism in a conventional SSD. In this method, several high-level feature maps
that contain contextual information of small objects were fused via a one-stage attention
module with low levels. On the basis of U-Net, Wu et al. [33] innovatively nested two
U-Nets to obtain a novel framework, namely UIU-Net, which could effectively prevent
the loss of tiny objects and acquire more object contrast information. In detail, UIU-Net
was separated into two modules, RM-DS and IC-A, to generate multi-scale features while
learning global context information and encoding the local context information from
different levels, respectively. The aforementioned methods for optimizing the network
structure can achieve more precise detection of small targets without increasing the number
of parameters or the computation cost, thereby enabling real-time detection of small objects.
Nevertheless, not only is there the challenge of having difficulty detecting small scale ships
but also variable degradation, noise effects, or variabilities generated during the imaging of
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SAR images will affect the detection accuracy of the model. It is worth emphasizing that our
proposed ESarDet can maintain a high detection accuracy even in these complex conditions.

3. Methodology

Aiming to achieve efficient ship detection in SAR images, we innovatively design
an efficient anchor-free detector, namely ESarDet. Figure 1 depicts the work flow of
the proposed ESarDet. Due to complicated computation and sample imbalance caused
by anchor-based methods, we chose the latest lightweight, universal anchor-free object
detection model, YOLOX-tiny [25], as the baseline model. Taking into account the complex
backgrounds, large scale variation, small-scale targets, and limited computational resources,
three modules are proposed for the baseline model to optimize ship detection performance.
First, to improve the detection of small ships in SAR images, we propose CAA-Net, which
can effectively fuse context and semantic information. Second, to prevent losing the
semantic information of ship targets at the bottom layer and to improve detection efficiency,
A2SPPF is designed to replace the SPP in YOLOX-tiny. Lastly, aiming to better detect multi-
scale ships, we propose a new convolution block named A2CSPlayer to better fuse feature
maps of different scales. In the section that follows, the main components of ESarDet are
described in detail.

Backbone

Input

Focus

CBS

CBS

CSPlayer

CBS

CSPlayer

CBS

CSPlayer

CBS

A2SPPF

CSPlayer

CAA-Net

Feature fusion

Neck

CS

Concat

CS

Upsample

Predication head

YOLO headA2CSPlayer

A2CSPlayer A2CSPlayer

Upsample

Concat A2CSPlayer

Downsample

Concat

YOLO head

YOLO head

Downsample

CBS Conv Batch normalization SiLU

CS Conv SiLU

Concat

C1

C2

C3

C4

C5

Figure 1. The flow diagram of the proposed ESarDet. (a) The output of the C3 convolution block is
fed to CAA-Net to extract contextual information, which is then fused with the semantic information
extracted by the backbone via the feature fusion module. (b) To avoid loss of detail and to improve
the computational efficiency, A2SPPF is added to the C5 convolution block of the backbone. (c) To
better fuse the feature maps from different scales, A2CSPlayer is introduced to the neck to refine the
concatenated feature maps.

3.1. CAA-Net

YOLOX-tiny applies a cross-stage partial network (CSPNet) as the backbone, which
can enhance the networks’ capacity for learning and reduce memory costs. However,
due to the stacking of multiple small kernel convolutions, the ERF of CSPNet is small,
which makes it challenging to capture the contextual information of ships. In addition, the
network extracts more semantic information but retains less contextual information as the
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layer’s number of network increases. To address these problems with CSPNet, a context
attention auxiliary network (CAA-Net) is proposed to enhance the network’s ability to
extract contextual information and to expand the ERF. Figure 2 depicts the work process of
the proposed CAA-Net.

The proposed CAA-Net contains the two path network to process the input feature
map C3. In the proposed CAA-Net, path A contains the 13× 13 depthwise separable
convolution (DwConv) block [34]. Path B contains three parts: a 1× 1 convolution block,
a coordinate attention (CA) module [35], and a 1× 1 convolution block. Subsequently,
the results of the two paths are concatenated and reshaped via 1× 1 convolution and
SoftPool [36] to obtain the output of CAA-Net.

Feature fusion

PAFPN

Focus C1 C2 C3 C4 C5Input

CAA-Net

CBS Conv Batch normalization SiLU

DBS DwConv Batch normalization SiLU

Concat
DBS

Ksize=13
Input

CA 

SoftPool Output

CBS

Ksize=1

CBS

Ksize=1

Path A

Path B

CBS

Ksize=1

Figure 2. The overall work process of the proposed CAA-Net. A detailed flow diagram of CAA-Net
is shown in the red dashed box. In the figure, CA stands for the coordinate attention module, and
Ksize is the convolution block’s kernel size.

Most networks expand the receptive field by stacking convolutions with small kernel
sizes. However, stacking small convolutions does not effectively increase the effective
receptive field [37,38]. A large ERF can help the network better extract the contextual
information of ships, especially small ones. The ERF is calculated according to Equation (1).

√
Var[Sn] =

√
n

√√√√ k−1

∑
m=0

m2

k
− (

k−1

∑
m=0

m
k
)2 =

√
n(k2 − 1)

12
= O(K

√
n) (1)

where
√

Var[Sn] is a standard deviation that indicates the size of the ERF, Sn is roughly a
Gaussian with mean and variance, and Var[Sn] denotes the Gaussian model of Sn. More-
over, m represents the pixel point in the kernel, k represents the kernel size, and n denotes
the convolution layers.

The ERF of a convolution is proportional to its kernel size and the square root of the
number of layers, as demonstrated by the equation. It can be concluded that using a large
kernel convolution expands the ERF more effectively than increasing the depth of small
convolution layers. The use of large kernel convolution not only expands the effective
receptive field but also enhances its ability to extract the contextual information of ships.
Therefore, 13× 13 convolution is added to the proposed CAA-Net, expanding the ERF and
increasing the extraction of small ship contextual information from SAR images.



Remote Sens. 2023, 15, 3018 7 of 24

Nevertheless, convolution with a large kernel size has a low computational efficiency.
In addition, large kernel convolution makes it challenging to extract local features, which
play crucial roles in ship detection. We introduce DwConv to increase the computational
efficiency and performance of large convolutions to mitigate the aforementioned issues,
and the equation of DwConv is shown in Equation (2).

DwConv(F) = PWC1×1(ConcatN
i=1(DWC13×13(Fi))) (2)

where PWC denotes the pointwise convolution operation and DWC denotes depthwise
convolution. Moreover, concat represents the feature map’s concatenate operation.

Different from conventional convolution, DwConv decouples the spatial information
and cross-channel information of the input feature map. DwConv employs depthwise
convolution (DWC) to process the input channel by channel and then concatenates these
feature maps, merging them into an output. However, using only DWC to process feature
maps may cause a loss of cross-channel information. Thus, pointwise convolution (PWC)
is designed, in which 1 × 1 convolution is introduced to cope with the cross-channel
information. After the whole process mentioned above, a new feature map is generated.
Compared with conventional convolution, DwConv significantly reduces the model’s
computational cost.

Aiming to balance the contextual information extracted using the large kernel con-
volution in path A, we add a shortcut path, path B, to CAA-Net. In path B, the input is
first processed via a 1× 1 convolution block, which can prevent network overfitting and
increases the generalization ability. Additionally, the 1× 1 convolution block can deepen
the neural network and add more nonlinear information to help extract more features.
Moreover, we introduce the CA module, a lightweight attention module, to path B of
CAA-Net to better balance the contextual information extracted in path A and enhance
the network’s capacity to extract ship location data from SAR images. Figure 3 depicts the
work process of the CA module.

Input

X Avg Pool
Output size =1×H×C

Y Avg Pool
Output size =W×1×C

Conv+BatchNorml+Sigmoid
Output size=1×(W+H)×C/r

Conv
Output size=1×H×C

Conv
Output size=W×1×C

Sigmoid Sigmoid

Output

Concat

×

Figure 3. The structure of the CA module; output size represents the size of the output feature map
after the operation.

In particular, the CA module contains two main steps, coordinate information em-
bedding and coordinate attention generation, which can encode channel relations and
long-range relations. The input X is first compressed by X and Y global average pooling
to 1× H × C and W × 1× C, respectively. After that, the two feature maps are concate-
nated together. The concatenated results are reshaped to 1× (W + H)× C/r via a 1× 1
convolution block (r = 16 in this paper). The reshaped result is subsequently divided into
two distinct feature maps. The two feature maps are transformed into 1× H × C and
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W × 1× C via two additional 1× 1 convolution and sigmoid functions. Finally, combining
the output feature maps into a weighting matrix, the input feature map X is multiplied by
two weighting matrices to refine the weights. The CA module’s operational flow can be
summarized as Equations (3)–(6).

Zh
C(h) =

1
W ∑

0≤i≤W
Xc(h, i) (3)

Zw
C (w) =

1
H ∑

0≤j≤H
Xc(j, w) (4)

F = σ(BN(Conv1×1(Concat(Zh, Zw)) (5)

Fc(i, j) = Xc(i, j)× σ(Conv1×1(Fh))× σ(Conv1×1(Fw)) (6)

where W and H are the width and height of the input feature map, and Zh
C(h) and Zw

C (w)

denote the results of X Avg Pool and Y Avg Pool, respectively. F ∈ 1×R(H+W) × C/r,
Convk×k represents convolution with a kernel size k× k, σ denotes the sigmoid activation
function, and BN represents the batch normalization operation.

The feature maps, respectively, from path A and path B, are concatenated into a new
feature map with a size of W × H × 2C. Then, the feature map is reshaped via 1 × 1
convolution to W × H × C.

To fuse with the feature map extracted from CSPNet, SoftPool is introduced to down-
sample the feature map to W/4× H/4× C, and its operation flow is depicted in Figure 4.
Conventional pooling operations, such as maximum and average pooling, result in the
loss of semantic information of the feature map, which affects the precision of SAR ship
detection. Unlike conventional pooling operations, SoftPool downsamples the feature map
by using softmax of regions, producing normalized results that preserve more semantic
information. The forward process of SoftPool can be summarized as Equations (7) and (8).

Wi =
eai

∑
j∈R

eaj
(7)

ã = ∑
j∈R

Wiai (8)

where R denotes the kernel size of the SoftPool, e represents the natural exponent, ai denotes
the input feature map, Wi is the weights of ai, and ã is the final output activation map.

Backward

1×10-3 2×10-3 2×10-3 4×10-1

6×10-2 1×10-2 3×10-2 4×10-2

2×10-1 2×10-3 5×10-2 4×10-3

1×10-3 2×10-1 4×10-3 3×10-4

2 4 5 -1 7 -1 -5

3 7 5 1 1 0 2

-3 2 6 8 9 9 0

0 3 2 5 5 -1 -4

4 6 2 1 2 0 -3

6 1 9 -2 2 2 4

2 2 3 4 1 1 0

𝑊𝑖

a

∇a

𝑅

a SoftPool activation map

∇a SoftPool activation map gradient

∇aActivation map gradient

∇a = 𝑊𝑖 ∗ ∇a

Forward

Figure 4. The work flow of SoftPool.
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Finally, in order to fuse the contextual information extracted by CAA-Net with the
semantic information extracted by the backbone, an efficient feature fusion module is
proposed. Its structure is depicted in Figure 5. The process of the proposed feature fusion
module can be summarized in Equations (9) and (10).

F = Concat(FC5 , FCAA−Net) (9)

Foutput = CBAM(DBS3×3(F)) (10)

where CBAM denotes the CBAM attention module, and DBS3×3 represents a convolution
block, which consists of a DwConv with a kernel size of 3× 3, batch normalization, and the
SiLu activation function.

× ×

FCAA-Net

Fbackbone Concat

Channel attentionSpatial attention

3×3 DwConv

CBAM

Figure 5. The feature fusion module concatenates feature maps from CAA-Net and the backbone.
Afterward, 3× 3 DwConv is applied to reshape the concatenated results. Finally, CBAM refines the
reshaped feature map to obtain the feature fusion module’s output.

The feature maps extracted via CAA-Net and the backbone are first concatenated in
the feature fusion module. Then, the concatenated result is reshaped via a 3× 3 DwConv
block. To better merge semantic information with contextual information, the convolutional
block attention module (CBAM) [39], a mixed attention module, is subsequently applied to
refine the feature map. The CBAM module’s operating principle can be summarized as
shown in Equations (11)–(13).

CBAM(F) = AttS(AttC(F)) (11)

AttC(F) = (σ(MLP(GAPool(F)) + MLP(GMPool(F))))× F (12)

AttS(F) = (σ(Conv7×7(Concat(APool(F), MPool(F)))))× F (13)

where AttS and AttC are spatial attention and channel attention modules. MLP is a
multilayer perceptron. GAPool and GMPool denote global average pooling (GAPool)
and global max pooling (GMPool), respectively. Meanwhile, APool and MPool stand for
average pooling (APool) and max pooling (MPool), respectively.

In CBAM, the input feature map will first be calculated via the channel attention
submodule. In this submodule, two 1× 1× C attention maps are obtained via GAPool
and GMPool, respectively. After that, two attention maps are refined independently via
a two-layer multilayer perceptron (MLP) and merged by summing the refined feature
map. In addition, to normalize the merged results, the sigmoid activation function is also
introduced. Finally, to obtain the results of the channel attention submodule, the input
is multiplied with the attention map. Then, the spatial attention submodule processes
the refined feature map. The feature map, which is processed by the channel attention
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submodule, is first processed separately by APool and MPool. After that, the two feature
maps are concatenated and reshaped via a 7× 7 convolution. As with the channel attention
submodule, sigmoid activation functions are also applied to normalize the attention map.
The CBAM module’s final result is generated by multiplying the feature map with the
attention map extracted by the spatial attention submodule.

3.2. A2SPPF

YOLOX-tiny introduces SPP [40] in the backbone to remove the fixed-size constraint
of the network. As shown in Figure 6a, in SPP, the input feature map is parallel processed
via the three max pooling operation. The three independently processed feature maps are
concatenated with a residual feature map and then reshaped via a 1× 1 convolution block.
However, the pooling operations in SPP result in loss of the ship’s semantic information in
SAR images. In addition, the parallel processing of three feature maps in SPP leads to a
low computational efficiency. Moreover, SPP cannot extract the information in different
channels well.
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Figure 6. The structure of the (a) SPP, and (b) proposed A2SPPF, where ECA stands for efficient chan-
nel attention module, Ksize represents the kernel size of the operation, and rate represents the dilation
rate of the dilated convolution. DCBS is the convolution operation of dilated convolution+batch
normalization+silu.

Inspired by [41–43], we propose atrous attentive spatial pyramid pooling fast (A2SPPF),
and its work flow is depicted in Figure 6b. In comparison with SPP, the designed A2SPPF
employs a serial operation to improve the computational efficiency. Moreover, the proposed
A2SPPF replaces the max pooling operation with dilated convolutions with different dilate
rates and kernel sizes to expand the ERF and to prevent loss of detailed information in the
feature map. The dilation rates of these three dilated convolutions are

[
1, 2, 3

]
, and their

kernel sizes are
[
1, 3, 3

]
. We also introduce the efficient channel attention (ECA) module,

a lightweight attention module [44], to refine the weights. The structure diagram of the
ECA module is depicted in Figure 7. The ECA operating principle can be summarized as
Equation (14).

F = Fchannel × σ(Conv1Dk(GAPool(F))) (14)

where Conv1Dk denotes a 1D convolution with kernel k, and in this paper, k = 3. σ
represents the sigmoid activation function. The ECA module obtains a 1× 1× C feature
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map via GAPool. A 1D convolution and a sigmoid function are subsequently applied to
obtain the attention map. Lastly, feature maps are refined by multiplying them with the
relevant channels of the input.

×

W

k

H

C

X

1×1×C
W

H

C

X

G σ 

1×1×C
Figure 7. The operation flow of the ECA module.

Three feature maps, which are processed via the ECA module, are concatenated with
the residual feature map. At the end of the proposed A2SPPF, the results are reshaped via a
1× 1 convolution to obtain the final output.

3.3. A2CSPlayer

How to efficiently merge the different scale features extracted from the backbone is
an important issue for detecting multi-scale ships in SAR images. YOLOX-tiny introduces
PAFPN, in which CSPlayer can effectively merge the feature maps from different scales. The
CSPlayer increases the network’s depth by stacking 1× 1 convolutions, and the bottleneck
structure raises the network’s computational efficiency. However, CSPlayer has a small ERF.
In addition, it is also challenging for CSPlayer to effectively extract the features of small
ships that are scattered in different channels. To achieve more effective fusion of features
from different scales, we propose the A2CSPlayer to process the concatenated feature maps.
The architecture of the proposed A2CSPlayer is depicted in Figure 8.

Input Input Concat Input Output
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Ksize=3

Path B

Path A

Figure 8. The architecture of the proposed A2CSPlayer. D3SConv represents the proposed dynamic
dilated depthwise separable convolution, and ECA denotes the efficient channel attention module.

The proposed A2CSPlayer contains two branches. In path A, a 1× 1 convolution block
and an ECA module refine the input feature map Finput to extract the small ship features
scattered in multiple channels. Then, the feature map is split into two parts. In one part,
two convolutions with respective kernel sizes of 3× 3 and 1× 1 are applied to process
the input feature map. Then, the feature map of this part is added to the residual part to
generate the final result of path A. The convolution operation of path A can be formulated
as Equations (15) and (16).

FA = ECA(SiLu(BN(Conv1×1(Finput)))) (15)
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FA = FA + SiLu(BN(Conv1×1(SiLu(BN(Conv3×3(FA))))) (16)

In path B, the input feature map Finput is processed via the proposed dynamic dilated
depthwise separable convolution (D3SConv), which has a larger ERF than conventional
convolution, and the convolution operation can be expressed as Equation (17).

FB = D3BS
dr
3×3(Finput) = SiLu(BN(PWC1×1(ConcatN

i=1(DWCdr
3×3(Finput))))) (17)

The designed D3SConv is shown in Figure 9. To expand the ERF and to improve
the computational efficiency, we first combine DwConv with dilated convolution. To
expand the ERF, we substitute the PWC convolution process in DwConv with a dilated
convolution. However, feature maps of varying scales have varying widths and heights,
and the contextual information they contain varies in scale. To improve the extraction of
contextual information, we establish a mapping relationship among the dilation rate of
dr, the width Wi and height Hi of the input image, and the width Wc and height Hc of the
current feature map.

1 2 3 …N 2

1

N

1

2

N

1 2 3 …N

1×1 conv

Pointwise ConvolutionDynamic Dilated Depthwise Convolution

Dilated rate = 3Dilated rate = 2Dilated rate = 1

dynamic dilated conv

… ……

Figure 9. The architecture of the proposed D3SConv. Given that the contextual information contained
in the feature maps varies in scale, the proposed D3SConv can dynamically adjust the dilation rate
based on the Equation (19) in order to more effectively merge concatenated feature maps.

The proposed mapping relationship should meet both of the following conditions.
(1) The dilation rate dr increases proportionally with the size of the feature map; (2) to
prevent the loss of long-range information due to the large dilation rate, the dilation rate dr
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of the proposed D3SConv should be constrained. The proposed mapping relationship is
shown in Equation (18).

dr = bk
√

t− bc = bk

√
Wc + Hc

Wi + Hi
− bc (18)

where b.c is a floor operation. In this paper, to meet the two previous conditions above,
k and b are set to 3 and 0.2, respectively. Table 1 shows the relationship after calculation
among the input image size, the current feature map size, and dilation rate.

Table 1. The relationship among input image size, current feature map size, and dilation rate.

Input Image Size Current Feature Map Size Dilation Rate

800× 800
25× 25 1
50× 50 2

100× 100 3

416× 416
13× 13 1
26× 26 2
52× 52 3

256× 256
8× 8 1

16× 16 2
32× 32 3

After the operation above, the two feature maps obtained from paths A and B are
concatenated first. Finally, to obtain the output of the A2CSPlayer, a 1× 1 convolution block
is used to reshape the feature map. The operation can be summarized as Equation (19).

Foutput = SiLu(BN(Conv1×1(Concat(FA, FB)))) (19)

4. Experiments

To validate the validity of the proposed ESarDet, extensive experiments are conducted
on DSSDD [45], SSDD [46], and HRSID [47], three challenging public datasets. This section
initially describes the experimental environment, dataset, evaluation metrics, and training
details. Subsequently, ablation experiments are then conducted to confirm the efficacy
of each proposed module and the effects of large kernel convolution. Following that,
we conduct comparison experiments to compare the proposed ESarDet with the current
state-of-the-art (SOTA) detector. Generalization study are also conducted to verify the
generalization capability of the proposed ESarDet. Finally, a visual robust analysis is
conducted to evaluate the model’s robustness.

4.1. Experimental Environment

All experiments in this paper are conducted in the same environment. The configura-
tion of the environment is shown in Table 2.

Table 2. Configuration of the experimental environment.

Configuration Parameter

CPU AMD Ryzen 7 5800X @3.8 GHz
RAM 32 GB RAM for DDR4 3200 MHz
GPU NVIDIA GeForce RTX 3090 24 GB GPU

Operating system Ubuntu 18.04
Developing tools PyTorch 1.8.2; NumPy 1.21.6; OpenCV 4.6; SciPy 1.1.0; CUDA 11.1
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4.2. Dataset Description
4.2.1. DSSDD

The dual-polarimetric SAR ship detection dataset (DSSDD) is a unique public dataset
that contains dual-polarization images [45]. The DSSDD dataset includes 1236 images
collected from Sentinel-1 satellites, containing 3540 ship targets in total. Moreover, the
image size in DSSDD is fixed at 256 pixels by 256 pixels. Among these images, 856 are
trainable, and the remaining 380 are testing data.

4.2.2. SSDD

The SAR ship detection dataset (SSDD) is the most widely used public dataset in SAR
ship detection [46]. The SSDD dataset includes 1160 images collected from three different
satellites, totaling 2456 ship targets. In SSDD, 928 of these images are used for training,
while the remaining 232 are used for testing. The image size of the SSDD dataset is not
fixed. The edge of the images in SSDD varies from 256 pixels to 608 pixels, and the distance
resolution is 1∼15 m.

4.2.3. HRSID

The high-resolution SAR images dataset (HRSID) is one of the most utilized datasets
for ship detection tasks in high-resolution SAR images [47]. HRSID contains a total of
5604 images and 16,965 ship targets in the dataset, which is gathered from the Sentinel-1
and TerraSAR-X satellites. Among these 5604 images, the training set has 3642 images
and the test set has 1962. The size of images in the HRSID dataset is fixed at 800 pixels by
800 pixels, and distance resolutions are 0.5 m, 1 m, and 3 m.

4.3. Training Details

This paper’s training parameters are established with reference to [25]. The optimiza-
tion algorithm of the experiments used stochastic gradient descent (SGD) with a learning
rate set to 0.01, a momentum set to 0.937, and a weight decay set to 0.0005. Furthermore,
the unfreeze training batch size is 16. To obtain a pre-trained model, we first initialize
all models with weights by random parameters. These models are then trained on the
DSSDD dataset by unfreeze training for 30 epochs. Finally, the training results are applied
as pre-trained models for subsequent training. Based on the pre-trained model, we trained
300 epochs by unfreeze training. The input image sizes are 256× 256 in DSSDD, 416× 416
in SSDD, and 800× 800 in HRSID. Mosaic [48] and MixUp [49] data augmentation is also
included in the training pipeline.

4.4. Evaluation Metrics

To measure the performance of the proposed ESarDet model, we introduce aver-
age precision (AP) and F1 as evaluation indicators. The AP and F1 are calculated as
Equations (20)–(23).

AP =
∫ 1

0
P(R)dR, (20)

F1 =
2× P× R

P + R
(21)

where P represents precision and R represents recall, and they are calculated as follows:

P =
TP

TP + FP
(22)

R =
TP

TP + FN
(23)

where TP, FP, and FN denote the number of true positives, false positives, and false
negatives, respectively. True positives and false positives denote the proper detection of
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the model and the incorrect detection of the detector, respectively. False negative refers to a
ground truth that the detector misses or does not detect.

In addition, the parameters (Parameters), floating-point operations per second (FLOPs),
and frames per second (FPS) are also applied to measure the computational complexity
and efficiency of the proposed model.

4.5. Ablation Experiments
4.5.1. Effects of Each Proposed Module

To verify the validation of each proposed module in ESarDet, we conduct three sets
of ablation experiments on DSSDD, SSDD, and HRSID. Each set of ablation experiments
contains five sub-experiments, containing fifteen sub-experiments in total.

In each set of ablation experiments, the first experiment is the YOLOX-tiny without any
improvement as a baseline to provide a basis for comparison in subsequent experiments.
The second experiment is the introduction of the proposed CAA-Net in the backbone of
YOLOX-tiny to verify the effectiveness of the context attention auxiliary network (CAA-
Net). In the third experiment, to validate the effectiveness of the proposed atrous attention
spatial pyramid pooling fast (A2SPPF), we use the A2SPPF to replace the SPP in YOLOX-
tiny. In the fourth experiment, we replace the CSPlayer in YOLOX-tiny’s PAFPN with the
A2CSPlayer to verify the performance of the proposed atrous attentive cross-stage partial
layer (A2CSPlayer) in feature fusion. Finally, in the fifth experiment, we superimposed the
second experiment, the third experiment, and the fourth experiment in order to verify the
validity of the proposed ESarDet. In addition, the training environment, parameters, and
dataset used in each set of ablation experiments are kept consistent. The results of the three
sets of ablation experiments are shown in Tables 3–5, and the visual ablation experiment
results are shown in Figure 10.

Table 3. Ablation experiment on DSSDD dataset.

ID CAA-Net A2SPPF A2CSPlayer AP (%) F1 Parameters FLOPs

1 F F F 96.30 0.94 5.033 2.437
2 T F F 97.72 0.95 5.485 2.724
3 F T F 96.78 0.94 5.734 2.527
4 F F T 96.97 0.94 5.046 2.447
5 T T T 97.93 0.95 6.200 2.824

Table 4. Ablation experiment on SSDD dataset.

ID CAA-Net A2SPPF A2CSPlayer AP (%) F1 Parameters FLOPs

1 F F F 95.08 0.95 5.033 6.435
2 T F F 97.64 0.95 5.485 7.192
3 F T F 96.75 0.95 5.734 6.673
4 F F T 96.59 0.95 5.046 6.461
5 T T T 97.96 0.96 6.200 7.456

Table 5. Ablation experiment on HRSID dataset.

ID CAA-Net A2SPPF A2CSPlayer AP (%) F1 Parameters FLOPs

1 F F F 90.65 0.89 5.033 23.799
2 T F F 92.21 0.90 5.485 26.597
3 F T F 91.84 0.91 5.734 24.678
4 F F T 91.90 0.90 5.046 23.894
5 T T T 93.22 0.91 6.200 27.572
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Figure 10. Visual ablation experiment. GT represents ground truth; labels 1–5 correspond to the row
IDs 1–5 in Tables 3–5. The yellow circles represent the ships that missed detection, and the orange
circles are the ships that are detected incorrectly.

First, compared with the baseline YOLOX-tiny, the proposed ESarDet obtains a sig-
nificant improvement in AP for 97.93% (+1.63%), 97.96% (+2.88%), and 93.2% (+2.57%) of
the DSSDD, SSDD, and HRSID datasets, respectively. As demonstrated in Figure 10, the
proposed ESarDet accurately detects all ships in SAR images. In the second experiment,
we added the proposed CAA-Net to the backbone of YOLOX-tiny, which improved the AP
by 1.42% on DSSDD, 2.56% on SSDD, and 1.56% on HRSID. CAA-Net can expand the ERF
and efficiently merge contextual information with semantic information, which is helpful
for small ship detection. As shown in the first row in Figure 10, after adding CAA-Net,
the model detected all ships in the image, whereas the baseline model missed some small
ships. In the third experiment, we substituted the SPP of YOLOX-tiny with the proposed
A2SPPF, and the AP of DSSDD, SSDD, and HRSID increased by 0.48%, 1.67%, and 1.19%,
respectively, compared with the baseline. Figure 10 demonstrates that when there are dense
small ships in the image, the detection performance of A2SPPF is superior to that of the
baseline model. The results prove that the designed A2SPPF can effectively prevent loss of
information. In the fourth experiment, we replaced the CSPlayer with the A2CSPlayer in
the neck of YOLOX-tiny, and the AP increased by 0.67% on DSSDD, 1.51% on SSDD, and
1.25% on HRSID, while the parameters increased by only 0.25%. As demonstrated in the
third row of Figure 10, the designed A2CSPlayer is capable of detecting multi-scale ships in
SAR images.



Remote Sens. 2023, 15, 3018 17 of 24

According to the results of the experiments, the three modules proposed in this paper
can effectively improve the performance of SAR ship detection.

4.5.2. Effects of Large Kernel Convolution

In this subsection, we investigate the effect of large kernel convolution on SAR ship
detection. We replace the kernel size of the convolution block in path A of CAA-Net with
different sizes and test it on the HRSID dataset. The results are shown in Table 6. The
AP of the model is 91.38% when the kernel size of convolution is 1× 1. As the kernel
size increases, the AP also increases. According to the conclusion of Ding et al. [37], the
performance should reach its maximum level when the kernel size of the convolution is
large enough to completely cover the input feature map. Nevertheless, the model achieves
an AP of 92.21% on the HRSID dataset when the kernel size is 13× 13. When we continue
to increase the kernel size, the model’s performance does not significantly improve. We
directly set the kernel size to 101× 101, which can completely cover the input feature map,
but its AP is only 92.17% while the number of parameters reaches 6.448 M. Moreover, the
FPS of our model is greater than that of other kernel size models when the kernel size is
13× 13. Combining the above experiments, the proposed ESarDet finally selects 13× 13
kernel convolution.

Table 6. Effects of large kernel convolution in HRSID.

Kernel Size AP (%) F1 Parameters (M) FPS

1× 1 91.38 0.90 5.469 72.57
3× 3 91.40 0.89 5.470 72.47
7× 7 91.59 0.90 5.474 70.78

11× 11 92.05 0.90 5.481 73.12
13× 13 92.21 0.90 5.485 74.89
15× 15 92.21 0.90 5.491 73.82
19× 19 92.14 0.90 5.504 73.44
23× 23 92.23 0.90 5.520 70.57

101× 101 92.17 0.91 6.448 53.12

4.6. Comparison Experiments
4.6.1. Comparison with State-of-the-Art Detectors

In this section, several state-of-the-art (SOTA) detectors, including anchor-free detec-
tors such as YOLOX-m [25], FCOS [50], and YOLOv8-l [51] and anchor-based detectors
such as Faster-RCNN [52], YOLOv4 [48], YOLOv5-l [53] and YOLOv7 [54], are selected
to verify the detection performance of the proposed ESarDet. Among these SOTA detec-
tors, Faster-RCNN is a two-stage detector, while the others are single-stage detectors. We
conduct comparative experiments on the DSSDD, SSDD, and HRSID datasets, and the
experimental results are shown in Tables 7–9. From an overall perspective, the proposed
ESarDet performs well in terms of detection performance, computational complexity, and
detection speed.

Table 7. Comparison with the SOTA detectors on DSSDD dataset.

Method AP F1 Parameters FLOPs FPS

Faster-RCNN 90.18 0.90 136.689 184.806 34.49
YOLOX-m 96.47 0.95 25.281 11.796 47.65

FCOS 95.71 0.87 32.111 25.782 69.01
YOLOv4 92.40 0.93 63.938 22.704 56.83

YOLOv5-l 95.83 0.93 46.631 18.329 58.42
YOLOv7 94.58 0.92 37.192 16.818 60.33

YOLOv8-l 95.69 0.93 43.631 26.464 66.61
ESarDet 97.93 0.95 6.200 2.824 71.36
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Table 8. Comparison with the SOTA detectors on SSDD dataset.

Method AP F1 Parameters FLOPs FPS

Faster-RCNN 89.74 0.88 136.689 252.582 32.97
YOLOX-m 96.97 0.95 25.281 31.149 46.41

FCOS 96.46 0.92 32.111 68.209 62.32
YOLOv4 93.88 0.90 63.938 59.953 52.11

YOLOv5-l 96.93 0.94 46.631 48.401 56.74
YOLOv7 97.22 0.94 37.195 44.410 48.93

YOLOv8-l 96.52 0.94 43.631 69.883 46.09
ESarDet 97.96 0.96 6.200 7.456 65.75

Table 9. Comparison with the SOTA detectors on HRSID dataset.

Method AP F1 Parameters FLOPs FPS

Faster-RCNN 85.95 0.81 136.689 546.925 28.53
YOLOX-m 92.33 0.90 25.281 115.197 30.15

FCOS 88.43 0.83 32.111 252.015 41.67
YOLOv4 81.74 0.78 63.938 221.719 34.77

YOLOv5-l 92.03 0.88 46.631 178.998 46.36
YOLOv7 92.85 0.88 37.192 164.239 23.04

YOLOv8-l 92.18 0.90 43.631 258.442 46.09
ESarDet 93.22 0.91 6.200 27.572 60.58

Results on DSSDD. On the DSSDD dataset, the proposed ESarDet achieved an AP
of 97.93% and an F1 of 0.95. Among the listed SOTA detectors, YOLOX-m [25] achieved
the highest detection accuracy, with an AP of 96.47%, 1.46% less than that of ESarDet.
From the perspective of computational complexity, the parameters of ESarDet, 6.2 M, are
significantly lower than that of YOLOX-m, 25.281 M, accounting for only 24.5% of the
latter. FCOS [50] comes closest to ESarDet in terms of detection speed, with an FPS of 69.01,
which is 2.35 frames slower than ESarDet, but the detection accuracy of FCOS is 2.22%,
which is 0.08 lower than that of ESarDet in AP and F1, respectively.

Results on SSDD. On this dataset, the proposed ESarDet obtained the highest AP and
F1, 97.96% and 0.96, respectively. Compared with the anchor-based detectors, including
Faster-RCNN [52], YOLOv4 [48], YOLOv5-l [53], and YOLOv7 [54], the proposed ESarDet
obtained results that were 8.22%, 4.08%, 1.03%, and 0.74% higher in AP, respectively.
Among these anchor-based detectors, YOLOv7 has the lowest parameters, 37.192 M, which
is six times higher than that of ESarDet (6.2 M).

Results on HRSID. The proposed ESarDet has the best performance in detection
accuracy, with AP and F1 reaching 93.22% and 0.91, respectively. Since the input image
size on the HRSID dataset is 800× 800× 3, the model has a significant increase in FLOPs
in comparison with the first two datasets. Among all models, Faster-RCNN [52] has the
highest FLOPs metric at 546.925 G, while ESarDet’s FLOPs is 27.572 G, only 5% of Faster-
RCNN’s; however, ESarDet improves the detection accuracy by 7.27% in AP compared
with Faster-RCNN. In terms of detection speed, the proposed ESarDet has an FPS of 60.58,
while the model with the fastest detection speed is YOLOv5-l [53], which has an FPS metric
of 46.36, 14.22 FPS slower than ESarDet.

Furthermore, two SAR images with complex backgrounds are selected to demonstrate
the detection performance of the proposed ESarDet, the detection results are depicted in
Figures 11 and 12, and the ground truth of two SAR images is also shown in those figures.
Only the proposed ESarDet accurately detects all ships in two sample images.
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Ground truth

YOLOv4 YOLOv5-l YOLOv7

FCOS

YOLOX-m ESarDetYOLOv8-l

Faster-RCNN

Figure 11. Comparison of SAR ship detection of sample image I. The yellow circles represent the
ships that missed detection, and the orange circles are the ships that are detected incorrectly.

Ground truth

YOLOv4 YOLOv5-l YOLOv7

FCOSFaster-RCNN

YOLOX-m ESarDetYOLOv8-l

Figure 12. Comparison of SAR ship detection of sample image II. The yellow circles represent the
ships that missed detection, and the orange circles are the ships that are detected incorrectly.
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In the sample image I, FCOS missed the two in-shore small ships on the right side of
the two images. YOLOv5-l mistook the buildings on the shore and the noise on the sea
for ships. The other detectors also missed some ships and had false results. In the sample
image II, only the proposed ESarDet, FCOS, and YOLOv7 accurately detected two ships
docked together. Other detectors are less effective at identifying dense ship targets than the
proposed ESarDet. In addition, YOLOv4 missed detecting a large quantity of ships in the
images. YOLOv5-l incorrectly identified the structures on shore as ships. Moreover, three
superior detectors, YOLOv7, YOLOv8-l, and YOLOX-m, missed detecting several ships
as well.

4.6.2. Comparison with SAR Ship Detectors

To further validate the performance of the proposed ESarDet, a comparison experiment
was conducted on the SSDD dataset. In this subsection, several SOTA SAR ship detectors,
including the two-stage detectors CRTransSar and BL-Net and the one-stage detectors FEPS-
Net, CenterNet++, AFSar, and Pow-FAN were chosen for comparison with the proposed
ESarDet. Due to the fact that the majority of SAR ship detectors do not release their
source code, we cannot reproduce them and can only compare them based on the data
they provide.

The results of the comparison experiments are shown in Table 10. When the input
images are smaller than those of the other six SAR ship detectors, the proposed ESarDet
still achieves an AP and an F1 of 97.96% and 0.96, respectively, which are superior to the
other detectors. Compared with CenterNet++, ESarDet improved AP and F1 by 2.86% and
0.08, respectively, while the detection speed improved by 35.45 FPS. In comparison with
BL-Net, ESarDet improved AP and F1 by 2.71% and 0.03 respectively, while decreasing
the parameters and FLOPs by 41.61 M, 34.254 G, respectively. In terms of detection speed,
ESarDet improved by 60.73 FPS compared with BL-Net’s 5.02 FPS, reaching 65.75 FPS.
In addition, ESarDet reduced the parameters by 31.11 M and increased the AP by 1.96%
when compared with FEPS-Net. In contrast to FEPS-Net, the detection speed of ESarDet
increased by 34.21 FPS. The comparison experiments’ results demonstrate that the pro-
posed ESarDet performs better than the existing SOTA SAR ship detector in a number of
performance metrics.

Table 10. Comparison with SOTA SAR ship detection methods on SSDD dataset.

Method Input Size AP (%) F1 Parameters FLOPs FPS

CRTransSar [16] 640× 640 97.0 0.95 96 - 7.5
FEPS-Net [17] 448× 448 96.0 - 37.31 - 31.54

CenterNet++ [19] 512× 512 95.1 0.88 - - 30.30
AFSar [20] 640× 640 97.7 0.96 - 9.86 -

Pow-FAN [22] 512× 512 96.35 0.95 - - 31
BL-Net [24] 512× 512 95.25 0.93 47.81 41.71 5.02

ESarDet 416× 416 97.96 0.96 6.200 7.456 65.75

4.7. Generalization Study

There are apparent variations between ships in different images due to distinctions in
polarization, sensor models, and shooting locations; therefore, an efficient SAR ship detec-
tion method should have a high capacity for generalization. To verify the generalization
capability of the proposed ESarDet, a generalization study was conducted. In this section,
we train the model on the HRSID dataset and then directly test the trained model on the
DSSDD test dataset, and the results of the experiments are shown in Table 11.

From the results of the generalization study, the performance of anchor-based detectors
is dependent on the quality of the manually pre-designed anchors, so the generalization
ability of anchor-based detectors is poor. In contrast, anchor-free detectors such as FCOS,
YOLOX-m, and the proposed ESarDet have better generalization ability. In the general-
ization test, the AP of ESarDet reached 81.49%, which was 2.45%, 42.26%, 13.02%, 66.51%,
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5.46%, and 5.46% higher than those of FCOS, YOLOv4, YOLOv5-l, YOLOv7, YOLOv8-l, and
YOLOX-m, respectively, and the F1 of ESarDet reached 0.82 over several other detectors.
According to the results of the generalization study, our proposed ESarDet has greater
generalization capability than other SOTA detectors.

Table 11. Generalization experiment on DSSDD dataset.

Method AP (%) F1 Parameters FLOPs FPS

Faster-RCNN 62.46 0.51 136.689 184.806 34.49
YOLOX-m 76.03 0.80 25.281 11.796 47.65

FCOS 79.04 0.65 32.111 25.782 69.01
YOLOv4 39.23 0.38 63.938 22.704 56.83

YOLOv5-l 68.47 0.72 46.631 18.329 58.42
YOLOv7 14.98 0.31 37.192 16.818 60.33
YOLOv8 70.96 0.74 43.631 69.883 66.61
ESarDet 81.49 0.82 6.200 2.824 71.36

4.8. Visual Robust Analysis

Due to variability in the imaging process, such as noise and various degradations,
the detector is susceptible to false positives and false negatives [55]. In this section, we
discuss the effectiveness of the proposed ESarDet when SAR image quality is degraded.
Three low-quality images were selected, and visual results are presented in Figure 13. In
order to better visually explain the performance, Grad-CAM [56] is also introduced to
generate heatmaps.

GT

Predict result

Heatmap

Figure 13. Visualization results of low-quality SAR images, where GT represents ground truth.

Despite the variability affecting these images, the proposed ESarDet detects all ships
in the three SAR images successfully and accurately. This demonstrates that ESarDet
maintains excellent detection accuracy even when low-quality SAR images are present.
However, the heatmaps in Figure 13 show that noise and other factors do interfere with
ESarDet, and in some of the images, the background is given the incorrect weights.

5. Discussion

To address the challenges of complex background, small ship scale, large scale vari-
ation, and limited computational resources in SAR images, three modules, CAA-Net,
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A2SPPF, and A2CSPlayer, are proposed in this paper. To validate the effectiveness of the
proposed ESarDet, we conduct extensive experiments on the DSSDD, SSDD, and HRSID
datasets. The experimental results demonstrate that the proposed ESarDet outperforms the
existing SOTA detector in terms of detection accuracy, generalization capability, computa-
tional complexity, detection speed and robustness.

However, the proposed ESarDet still has certain limitations. Due to its network
architecture that involves the parallel operation of CAA-Net and the backbone, ESarDet
does not exhibit significant advantages in terms of detection speed. In addition, the
proposed ESarDet may still be affected by image noise, clutter, and degradation, so there is
room for improvement. In future work, we will continue to investigate the effects of noise
and other factors on the network and try to design more efficient network structures.

6. Conclusions

In this paper, an efficient SAR ship detection method based on a large effective recep-
tive field and contextual information called ESarDet was proposed. For the characteristics
of ships in SAR images, such as complex backgrounds, large scale variations, small scale
targets, and limited computational resources, three modules were proposed to improve
detection performance. First, CAA-Net, a large kernel convolution-based module for
contextual information extraction, was designed to detect small-scale ships in SAR im-
ages. CAA-Net can effectively merge context and semantic information to enhance the
model’s detection performance. Subsequently, A2SPPF was proposed to avoid loss of ship
detail information. This module uses dilated convolution with an attention mechanism
to avoid information loss and improves the computational efficiency by improving the
network structure. Finally, A2CSPlayer, which can adaptively adjust the dilation rate to
more effectively fuse the feature maps from different scales, was constructed.

Extensive experiments were conducted on the DSSDD, SSDD, and HRSID datasets,
respectively, to validate the effectiveness of the proposed ESarDet. The proposed ESarDet
achieved 97.93%, 97.96%, and 93.22% AP on the DSSDD, SSDD, and HRSID datasets,
respectively, which was higher than that of the baseline model and other SOTA methods.
Regarding computational efficiency, the proposed ESarDet model has only 6.2 M parameters,
significantly less than that in other SOTA models. The experimental results prove that the
proposed ESarDet can achieve accurate and efficient ship detection in SAR images.

However, the proposed ESarDet still has limitations, such as no significant advantage
in detection speed, and the possibility of still being disturbed by noise and clutter. In future
work, we will continue to investigate the effects of noise and other factors on the network
and try to design more efficient network structures.
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