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Abstract: Rapid slope instabilities (i.e., rockfalls) involving highway networks in mountainous areas
pose a threat to facilities, settlements and life, thus representing a challenge for asset management
plans. To identify different morphological expressions of degradation processes that lead to rock
mass destabilization, we combined satellite and uncrewed aircraft system (UAS)-based products over
two study sites along the State Highway 133 sector near Paonia Reservoir, Colorado (USA). Along
with a PS-InSAR analysis covering the 2017–2021 interval, a high-resolution dataset composed of
optical, thermal and multi-spectral imagery was systematically acquired during two UAS surveys in
September 2021 and June 2022. After a pre-processing step including georeferencing and orthorec-
tification, the final products were processed through object-based multispectral classification and
change detection analysis for highlighting moisture or lithological variations and for identifying
areas more susceptible to deterioration and detachments at the small and micro-scale. The PS-InSAR
analysis, on the other hand, provided multi-temporal information at the catchment scale and assisted
in understanding the large-scale morpho-evolution of the displacements. This synergic combination
offered a multiscale perspective of the superimposed imprints of denudation and mass-wasting
processes occurring on the study site, leading to the detection of evidence and/or early precursors of
rock collapses, and effectively supporting asset management maintenance practices.

Keywords: rock slope instabilities; UAS; InSAR; multi-scale; instabilities; early precursors; erosion
processes; asset management plan

1. Introduction

Slope instabilities, especially along transportation corridors in mountainous areas,
pose a threat to facilities, settlements and life [1,2]. According to the United States Geo-
logical Survey (USGS), the destruction caused due to landslides, in general, results in 25
to 50 deaths per year and costs in excess of USD 1 billion in damages in the United States
alone [3]. With the increasing population and demand for advanced infrastructure, it is
crucial to assess mass-wasting hazards and manage the associated risks for maintaining
transportation corridor safety [4,5]. Among the recurrent mass movements involving high-
way networks, rockfalls are among the most hazardous types. Despite the often limited
volumes of rockfalls, their high energy and velocity, as well as their frequency, make them
a major cause of mass-wasting fatalities [6–8]. Several geomorphic processes (including
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thermic cycles, progressive weathering of rock materials and water infiltration) control the
mechanical properties and the degradation state of the rock mass, therefore influencing its
overall stability [7,9,10].

Conventional methods of rockfall hazard assessment involve rigorous fieldwork where
quantitative measurements (e.g., spacing, density and orientation of fractures) and qual-
itative evaluations (e.g., recent detachments and potential sources of future failures) are
addressed [5]. Although these in situ point measurements can effectively assist the predic-
tion of slope stability with high precision, they are time-consuming, have limited spatial
extent, and can be expensive. Unprecedented opportunities derive from the extensive
use of remote sensing methods, which facilitate an efficient, cost-effective and safe as-
sessment of the slope pre-failure conditions. Remote-sensing-based data come in a wide
range of platforms (e.g., spaceborne and airborne) and spatio-temporal and radiometric
resolutions [11]. At a large scale, satellite synthetic aperture radar interferometry (InSAR)
enables the precise monitoring of ground deformations over tens of square kilometers.
InSAR analysis thus represents one of the best instruments for creating regional-scale slope
instability inventories [12,13] and relative susceptibility maps [14,15]. However, due to the
line-of-sight acquisition mode of the satellite sensors, geometric distortions like shadowing
effects may limit the capacity of this method to effectively investigate vertical slopes. Recent
developments in uncrewed aircraft systems (UASs) include their abilities to carry multiple
sensors, fly on demand, orient the sensor’s look angle based on the topography characteris-
tics, and achieve ultra-high-resolution information (1–20 cm) for precise morphodynamic
characterization of processes and landforms [16]. These practical advantages are optimal
for rock mass stability evaluation, and were successfully exploited by previous studies
through classification systems such as the slope and rock mass rating [17–19]; realization
of tridimensional models for mapping geomechanical properties [20–23] or for stability
analysis, hazard and risk modeling [24–28]; exploitation of multispectral and hyperspectral
sensors for landslide susceptibility assessment; and detailed analysis of slopes’ lithological
and moisture conditions [29–31]. In particular, the scientific community is dedicating its
efforts to identifying early precursor signals indicative of instability events or studying the
temporal morphoevolution of block and debris detachments, exploiting topographic mod-
els and quantitative geomechanical characterization of the rock masses. Progressive creep,
deformation and micro-tremors are clear indicators of the ongoing disruption of the slope
stability, therefore they are the primary goals for a comprehensive assessment of rockfall
hazard. Most of the previous literature so far lies with the application of terrestrial-based
technologies, such as terrestrial laser scanners (TLS) [32–36] or terrestrial InSAR platforms
(TInSAR) [37,38] to identify pre-failure information. Despite the numerous advantages
and exceptional precision of these techniques, however, several challenges arise due to the
high costs and logistical constraints (linked to the positioning of the instrumentation and
the lack of data in shaded areas). The versatility of UAS sensors and platforms renders
them an efficient (yet far from being fully exploited) alternative for evaluating the early
precursors of rock destabilization through topographic models [39]. Refs [40–43] analyzed
the predominant discontinuities through UAS-based structure-from-motion (SfM) pho-
togrammetry techniques to estimate average block sizes and determine their simulated
run-out. A multi-scale approach consisting of the creation of different digital surface mod-
els of the slope along a road was adopted by [44]. Statistically representative geometrical
data for the discontinuities of the rock mass were obtained to eventually define the possible
kinematic mechanisms and volumes of potentially detachable blocks. To determine poten-
tially unstable rock volumes and provide the magnitude of future rockfalls, geometrical
and geomechanical properties of the main sets of discontinuities and joints of the rock
mass were extracted by [45,46], respectively, using photogrammetry point clouds alone or
a combination of thermal images and a photogrammetric cliff model. These applications,
however, are limited to accounting for the discontinuities’ properties as the sole factor
influencing the slope stability, disregarding the progressive alteration and fragmentation
driven by water infiltration and erosion. In this framework, our study represents one of the
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few applications of UASs for detecting local to micromorphological signatures of the initial
stages of slope disruption. Furthermore, we consider the multiscale imprint of denudation
and mass-wasting processes, along with their respective preliminary indicators, exploiting
a synergic combination of satellite and drone-based data to obtain an in-depth characteri-
zation of landforms and processes [47–50]. In this study, the morphological features and
radiometric differences associated with significant change detection over the study area are
investigated. We apply a multiscale and multisensor approach integrating satellite-based
InSAR analysis with UAS-based data to assess mass-wasting processes on two study sites
located along State Highway 133 near Paonia Reservoir in Colorado, USA.

2. Geographical and Geological Settings

The Paonia Reservoir area is part of the southern sector of the Piceance Basin, a
structural and sedimentary basin formed during the late Cretaceous–Paleocene Laramide
orogeny. The exposed stratigraphic sequence, representing this Cretaceous–Tertiary bound-
ary, mainly consists of the white rocks of the Ohio Creek Member and the variegated rocks
of the Wasatch Formation (Figure 1), both deposited in a non-marine environment. The
first unit was considered by many stratigraphers as a separate formation because of its
distinctive white/light-gray color but was eventually reduced in rank to the Ohio Creek
Member of the Mesaverde Group by [51], who described it as a deep paleo-weathered
kaolinitic zone undistinguishable in age (late Cretaceous) from the underlying rocks of
the Mesaverde group. The lithological composition varies from light-gray or white con-
glomeratic sandstone with well-rounded chert pebbles in the lower and upper part, to
interbedded layers of sandstone, siltstone and shale with some thin coal lenses in the
middle sector [51–53]. This lithological alternation finds expression in slope morphology,
where thick and resistant sandstone ridges intermingle with more erodible siltstone and
shale layers. The white-weathering Ohio Creek member is unconformably overlain by
lower Cenozoic rocks of the Wasatch Formation. At this location, the Wasatch Formation
deposition is characterized by non-kaolinized, mottled maroon medium- to coarse-grained
conglomeratic sandstones [51–53].

The area of interest referred to as Paonia 1A is located along the western side of Paonia
Reservoir and around 500 m north of Paonia Dam (from MP 24.7 and 25.0 of State Highway
133, Figure 1). The slope reaches the highest values of steepness (up to 65◦) along the
upper part, where the bedrock unit of the Mesaverde Group outcrops. In this part, light
brown and light tan sandstone beds (a few meters thick) are interbedded with thinner
gray mudstone and shale layers, corresponding to the Barren Member of the Mesaverde
Group (Figure 1) [54]. The lowest part of the slope, with a mean steepness value around
35–40◦, is mainly composed of an unconsolidated deposit fed by mass wasting due to the
mechanical and chemical weathering of the bedrock outcropping in the upper part. The
resulting scree slope is constituted by small-sized rocks (a few cubic centimeters). At the
same time, massive boulders are more likely to accumulate along the foot of the slope and
inside the roadside ditch.

The second area of interest (hereafter called Paonia 1B) is located two miles north
of Paonia Reservoir on the west side of SH133 (from MP 29.9 to 30.2), just north of the
confluence of West Muddy Creek into East Muddy Creek and along the south-eastern
slope of the Bull Mountain (Figure 1). This sector of SH133 aligns with the foot of a slope
characterized by a mean steepness value of about 40◦, sharply interrupted by a flatter
area (less than 10◦) located in its middle portion. A concave-shaped landslide scar isolates
several morphological steps in the northern sector of the area, which could be kinematically
due to the roto-translational landslide mechanism.
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Figure 1. Location of the study areas along State Highway 133 (upper panel). The oblique view of
the slopes of interest and their geological setting is reported in the bottom panels, respectively for
Paonia 1A (left panels) and Paonia 1B (right panels). The figures were realized using ArcGIS Pro
3.0.4 and QGIS 3.22.14.

3. Materials and Methods

This section includes two main subsections, for the interferometric synthetic aperture
radar analysis (InSAR) and the UAS-based acquisition and processing techniques adopted
in the present work. The first analysis was performed at the catchment scale: the scope
was detecting large deformation processes and considering their interaction on portions of
SH133 wider than those included in the actual study areas. Downscaling the investigation,
the UAS-based products were used to identify signs of slope instabilities at the small
and micro-scale. In particular, different radiometric sensors (i.e., optical, thermal and
multispectral) were combined to highlight morphological variations related to erosion or
accumulation processes.

3.1. Satellite-Based (InSAR) Analysis

Advanced differential interferometric synthetic aperture radar (A-DInSAR) is a multi-
image process that provides high-resolution measurements over large areas [55]. Specifi-
cally, the persistent scatterers (PS) technique [56] is capable of identifying and measuring
the displacement of millions of ground points, thereby providing a much more detailed
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and comprehensive understanding of ground deformation (and its association with geo-
logical processes) over time. PSs represent the time-coherent pixels retrieved in the stack
of differential interferograms, thus corresponding to phase-stable objects in the scene [57].
For the present study, medium-resolution Sentinel-1 data were used for the 2017–2021 time
interval. The European Space Agency’s two-satellite constellation has the main advantage
of high temporal coverage (revisit time of up to 6 days) over the same area. The dataset
was analyzed in the SARPROZ software 2022 (the SAR processing tool by Perez [58] and
allowed to estimate both the average line-of-sight (LOS) velocity and the displacement
time series (TS) for the PS over the two study areas. The essential steps of the processing
consist of co-registering all of the images to the one chosen as the master. Subsequently,
two radar parameter maps are generated to estimate the quality of the persistent scatterer
candidates (PSCs): these maps respectively represent the multi-temporal amplitude value
for each pixel (reflectivity map) and the coefficient of the amplitude variation (amplitude
stability index map). The next step relates to the detection and removal of the atmospheric
phase screen (APS) for estimating each persistent scatterer (PS) and the velocity values
along the line-of-sight (LOS) relative to a reference point identified in a stable region [59,60].
At the end of the PSI workflow, PSs having a low temporal coherence threshold (<0.5) were
discarded. Of the two available orbital geometries, only the results from the ascending
geometry analysis were reliable enough to be interpreted. Geometric distortions due to the
off-nadir angle of the descending geometry, in particular shadow effects, heavily affected
the spatial coverage of the data.

3.2. UAS-Based Acquisition and Processing

The multi-temporal UAS-based data acquisition aimed to create high-resolution prod-
ucts to assess a comprehensive deterioration model of the rock mass, including seasonal
moisture condition variations, structural changes and lithological characterization. For this
purpose, two UAS flight campaigns were carried out in September 2021 and June 2022; the
flights were operated from traffic pullouts along Colorado SH133 (Figure 2a) in adherence
to Federal Aviation Administration (FAA) regulations regarding drone visual-line-of-sight
(VLOS), maximum flight altitude relative to ground level, and flights over traffic. Moreover,
visual observers selected from the field team helped UAS pilots ensure air space safety.
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Figure 2. Examples of drones, instruments and sensors used during the field operations. Panel
(a) Bergen Hexacopter flying over Paonia 1B site; (b) AeroPoint and Trimble 3 GPS unit placed at
Paonia 1A site; (c) Tetracam multispectral camera; (d) Dual optical and thermal cameras.
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To accurately georeference drone-derived image products, together with cloth pho-
togrammetry targets, we placed ten ground control targets (Figure 2b) throughout the
planned study area. Each AeroPoint already includes built-in GNSS and Wi-Fi systems that
allow a level of accuracy of down to 3 cm during the imagery georeferencing process. The
flights were planned with overlaps of 70% along the flight line and 60% at the sides and
were manually carried out at the same time of the day to cover the study sites under similar
lighting conditions each year. A set of multi-sensor cameras were flown as payload on
three different UASs to capture and analyze complementary and interconnected environ-
mental conditions that contribute to the rock instabilities of the area. More than ten flights
per survey were necessary to acquire nadir and oblique-oriented images to represent the
near-vertical slopes accurately. The Tetracam multispectral camera (Figure 2c) was flown
as payload on the Bergen Hexacopter at each study site. This sensor can capture detailed
information about the spectral characteristics of the landscape, which can reveal potential
changes in moisture content and mineral composition.

The M2EA (Figure 2d), equipped with dual optical thermal integrated cameras, was
used to capture radiometrically calibrated thermal imagery over each site. In Table 1, we
summarize both the drones’ specifications and the type of sensors flown as payload.

Table 1. The characteristics of the drones used for the study.

Characteristics DJI Mavic 2 Pro DJI M2EA Bergen Hexacopter

Camera Integrated 20 MP Integrated dual optical (12/48 MP)
thermal (640 × 480 radiometric 30 Hz) Tetracam Micro-MCA6

Maximum take-off
weight (kg) 0.907 0.11 4.5

Flight range (min) 25 25 15

Flight altitude (m) 45–60 30–60 30–70

Maximum horizontal
speed (km/h) 72 72 30

N◦ of images (nadir) 2000 3500 thermal Tetracam: 700
(6 bands)

N◦ of images (oblique) 800 900 thermal Tetracam: 500
(6 bands)

3.2.1. Pre-Processing

Prior to drone flights, the ground control, in the form of cloth photogrammetry targets
and AeroPoints, were evenly placed throughout the planned study area (Figure 2b). The
AeroPoints continuously logged their position while the cloth photogrammetry targets
were surveyed using a Trimble 3 GPS unit, with both methods providing coordinates with
centimeter-level accuracy. These ground control targets, appearing within the field of
view of the drone camera, provided geolocation information for accurately positioning the
drone-based orthoimage products.

For the optical imagery collected by the DJI Mavic 2 Pro, the software Agisoft
Metashape v.1.8.1 was used to align and find tie points between photos, producing
image-based dense clouds, orthophotos, and DEMs. Ground control position informa-
tion collected for each target was required for this processing to produce accurately
geolocated products.

For the thermal imagery collected by the DJI M2EA, the raw images were processed
into per-pixel true-temperature radiometric images using AethaGlobal’s ThermoCon-
verter software v.1.3.14.0. The true-temperature images were then processed into a true-
temperature orthophoto using the image processing software Pix4Dmapper v.4.7.5. The
orthophoto was geo-referenced using the ground control present in the orthoimage.
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For the 6-band multispectral imagery collected by the Tetracam Micro-MCA6, raw
images were processed using Tetracam’s proprietary ‘PixelWrench2′ software v.1.2.4.9 to
convert raw images into multi-band tiff images. The tiff images were then more precisely
aligned using intensity-based image registration techniques available within MATLAB. The
resulting aligned images were then processed using Agisoft Metashape to create a 6-band
orthoimage for the study site. Ground control target GPS data were used as inputs during
Metashape photogrammetry processing to create a georeferenced product.

3.2.2. Processing: Classification Analysis

The georeferenced 6-band Tetracam orthoimage was classified into several soil or rock
types (e.g., sandstone, arkosic sandstone), vegetation (i.e., living or dead), and other classes
(e.g., shadows, road) using the software Trimble eCognition v.10.3 [61]. To create this
classification, the orthoimage was first segmented in eCognition using a multiresolution
segmentation best-fitting neighbor algorithm that groups pixels into objects by minimizing
or optimizing the average heterogeneity of image objects [61]. In this process, pixels were
grouped into segments based on the spatial and spectral characteristics of the pixels and
their neighbors, using all six bands of the Tetracam orthoimage. Desired mean segment size
parameters were input by the user to affect the number of segments, the size of segments
(which impacts the final classification), and the file size of the segmented image. Segmenting
the image allowed the user to perform object-based image analysis (OBIA), which can be
an improvement over pixel-based image classification for representing landscapes [62].
Pixel-based image classification solely uses the spectral information of the image bands in
the classification. Grouping these pixels into objects using multi-resolution segmentation
created an object-based classification that was based on both the spectral and spatial
characteristics of the 6-band orthoimage. After the image was segmented, a supervised
classification hierarchy was created, containing the distinct mapping classes. Based on
observations made in the field (ground truth information), and visual observations of the
image itself, the eCognition user then assigned individual segments as samples to each
desired class in their class hierarchy. The user might use both ground-truth information
and their own visual observations of the orthoimage to discern different vegetation types
and assign samples to unique vegetation classes (e.g., living and dead vegetation classes).
After some samples were assigned to each class in the class hierarchy, the analyst then used
a nearest neighbour classification algorithm [61] to assign each image object (segment) in
the image membership to a class based on the spectral information of the samples. The
classified orthoimage was then exported in a geotiff format to be interpreted in a GIS
environment together with other analyses.

3.2.3. Processing: Change Detection Analysis

Change detection techniques involve the comparison of multi-temporal datasets to
assess the temporal effects of a specific process and quantify changes due to natural phe-
nomena or anthropogenic activities [63]. Significant changes identified between at least
two images lead to the generation of a change map. [64] provided a comprehensive review
of different change detection techniques, addressing issues and challenges of performing
change detection on remotely acquired images. For this study, the algebra-based change de-
tection approach was followed, which consists of the application of mathematical operation
on each pixel to retrieve the difference image. The DEM generated using the orthoimages
from the 2021 and 2022 data collection, after preprocessing, were coregistered and the
algebraic operation of subtraction was performed on them in ArcGIS Pro 3.0.1. The 2022
image was subtracted from the 2021 image to monitor changes that occurred after the 2021
data collection. The differences that were reflected after the change detection task were
mostly due to elevation changes between the two acquisitions.

While the DEM comparison allowed the extraction of information related to changes
in elevation, the orthoimages acquired from the Mavic 2 Pro were processed to assess any
variation in terms of radiometric characteristics.
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The change detection analysis that was implemented on IRIS software v.23.0, devel-
oped by NHAZCA S.r.l. [65], involves the use of the Structure Similarity Index Method
(SSIM) algorithm [66], a function of the brightness, contrast and structural component
of pixels and determined by constructing a moving window around each pixel for both
images. The SSIM is defined as follows:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)
(

µ2
x + µ2

y + C1

)(
σ2

x + σ2
y + C2

) (1)

where µx and µy represent the luminance for the two image signals, σ represents the
contrast and C represents a constant to ensure stability when the denominator is very close
to zero.

This equality index represents the radiometric variation between the image selected as
the master (i.e., 2021 orthoimage) and the one selected as the slave (i.e., 2022 orthoimage) on
a scale from 0 to 1 [67]. The closer the index is to 1, the more the two images are similar: an
index equal to 1 means that no changes were identified over the observed time interval [68].

4. Results

This section summarizes the results obtained through the PS-InSAR analysis, visual
interpretation of UAS-based products, and the classification and change detection analyses
carried out on them. The results were divided into two subsections for Paonia 1A and
Paonia 1B, respectively.

4.1. Paonia 1A

Regarding the UAS-based analysis, it has been decided to present the primary out-
comes of two specific sectors that are representative of the processes observed throughout
the entire area of interest. These sectors, shown in Figure 3, are located along SH133 in the
central part of the study area. Sector I stretches nearly to the northern boundary of the
slope of interest: Figure 4 illustrates the same area in different panes, each representing a
specific analysis carried out on the site of interest. As evident from the orthophoto captured
through the DJI Mavic 2 Pro optical sensor (Figure 4a) in June 2022, the slope appears
almost entirely uniform, with sedimentary rocks in a tan shade and dotted with patches
of vegetation in the central part. However, a linear pattern of slightly lighter color can be
observed in the upper part of the slope, corresponding to the exposed rock strata.
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Figure 4. The results obtained for Sector I of the Paonia 1A study area are presented in 5 pan-
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(c) DEM-based change detection; (d) optical-imagery-based change detection; and (e) classes resulting
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On the contrary, the per-pixel temperature visualization of the thermal image returns
improved discrimination of the slope, enabling the identification of distinct patterns and
textures distinguished by varying temperature values (Figure 4b). The slope region near
SH133 shows the highest temperature values, with an average of around 50 ◦C. This area
becomes more homogenous heading north, while the southern and central portions of
the sector exhibit a more granular texture and colder temperatures, which drop by up to
32–33 ◦C. Particularly in the central part, the slope continuity is interrupted by clusters of
lighter color that match the vegetation already identified in the orthophoto. The summit
section of the slope, which has a finer texture, displays uniformly distributed temperatures
with an average of 45 ◦C. A distinct central band separates the two regions, which features
a linear pattern with alternating areas of cooler temperatures (around 38 ◦C) and warmer
temperatures (around 55 ◦C), characterized by a coarse texture.

Figure 4c represents the outcome of the DEM-based change detection between the two
data collections in September 2021 and June 2022. The elevation difference is represented
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with a red-to-blue color scale, where shades of red represent positive values (≥0.15 m)
while shades of blue represent negative values ≤ 0.15 m). Areas showing negligible or no
changes were left uncolored for better interpretability of results. Except for the portion
along the roadside, showing an evident decrease, a rise in elevation values between the
two years is registered throughout the slope. The values indicating an elevation increase of
around 30–40 cm appear to form fan-like shapes, which align along the lower section of the
slope and are separated from each other by areas exhibiting minimal variation in height.

For the change detection analysis performed between the orthophotos, choosing a
four-pixel window size emphasized even slight radiometric variations. The major part of
the scene depicted in Figure 4d has an SSI value close to one, indicating that the 2021 and
2022 images look very similar in terms of radiometric characteristics. The most notable
changes are concentrated in the basal and central regions of the slope, where a decrease
in SSI (around 0.5) values corresponds with changes in debris accumulation (especially
along the roadside) and vegetation presence, the latter of which has a significant impact on
the analysis.

The final panel of Figure 4 displays the results of the multispectral image classification.
In Sector I, the classification analysis has identified five distinct classes, two of which
correspond to the vegetation present in the scene (distinguished as living or dead), while
the other three relate to the sedimentological properties of the rocks. These three classes
correspond to samples of sandstone and mudstone (with lower or higher organic matter
content) that were recognized during the field operations and used as training data.

However, the most representative classes in this area are only sandstone, mudstone,
and living vegetation, whereas small scattered patches of dead vegetation and organic-rich
debris constitute a minimum part of the scene. The debris accumulation, mainly composed
of mudstone, develops along the foot of the slope and on the sandstone bedding plane,
whose heads (in beige) are well recognizable in the summit portion.

The same comparative criterion adopted for Sector I is also applied to the results for
Sector II, reported in the subsequent panels of Figure 5 to facilitate the visual interpretation
of the data. In this case, as well, the sandstone banks that appear in the optical image
(Figure 5a) in a slightly lighter shade of beige than the rest of the outcrop emerge clearly in
the thermal visualization (Figure 5b), being marked by lower temperature values (around
40 ◦C) than the sediments (more than 50 ◦C). The classification analysis validates this
finding by clearly differentiating the beige, linear pattern of the sandstone from the more
diffused brown of the mudstone, enabling the recognition of the sandstone stratification
throughout the entire extent of the scene (Figure 5f). Below these banks, there is a distinct
area with sporadic bushes and vegetated spots that can be easily identified through both
optical image and object-based classification (Figure 5a,f). These areas correspond to the
living vegetation class.

The results of thermal and change detection also confirm the presence of these areas,
where the thermal image highlights cooler and potentially more moist zones with tempera-
tures below 40 ◦C (Figure 5b), while the change detection analysis (Figure 5d) yields an SSI
value of 0.5, indicating significant changes over the two years. It is worth noting that the
variations detected in the change detection analysis do not exhibit a chaotic structure like
the one shown in Figure 4d, but rather present a linear pattern that converges towards the
base of the slope. Moreover, subtle changes in the fractures constituting a semicircular road
crack, located right below the convergent linear pattern, were highlighted by the analysis.

Similarly to Sector I, the DEM-based change detection for Sector II reveals a significant
material accretion near the road edge. Besides the uniform accumulation of debris in this
region (15–30 cm), large blocks, which are predominantly sandstone blocks (Figure 5f), can
be also found near the road pitch.
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For the Paonia 1A site of interest, the results of the PS-InSAR analysis show a few
sparse measurement points, which are not representative of significant deformations affect-
ing the slope.
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4.2. Paonia 1B

The PS analysis allowed us to investigate the deformations occurring on the slope of
interest at Paonia 1B, considering its morphoevolution on a larger scale. The measurement
points, derived from 250-km-wide imagery (i.e., interferometric wide swath, IW), cover
the slopes that develop along the hydrographic right and left banks of East Muddy Creek.
Average velocities ranging from −4 to −10 mm/y were recorded in the southernmost part
of the slope of interest, forming a small deformation cluster moving away from the sensor
and thus indicating a downslope movement (Figure 6a). On the opposite slope, apart
from a stable PS cluster located along the foothill, a clear movement with displacement
rates of over 4 mm/year is measured towards the east direction (Figure 6b). The analysis
provided important clues to the recent displacement rates of a landslide phenomenon
already well identified in the historical maps of the area [52,69], but whose state of activity
was investigated only by [70]. This landslide is part of the broader ”East Muddy Creek
Landslide Complex”, which consists of three distinct phenomena located on the western
flank of the Ragged Mountains and that was mapped through the visual interpretation
of the one-meter LiDAR-based DEM produced within the framework of the 3D Elevation
Program (3DEP) [71] and the PS-InSAR results.
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Figure 6. PS-InSAR results for Paonia 1B site. In the upper panel (a) the catchment scale ground
deformations are shown. The massive landslide phenomenon retrieved by the PS-InSAR analysis
displays displacement rates of up to 10 mm/year. At a smaller scale (panel (b)), a well distinct cluster
with 3–10 mm/year displacement rates is visible on the opposite bank. The figures were realized
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Similarly to Paonia 1A, distinctive sectors of Paonia 1B (Figure 7) were chosen to
represent landforms and processes occurring on the slope. Sector I covers the left flank of
the concave-shaped landslide scar which interrupts the continuity of the strata. A massive
sandstone bank, lighter in color, bounds a flat area where grayish and brownish debris
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accumulates (Figure 8a). A more detailed differentiation of the slope features is captured
by thermal (Figure 8b) and multispectral sensors (Figure 8c).
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The overhanging sandstone bank is still well distinguished from the surroundings
in terms of lower temperature, appearing as a continuous red/purple band and dividing
the vegetated top of the slope from the warmer soil and debris area (temperature up to
50 ◦C). Just below the sandstone outcrop, the multispectral classification identifies
shotcrete covering the slope, contrasted by sandstone’s higher temperature values and
the unconsolidated material’s lower values. Scattered features, corresponding to low-
growing vegetation (dead and living) and trees, allineate along the eastern section of
the slope, while the mudstone class is found in its central area. The radiometric change
detection highlights significant changes (SSIM < 0.5, Figure 8d), mostly in correspon-
dence with the vegetated spots but, where the mudstone class outcrops, a linear pattern
with similar low values of SSIM is also identified, developing along the steepest part of
the central area. Figure 8e focuses on the aforementioned linear pattern, clearly visible
between the vegetation.

Sector II is located slightly to the south and includes a portion of a stepped slope,
where vertical sandstone strata alternate with erodible layers, forming gentler morpholo-
gies. Few reliable persistent scatterers, in the upper part of the slope and specifically
on the less steep portions (Figure 9a), recorded an average velocity of up to 10 mm per
year in the LOS direction (i.e., downslope). The thermal visualization of the scene shows
quite similar temperature values ranging between 42 and 50 ◦C (Figure 9b). The only
exceptions are represented by the lower temperatures of the vertical slope faces and
three warmer spots (more than 55 ◦C) along the roadside. The two yellow spots located
in the northern part of the scene present a fan-shaped morphology, with the apex in the
vicinity of the vertical road cut, whereas the third one is more distributed. In the last
panel of Figure 9, the DEM-based change detection outcomes are shown.
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Figure 8. The results obtained for Sector I of the Paonia 1B study area are presented in 5 panels,
corresponding to: (a) orthophoto acquired in 2022; (b) per-pixel temperature thermal image;
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various scales. The figures were realized using QGIS 3.22.14.

A diffuse increase of about 30 cm in height matches the fan-shaped spot in the
northern part, with very limited incrementations of more than 50 cm along its boundaries.
A sharp change in elevation values can be also noticed in the central part of the scene,
where two adjacent areas show differential movements in opposite directions (blue and
red areas in Figure 9c): in both cases, the elevation change reaches 50 cm.
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The third and last sector analyzed for the Paonia 1B area was chosen to represent
the analysis carried out on a vertical surface like a road cut. In the orthophoto (upper
panel of Figure 10) the surface predominantly appears in two shades of grayish beige.
The darker shade is predominant on a small portion on the left and in the upper part
of the cut, while the lighter shade of beige is along the base and at the edges of the
image. This slight color difference is, on the contrary, well perceivable in the multispectral
classification (Figure 10, lower panel), and respectively corresponds to the Sandstone (blue)
and Weathered Sandstone (yellow) classes.
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A definite purple layer is interpreted as an area of active seep that stretches right
under the vegetation covering the top of the surface and can also be found in the central
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part of the outcrop, along with minor shadowed areas. Inactive seep areas, corresponding
to the orange vertically elongated features in the orthophoto, perfectly match the orange
category of the classification analysis.

5. Discussion

This study aims to examine the ability of different sensors to identify evidence and
early precursors of slope instabilities. Two drone flight campaigns carried out one year
apart, along with satellite-based interferometric analysis, served this purpose by high-
lighting processes of intense and persistent denudation of the slopes of interest in the
study areas.

In the Paonia 1A area, signs of erosion phenomena mainly related to surface and
concentrated runoff dynamics are clearly visible in both sectors. In the central parts, the
presence of vegetation indicates an accumulation or stagnation of water and, specifically
for Sector I, it is located just downstream from what appears to be a slight concavity in the
stratification, well recognizable from the thermal image (Figure 4b). Sediment accumulation
processes occur in these concentrated runoff rills and lead to the formation of diffuse
(Figure 5c) or fan-shaped (Figure 4c) debris accretion, defined by an increase in height
values in the change detection analysis. Due to this considerable sediment production, the
maintenance activities, such as the accumulated debris removal, are particularly noticeable,
as shown by the blue band in Figures 4c and 5c, indicating a decrease in elevation between
2021 and 2022. However, a minor part of this decrease is to be addressed to the vegetation
changes between September 2021 (when the foot of the slope was covered by both living
and dead vegetation) and June 2022. While in Sector I, the denudation processes seem to
affect only the slope, in Sector II, we observe a more mature scenario of water erosion and
infiltration that has led to the road surface’s initial disruption. The micro-scale geomorphic
features, both anthropic and natural, were pointed out by the change detection performed
with IRIS software v. 23.0 (Figure 5d). Rills and gullies, formed after the precipitation event
occurred on 19th September [72], identify the area most prone to degradation. Moreover, a
wide convex road crack is the morphological evidence of this severe and persistent erosion
that would possibly cause the partial failure of the highway. In this case in particular,
but also for Sector I, the multispectral analysis is proof of how the slope is influenced
by differential moisture conditions, which stand out immediately thanks to the presence
of vegetation.

For the Paonia 1B area of interest, the results of the InSAR analysis (Figure 6) pro-
vided substantial information to study displacements occurring at the catchment scale and
contribute to understanding the large-scale morpho-evolution of this area. Displacement
values recorded by the PS confirm those from [70], delineating a complex scenario where
the evolution of the Central East Muddy Creek Landslide Complex is highly interconnected
to the opposite slope’s instability asset and fluvial incision. The Central Landslide, due
to its differential displacement pattern and annual velocity rates, still represents a critical
condition for the risk assessment of SH133. Its activity style, characterized by discontinuous
reactivation phases [70], defines a major threat to Colorado State Highway 133 (already
damaged in 1986–1987). However, investigating this phenomenon, including its interaction
with fluvial incision rate and mass-wasting processes on the opposite slope, would have
required a proper modelization and was therefore not extensively carried out since it goes
beyond the specific purpose of this work. On the other hand, the point measurements
forming a cluster on the Paonia 1B slope of interest led to the identification of localized
instabilities (Figure 9a). The movement can be correlated with unconsolidated materials
sliding along the slope and then aligning in debris fans (clearly visible in the thermal prod-
uct, Figure 9b) right below the PS cluster. This consistent waste deposit supply resulted in
the complete occlusion of a drainage ditch (increase in height, Figure 9c), eventually cleaned
during maintenance work (decrease in height, Figure 9c). As for the other study site, a
clear example of the effects of intense denudation affecting specific portions of the hillslope
is represented in the panels of Figure 8. Here, concentrated erosion processes drove the
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disruption of the shotcrete applied for stabilizing the prominent banks. The shotcrete
is abruptly interrupted in the southern part of the sandstone banks (Figure 8c), where a
dense linear pattern of rills engraves the more erodible mudstone layers (Figure 8d,e). The
Sector III example was provided to demonstrate the capacity of the sensors to identify not
only the ongoing mass-wasting processes but also to point out early indicators of future
instabilities. In this case, the multi-spectral information was essential to mark seeping areas
where block detachment or collapses may easily occur (Figure 10).

The advantages of combining several sensors that could provide complementary
information made it possible for an extensive investigation of different processes from
a multi-scale perspective. Different landforms overlaying the slopes make it difficult
to discern the corresponding process imprint and, therefore, to give a comprehensive
representation of the territory’s complexity [73]. Each of the applied sensors, with its specific
spatial resolution, facilitated this task, enabling the extraction of one or more landform
signatures and the relative forming process. Table 2 summarizes the scale of processes and
related landforms detected through our multi-sensor approach. At the sub-catchment scale,
the satellite-based InSAR analysis was the only medium-resolution technique that could
measure the deformations with an accuracy comparable to the other methods. Gradually
downscaling the investigation at the decametric and metric scales, thermal imagery and
DEM-based analysis provided the most suitable results for delineating debris fans, blocks
detached from the massive sandstone layers and areas subjected to concentrated runoff
features. Eventually, micro-morphotypes were investigated by exploiting optical image-
based change detection and multispectral classification. The micro-scale topographic
landforms (i.e., road cracks and centimeter-scale rills) and subtle moisture variations (i.e.,
seep areas) respectively depicted by those methods can be correlated to early instability
indicators. The regional-scale satellite-based products were effective in identifying possible
areas of instability, while further downscaled investigations of those areas with drone-based
high-resolution products provided significantly better outputs for the decision-making and
mitigation processes of asset management plans. This multiscale approach was successful
in identifying both the evidence and the early precursors of rock mass instability impacted
by intense deterioration processes.

Table 2. Comparison between sensors, type of products and respective type of processes or landforms
investigated at different scales.

Sensor Type of Product Scale Type of Process or Landform

Satellite Radar (C band) PS-InSAR analysis Catchment or sub-catchment
scale

Large landslides and
deformations

Mavic 2 Pro integrated 20 mp DEM-based change detection Hillslope scale Sediment accumulation and
erosional processes

M2EA thermal Thermal imagery Hillslope scale Humid zone and rock
differentiation

Mavic 2 Pro integrated 20 mp Optical imagery Sub-hillslope scale Small-scale topographic
features

Mavic 2 Pro integrated 20 mp Optical imagery-based change
detection Micro-topography scale Rills and road crack formation

or opening

Tetracam Micro-MCA6 Multispectral analysis Sub-hillslope scale Small-scale rock and soil
differentiation

Micro-topography scale Seep area identification

Although the combination of the aforementioned remote sensing techniques provided
crucial insights into the slope deformation processes, some limitations in their applicability
to our case study need to be considered. Despite the great advantage of free and open
data, Sentinel C-band sensors are significantly affected by vegetation coverage, causing
decorrelation issues that could reduce the quality of the interferometric measurements and
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limit the accuracy and reliability of PS-InSAR for slope monitoring. Further improvements
could be accomplished by employing sensors with longer wavelength characteristics
(i.e., L-band sensors), better suited for monitoring slope movements in dense vegetation
contexts due to their large penetration depths into canopies [74]. On the other hand, even
if UAS-based data can be successfully employed for detecting and monitoring subtle or
localized deformations, they are often impacted by weather and environmental conditions
and can experience data processing challenges. Even slight illumination conditions can
affect the reliability of thermic acquisition and optical analysis such as radiometric change
detection, which in some cases faced shadowing issues. Therefore, well-planned UAS
surveys are necessary (but not always easy to accomplish) for obtaining reliable results.

Within the framework of assessing rockfall hazards along transportation corridors,
it is crucial to ensure the safety and functionality of these vital infrastructure networks.
Debris and block detachments pose significant risks to motorists, leading to accidents, road
closures, and costly maintenance operations. Transportation agencies are therefore tasked
with identifying and prioritizing the most dangerous slopes that require immediate atten-
tion and allocation of resources. However, with extensive highway networks spanning vast
areas, it becomes crucial for transportation agencies to adopt an effective yet rapid approach
to evaluate and rank the hazardous slopes. The traditional field-based methods, while
reliable, can be time-consuming, labor-intensive, and often limited in scope. In the current
trend of implementing identification and rating systems for slopes affected by instability
along infrastructures, previous studies [39–46] have predominantly focused on characteriz-
ing local-scale discontinuities within rock masses. The recognition and characterization of
families of discontinuities, extensively studied in the literature, are necessary to understand
the potential kinematics of block or debris detachment. However, it is fundamental to
recognize that these factors alone are not the sole contributors predisposing a slope to
collapse. Fluctuations in the temperature and water content, as well as the differential
erosion affecting the sandstone and siltstone alternation, influence the weathering of rock
slopes [75,76]. In this context, our study addresses the pressing need for an improved and
replicable methodology that takes advantage of remote sensing data to facilitate the rapid
quantification of those factors influencing rock mass stability. The approach employed
in our study demonstrates that combining various remote sensing techniques enhances
the identification of geomorphic processes and their impacts at different spatial scales.
These outcomes provide valuable and practical insights that can be considered by trans-
portation agencies when ranking slopes and assessing rockfall hazards through rockfall
hazard rating systems (RHRS) [77]. The rationale of this engineering procedure is to classify
high-risk slopes along transportation corridors, assigning a score based on several criteria,
including factors such as ditch effectiveness, differential erosion rates and water presence.
The traditional field-based RHRS encounters limitations due to time-consuming on-field
measurements and potential underestimation of these factors, often addressed qualita-
tively. These limitations arise from restricted view angles, challenges in accessing certain
sections of near-vertical or highly inclined slope surfaces, and the difficulty of investigating
parameters at different scales while achieving a comprehensive understanding of the inter-
connected degradational processes [78]. With its multiscale, remotely sensed perspective,
our study highlights the significance of providing a methodical and repeatable procedure
to be implemented in the current rating systems for monitoring the sites and updating the
assigned rating considering the spatio-temporal morphoevolution of the slope conditions.
Furthermore, it takes into account the spatial variability and influence of pre-failure factors
by employing different sensors and processing analyses.

6. Conclusions

Due to the mountainous topography of Colorado, much of the State Highway network
has been developed through cut slopes. Along with predisposing factors such as the
lithological asset and the road cuts, denudation processes play a fundamental role in
destabilizing the unconsolidated material and the deterioration of the exposed rocks.
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The investigation approach adopted in the present work succeeded in efficiently
detecting the instabilities affecting the two slopes of interest along the Colorado SH133. In
particular, the key findings of our work can be summarized as follows:

1. The combination of different platforms (satellite or UAS) and sensors, along with their
respective products at varying spatial resolutions, was essential to identify several
superimposed processes. Each informative level (i.e., multispectral and SAR analysis,
thermal and optical products, terrain models), enabled distinguishing the specific
geomorphic expression of the different degradation processes. In doing so, we shed
light on the landform’s multi-scale characteristics, thus interpreting their potential
to differentially disrupt the slope stability. Moreover, the examples of retrogressive
erosion and rill initiation retrieved in both study areas represent early predictorsof
future rock failures or road collapses.

2. The fourth dimension (i.e., time), explored through the use of multi-temporal data
collections, provides a significant amplification of the potential of a single remote sens-
ing survey. Change detection and interferometric analyses allowed the quantitative
assessment of the dynamics of morphological features (e.g., road crack propagation,
areas more susceptible to depletion or sediment accumulation) and a preliminary
forecast of their morphoevolution.

3. Unusual processing solutions, such as optical-based change detection, can lead to new
opportunities for micro-morphotype detection and characterization. This technique
could serve as a primary step for a more quantitative assessment of the slope erosion
rates and geostructural stability.

4. Remote sensing data can provide a detailed model of the slope’s mechanics and
conditions at a specific time. This information is particularly beneficial for monitor-
ing highway networks and transportation corridors, supporting asset management
practices from a predictive maintenance perspective.
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