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Abstract: In this paper, we are concerned with microwave subsurface imaging achieved by in-
verting the linearized scattering operator arising from the Born approximation. In particular, we
consider the important question of reducing the required data to achieve imaging. This can help to
reduce the radar system’s cost and complexity and mitigate the imaging algorithm’s computational
burden and the needed storage resources. To cope with these issues, in the framework of a multi-
monostatic/multi-frequency configuration, we introduce a new spatial sampling scheme, named the
warping method, that allows for a significant reduction in spatial measurements compared to other
literature approaches. The basic idea is to introduce some variable transformations that “warp” the
measurement space so that the reconstruction point-spread function obtained by adjoint inversion is
recast as a Fourier-like transformation, which provides insights into how to achieve the sampling.
In our previous contributions, we focused on presenting and checking the theoretical background
with simple numerical examples. In this contribution, we briefly review the key components of
the warping method and present its experimental validation by considering a realistic subsurface
scattering scenario for the case of a buried water pipe. Essentially, we show that the latter succeeds in
reducing the number of data compared to other approaches in the literature, without significantly
affecting the reconstruction results.

Keywords: microwave imaging; radar systems; inverse scattering; sampling strategy

1. Introduction

Subsurface microwave imaging aims at reconstructing a buried scattering scene from
electromagnetic scattered field measurements [1,2]. This is a classical inverse scattering
problem that finds application in many contexts, such as civil engineering diagnostics [3–6],
archaeological and geophysical prospecting [7–11], cultural heritage monitoring [12], mine
and improvised explosive device (IED) detection [13–15] and, in general, in all cases where
conducting non-destructive diagnostics is convenient or mandatory [16].

From a mathematical point of view, subsurface imaging entails addressing an ill-posed
non-linear inverse problem [17]. Although a large body of work on “quantitative” recon-
struction methods that deal with the non-linearity of the problem has been produced, their
employment in realistic cases is somewhat limited since the main issues related to non-
linear inversion—that is, converge issues, false solutions and computational costs—still
represent significant challenges, especially when large (in terms of the wavelength) spatial
areas have to be imaged [18]. Moreover, in many cases, subsurface imaging is required
to detect and localize the buried targets, i.e., mainly, it must provide “qualitative” recon-
structions of the scene. Reconstruction methods based on linearized scattering models can
be employed in these cases, with apparent advantages against the mentioned drawbacks
affecting non-linear inversions.

Remote Sens. 2023, 15, 3012. https://doi.org/10.3390/rs15123012 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15123012
https://doi.org/10.3390/rs15123012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9266-5880
https://orcid.org/0000-0002-6310-6959
https://orcid.org/0000-0003-1808-4671
https://doi.org/10.3390/rs15123012
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15123012?type=check_update&version=3


Remote Sens. 2023, 15, 3012 2 of 17

Under a linearized scattering framework, the imaging problem is simplified since it
amounts to inverting a linear integral operator called a scattering operator [19,20]. More-
over, the achievable performance can be linked to the features of the problem relatively
easily [21]. The achievable performance generally depends on the configuration [22]
(measurement aperture, stand-off distance, frequency band, strategy adopted for data
collection), the background medium’s electromagnetic characteristics [23], the noise level
and the employed inversion algorithm [24].

In this framework, the quantity of data collected is of paramount importance, since
“too many” data do not necessarily improve the performance and can waste resources,
whereas “too few” can lead to reconstructions crowded with artefacts, which can impair
the detection of the actual targets. Thus, it is of great interest to devise a sampling scheme
that requires a smaller quantity of data but, at the same time, preserves the performance
in the reconstructions. Finding a proper sampling strategy is also relevant to reduce the
cost/complexity of the Ground Penetrating Radar (GPR) system [25]. GPRs are radar systems
properly conceived to address non-destructive imaging and generally work near the interface
between the air and the medium under investigation. However, recent developments have
shown many advantages in using non-contact GPRs—for example, with GPRs mounted
on a flaying platform [26,27]. In these cases, the spatial data sampling determines the
trajectory—for example, in terms of the number of times that the radar needs to pass over
the investigated area [28] or the number of flaying platforms that must populate the fleet in
the case of a multistatic configuration [25].

Finally, sampling the data space is necessary to translate the continuous scattering
problem into its finite-dimensional counterpart. Therefore, the number of data and their
arrangement on the measurement domain affect the eigenspectrum of the discretized ver-
sion of the scattering operator. Since the latter is related to the main metrics that allow
us to quantify the performance in linear inverse problems, the number of data and their
arrangement affect also the achievable performance and the resilience against noise. Gener-
ally, data sampling can be cast as a sensor selection problem [29]. In particular, to avoid
the related combinatorial complexity, several methods based on convex optimization [30],
greedy approaches and heuristics [31–33] have been proposed. These methods select the
measurement points by optimizing metrics related to the mean square error, the frame
potential, etc., but require running iterative procedures, which could be cumbersome for a
large-scale problem.

The selection of the measurement points can be achieved by properly considering
the properties of the linearized scattering operator, so that no iterative procedures are
required. For example, by expanding the Green function of the scattering operator in terms
of its plane-wave spectrum (PWS) and neglecting the evanescent contribution, it can be
easily shown that the scattered field can be sampled with a spatial step only depending
on the wavelength. The resulting number of measurements is generally huge and not
related to a priori information on the scattering domain. By employing stationary phase
arguments [34–36], the extent of the spatial region to be imaged is taken into account. This
leads to a spatial sampling step that is generally larger than the one returned by the PWS
argument. Hence, many data points are saved.

More recently, we progressed in the sampling theory by introducing the so-called
warping approach [37,38]. It was shown that this method could consider the spatially
varying filtering introduced by the near-field propagator. In more detail, it is shown that
by introducing the so-called “warping variable”, mapping the scattering domain spatial
variable x into a new one η, the point-spread function (the reconstruction of the pulse
scatterer) can be expressed as a band-limited function. This has two consequences. First,
due the non-linear relationship between η and x, the achievable resolution is spatially
variable [23]. Second Fourier arguments can be exploited to discretize the point-spread
function returning in a uniform step in the spectral variable w. The latter is non-linearly
related to the spatial observation variable xo, resulting in the non-uniform arrangement of
the sampling points on the measurement domain. However, depending on the configura-
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tion parameters, the number of the required spatial data points is generally much lower
than the one returned by the previous approaches [34–36].

Previous contributions have detailed theories concerning the warping sampling
method for different background media [39,40]. However, in these contributions, only
relatively simple numerical examples were exploited to check the effectiveness of the
warping sampling. In this paper, we provide the experimental validation of the latter, by
considering a realistic subsurface scattering scenario concerning a water pipe buried under
the soil. Essentially, our aim is to show that if experimental data coming from a typical
subsurface scenario are collected on the non-uniform grid returned by the warping sam-
pling strategy, the reconstruction results are very close to the ones returned by processing
a very large number of measurements. This means that the proposed strategy succeeds
in reducing the number of data compared to the literature, without significantly affecting
the reconstruction results. While the warping approach applies regardless of the stand-off
distance, here, we collect the measurements through a commercial GPR that slides over
the air/soil interface in order to synthesize the measurement aperture. We consider to
collect the data along a pathway leading to a fountain in a cloister near our Engineering
Department, below which a water pipeline is presumed to be buried. Moreover, the 3D
scattering scene is reconstructed by a slice approach that interpolates a collection of 2D
inversions [41]. Although the 3D Green function should be considered even in the slice
reconstructions [42], for the sake of simplicity, each slice is addressed as a 2D scalar inverse
problem. This approximation works because the water pipeline is elongated along one
direction.

The rest of the paper is organized as follows. In Section 2, the mathematical formula-
tion of the problem is briefly introduced, and the link between the achievable performance
and sampling is established. Section 3 is devoted to recalling some literature sampling
criteria and presenting the basics of the warping sampling theory. However, we advise
the reader that all the theoretical details of this approach can be found in [37–40]. In
Section 4, the scattering experiments are described, and the corresponding reconstructions
are reported. Finally, conclusions and future developments close the paper.

2. Problem Description

The single scattering slice is schematized as the 2D scalar scattering problem sketched
in Figure 1. Invariance is assumed along the y-axis. The background is a two-layered
medium consisting of two homogeneous half-spaces separated by a planar interface at
z = 0. The upper half-space is the free space and its dielectric permittivity is denoted by
εu = ε0, whereas the lower half-space represents the soil; it is electromagnetically denser
then the free space and its dielectric permittivity is denoted as εl > ε0. Both the half-spaces
are non-magnetic so that the magnetic permeability everywhere is the same as that of the
free space µ0.

The targets to be detected are buried in the lower half-space. In particular, imag-
ing is achieved by looking for the targets within a bounded rectangular spatial region
SD = [zmin, zmax]× [−Xs, Xs], with zmin, zmax < 0, addressed in the following as the scat-
terer domain. A larger spatial region can be conveniently addressed, for example, by
employing the zoom approach presented in [43]. The transmitting antenna radiates an
incident field linearly polarized along y at different frequencies within the wavenumber
band k0 ∈ Ω = [k0min, k0max], with k0 being the wavenumber in the free space. A monos-
tatic configuration is considered, so that the scattered field is collected at the same position
as the source, while the latter moves to synthesize the measurement line. In particular,
for the single slice reconstruction, the measurement domain consists of a linear domain
OD = [−X0, X0] of the x-axis located at some height zo ≥ 0 above the separation interface
from the free-space side.
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Figure 1. Schematic of 2D subsurface scattering scenario. The background is a two-layered medium
consisting of two homogeneous half-spaces separated by a planar interface at z = 0. The dielectric
permittivity of the upper half-space is εu; for simplicity, it is equal to the one of the free space, εu = ε0.
The lower half-space represents the soil; it is electromagnetically denser then the free space and
its dielectric permittivity is denoted as εl > εu. Both the half-spaces are non-magnetic so that the
magnetic permeability everywhere is the same as that of the free space µ0. An unknown target (red
circle) belongs to the rectangular scatterer domain SD = [zmin, zmax]× [−Xs, Xs] under the soil. Data
are collected with a monostatic configuration where both the transmitting and receiving antennas
(TX/RX) are placed at the points indicated by the yellow symbols. The latter are deployed on the
line OD in the upper half-space and far from the interface of zo.

By linearizing the scattering phenomenon according to the Born approximation [44],
the buried targets and the scattered field collected over Σ = OD×Ω are linked through a
linear integral operator

A : χ ∈ X = L2(SD)→ E ∈ Y = L2(Σ) (1)

where L2(SD) and L2(Σ) represent the sets of square integrable functions supported over
SD and Σ, respectively; χ(r) = (εs(r)− εl)/εl is the so-called contrast function, with εs
being the dielectric permittivity of the unknown scatterer. It is remarked that (1) is a rather
general mathematical framework to describe the scattering phenomenon. Indeed, if it
is a priori known that the contrast function enjoys some smooth/regular behavior, then
more “narrow” function sets can be chosen for the unknown space; for example, X can
be assumed to be a Sobolev space. Instead, this does not hold true for Y, since noise, and
uncertainties in general, always corrupt the measurements.

In detail, the operator A is given by the following expression:

E(xo, k0) = jk2
l ωµ0

∫
SD

G2(xo, r, k0)χ(r)dr (2)

where (xo, k0) ∈ Σ, r = (x, z) ∈ SD, ω is the angular frequency; kl = nk0 is the wavenum-
ber in the lower half-space medium, with n =

√
εl/εu being the refractive index; and

G(·) is the Green function of the two-layered background medium. Note that the Green
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function appears squared because of the considered monostatic configuration. Moreover,
the dependence on zo is omitted since the measurement line is deployed at a constant
height from the interface.

By assuming that |zmax| > λl , λl being the wavelength in the lower half-space, the
Green function can be approximated as

G(xo, r, k0) ≈
√

h(xo, r, k0)e−jk0φ(xo ,r) (3)

where
√

h(xo, r, k0) accounts for the amplitude and φ(xo, r) = (Ru + nRl) the phase
changes occurring while propagation takes place. In particular, having denoted as r = (x, z)
and ro = (xo, zo) the target and the field points, then Ru =

√
(xo − xm(xo, r))2 + z2

o and
Rl =

√
(xm(xo, r)− x)2 + z2 are the paths traveled by the waves in the upper and lower

half-spaces, respectively, and xm(xo, r) is the refraction point at the separation interface
given by Snell’s law as

xo − xm√
(xo − xm)2 + z2

o
= n

xm − x√
(xm − x)2 + z2

(4)

In particular, if the measurement line is located over the separation interface, then zo =
0, xm = xo, and the phase term simplifies as φ(xo, r) = nRl , with Rl =

√
(xo − x)2 + z2. In

other words, the phase term is the same as propagation in a homogeneous medium with
the properties of the lower half-space.

Inversion and Sampling

Radar imaging entails inverting Equation (2) for the χ function in order to obtain
images of the subsurface region. For example, let us say that

B : E ∈ Y → χ̃ ∈ X (5)

is a reconstruction operator that, starting from the data field, returns an estimation of the
unknown contrast, which is

χ̃(r) = (BE)(r) (6)

In the case of a point-like target, i.e., χ = δ(r − r′), (6) returns the so-called point-
spread function (psf) ps f (r, r′) = BAδ(r− r′). Therefore, because of the linear formulation,
the psf provides the link between the unknown and its reconstructed version as

χ̃(r) =
∫

SD
ps f (r, r′)χ(r′)dr′ (7)

Equation (7) highlights that the contrast function, during the reconstruction process,
undergoes filtering that is dictated by the psf features, which in turn depend on the
parameters of the configuration and, in general, on the adopted inversion scheme (which is
B) in conjunction with the noise level.

Since the psf dictates the performance achievable in the reconstructions, a natural
means to set the sampling strategy—and, at the same time, to preserve performance—is to
sample the data so as to approximate the point-spread function in (7), corresponding to the
ideal (unfeasible) case in which data are collected continuously over Σ.

As mentioned above, the psf can depend on the inversion algorithm that one wishes
to apply. Let us further consider this important point. In principle, a psf behaving similarly
to a Dirac delta is desired since this would entail perfect reconstructions. In practice, this is
not possible because of the unavoidable presence of noise/uncertainties in the data and the
ill-posedness of the imaging problem. In order to obtain “meaningful” reconstructions, reg-
ularized inversion schemes must be exploited [24,44]. Hence, the psf, in general, depends
on the used regularization strategy.
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Nonetheless, to devise the sampling strategy, we conveniently consider a simple
adjoint inversion method. Accordingly, we denote as A† the adjoint operator of A. Its
explicit expression is given by

A† : f ∈ Y → (A† f )(r) = −jk2
l ωµ0

∫
Σ

G2∗(xo, r, k0) f (xo, k0)dk0dxo ∈ X (8)

with ∗ denoting conjugation. In particular, by invoking the same Green function approxi-
mation as in (3), expression (8) becomes

A† : f ∈ Y → (A† f )(r) = − jk2
l ωµ0

∫
Σ

h∗(xo, r, k0)ej2k0φ(xo ,r) f (xo, k0)dk0dxo ∈ X (9)

The reconstruction is then given by

χ̃adj(r) = (A†E)(r) (10)

where the subscript adj merely indicates that inversion is achieved by the adjoint operator.
Some remarks are in order to justify our choice. First, it is clear that (10) is a type of

backpropagation [45,46] because phase conjugation appears in the kernel of A†. Further-
more, the corresponding point-spread function, i.e.,

ps fadj(r, r′) =
∫

Σ
dk0dxo A(xo, r, r′, k0)e2jk0[φ(xo ,r)−φ(xo ,r′)] (11)

with A(xo, r, r′, k0) = [k2
l ωµ0]

2h∗(xo, r, k0)h(xo, r′, k0), is exactly the kernel of the operator
A†A. It then follows that devising the sampling scheme so as to approximate (11) is a
means to approximate the singular system, {un, vn, σn}, of A as well. Now, it is observed
that any regularized inverse scheme can be cast as an inverse filtering procedure [24], i.e.,

χ̃W = ∑
n

W(n)
< E, vn >Y

σn
un (12)

where the filtering is dictated by the windowing sequence W(n), which in turn depends on
the chosen regularization strategy. As a consequence, finding a sampling strategy with the
aim of approximating (11) will work regardless of the employed inversion method.

3. The Warping Sampling

In the previous section, we concluded that devising a data sampling strategy is
equivalent to finding a proper quadrature role to approximate the integral representation
of ps fadj. In the event that the measurement domain is in the far field [47], or even when
the Fresnel paraxial approximation works [28], the matter is relatively straightforward,
since the scattering operator can be given in terms of a Fourier transform and the data
can be sampled according to the Nyquist sampling rate. When far-field conditions or the
Fresnel approximations do not hold, the spatial frequency band of the scattered field can
be estimated by invoking stationary phase arguments and the Nyquist step set accordingly
(as shown in [34,35,48]). In these contributions, it was correctly pointed out that, due to the
near-field configuration, the frequency band of the scattered field is changed upon changing
the target position within the investigated area. In other words, the data frequency band
is spatially varied. We denote such bands as B(r, k0max), with r ∈ SD. Note that the
maximum employed wavenumber (i.e., the maximum working frequency) is considered
in the B estimation. In order to achieve uniform sampling, the data frequency band is
usually overestimated as

⋃
r∈SD B(r, k0max) and this leads to an unnecessarily large number

of spatial measurement points.
Recently, we introduced the warping sampling approach, which properly takes into

account the spatially varying nature of the data frequency band [49]. It was proven that the
measurement positions are non-uniformly arranged but their number can be significantly
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reduced as compared to other sampling strategies [37,39]. Below, we give a brief description
of such a sampling method.

In principle, data reduction requires one to optimize the spatial sensors’ positions and
the frequencies at which measurements need to be collected. However, here, we consider
the determination of the spatial sampling only. This is because optimizing the frequency
sampling as well can lead to cumbersome configurations where the spatial positions
change for each selected frequency [47]. Therefore, the sampling of the wavenumber
band is achieved by employing standard arguments based on the range extent of the area
to be imaged, i.e., ∆k0 = π/n(zmax − zmin). We denote as k0l = k0min + (l − 1)∆k0 the
corresponding sampled frequencies. Thus, (11) is approximated as

ps fadj(r, r′) ≈ ∆k0 ∑
l

¯ps f adj(r, r′, k0l) (13)

with

¯ps f adj(r, r′, k0l) =
∫

OD
dxo A(xo, r, r′, k0l)e2jk0l [φ(xo ,r)−φ(xo ,r′)] (14)

To devise the spatial sampling, we need to focus on ¯ps f adj(r, r′, k0l). In particular, to
establish a sampling approximation that works for each frequency and for each position
within the investigation domain SD, in (14), we set z = zmax and k0l = k0max, since the
spatial frequency band of the scattered field is larger for targets that are closer to the
observation domain and in correspondence to the highest adopted frequency. Accordingly,
(14) is particularized as

¯ps f adj(x, x′) =
∫

OD
dxo A(xo, x, x′, k0max)e2jk0max [φ(xo ,x)−φ(xo ,x′)] (15)

where the dependence on z is understood since, as mentioned above, it is constant and set
as z = zmax. Now, a warping transformation η : x ∈ [−Xs, Xs] → η(x) ∈ [η(−Xs), η(Xs)]
is used to stretch the interval [−Xs, Xs] into [η(−Xs), η(Xs)]. η is a degree of freedom that
can be chosen at convenience, provided that it is monotonic. The next step is to rewrite the
phase term in (15) by employing the first-order integral form of the Taylor remainder as

2k0max[φ(xo, x)− φ(xo, x′]) = k0max(η2 − η1)w(η2, η1, xo) (16)

with

w(η2, η1, xo) = 2
∫ 1

0

∂φ(xo, x(η))
∂η

∣∣∣∣
η=η1+ν(η2−η1)

dν (17)

and η2 = η(x) and η1 = η(x′). The function w(η2, η1, xo) is continuous and monotonic
decreasing with respect to xo, and hence invertible, ∀η2, η1 (see [39]). Therefore, integration
in xo can be replaced with integration in w. In more detail, by denoting

Ωw(η2, η1) =
w(η2, η1,−X0)− w(η2, η1, X0)

2
(18)

and

wav(η2, η1) =
w(η2, η1,−X0) + w(η2, η1, X0)

2
(19)

by setting w = w̄ + wav, the expression of ¯ps f kadj
can be rewritten as

¯ps f adj(η2, η1) = ejk0maxwav(η1,η2)[η2−η1]
∫ Ωw(η1,η2)

−Ωw(η1,η2)
K(w̄, η2, η1, k0max)ejk0maxw̄[η2−η1]dw̄ (20)
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where K(w̄, η2, η1, k0max) = −A(xo(w̄), η2, η1, k0max)
dxo
dw̄ . Note that Ωw and wav depend on

η1 and η2, which clearly shows the spatially varying behavior of the point-spread function
mentioned above.
By choosing the warping transformation η(x) as [23]

η(x) = φ(−X0, x)− φ(X0, x) (21)

and considering the amplitude term evaluated in correspondence to the leading-order term
occurring for η1 = η2, (20) is recast as

¯ps f adj(η2, η1) ' ejk0maxwav [η2−η1]
∫ 1

−1
K(w̄, η1, k0max)ejk0maxw̄[η2−η1]dw̄ (22)

It is seen that as a consequence of the warping transformation (21), the bandwidth Ωw
is now constant and equal to 1, so that the spatially varying behavior mentioned above
is now embodied in the non-linear link between x and η. Moreover, ¯ps f adj is arranged as
a pseudodifferential transformation [50]. Accordingly, the Horiuchi [51] approach can be
employed to set the sampling scheme. As detailed in [39], the resulting sampling law is
given by

φ(xom,−Xs)− φ(xom, Xs) =
mπ

k0max
(23)

with xom being the m-th sampling point. Accordingly, the required number of spatial
samples (to be deployed non-uniformly, although symmetrically) is found to be

Nw =
4

λmin
[Ru(−X0, Xs, zmax)− Ru(X0, Xs, zmax) + nRl(−X0, Xs, zmax)− nRl(X0, Xs, zmax)] (24)

where it is shown to be much lower than the number of spatial samples required by all other
criteria described in the literature when near-field configurations (as for the case at hand)
are considered [37–39]. Note that all the sampling criteria in the literature refer to a free-
space configuration. Accordingly, the comparison is pursued when zo = 0, where, for the
sampling point estimation, the background medium can be assumed to be homogeneous
and equal to the lower half-space.

4. Experimental Results

In [37,39,40], some numerical examples are provided that show how the warping
sampling method reduces the number of data without affecting the reconstruction per-
formance. However, each theoretical approach must pass experimental verification to
prove its effectiveness. To this end, in this section, we apply the warping method to a real
subsurface imaging scattering scenario.

The experimental measurement setting is shown in Figure 2. In particular, we consider
a pathway leading to a fountain in a cloister near our Engineering Department (see Figure 3),
below which a water pipeline is presumed to be buried. The red horizontal lines indicate
the measurement domain in the pathway. The measurements are taken over eleven lines
spread over 4 m. The observation domain for each measurement line is 2.54 m long. An IDS
RIS-K2 Georadar is used for data acquisition (see Figure 4). The GPR system used for the
scattered field measurements emits a Ricker pulse centered at 200 MHz, and the data are
collected with a spatial step of 0.01 m. It must be stressed that the mentioned spatial step
is much below what the warping prescribes. This is implemented to obtain a benchmark
against which to compare the data reduction achieved by the warping sampling. This dense
data set will be addressed as the oversampled data set in the following.
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Figure 2. Pathway to the water fountain, the latter marked by the F letter. Red lines indicate the
9 measurement lines OD; the yellow arrows denote the length of each one (equal to 2.5 m) and their
distance (equal to 0.4 m).

Figure 3. The cloister of the Engineering Department of the Universitá Degli Studi della Campania, L.
Vanvitelli.
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Figure 4. Photo of the IDS RIS-K2 Georadar system used to collect the scattered field measurements.

The scattered field measurements for measurement lines from 1 to 9 are shown in the
radargrams reported in Figure 5. Raw measurements must be pre-processed to remove clutter
from GPR internal reflections and the ground interface. To this end, the literature provides
various methods for ground clutter rejection, such as the mean subtraction method [52–54],
the subspace projection method [55], etc. These methods remove the clutter but tend to
partially filter the already weak signals coming from buried targets. It is better to remove
clutter using a time gating procedure to avoid this adverse effect. In particular, here, we
use the entropy-based time gating method presented in [56]. In more detail, the entropy
measures the similarity of the reflected signal collected by the different time traces over the
length of the measurement domain. At a given instant, the reflected signal is classified as
clutter if the entropy is high, meaning that high similarity occurs. A time gating window
supported over the interval of times with low similarity is set and multiplied with each trace
of the measured signal so that the ground interface and antenna’s internal reflections are
eliminated. The pre-processed measurements are shown in Figure 6 after clutter rejection.
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Figure 5. Radargrams corresponding to experimental scattering scenario shown in Figure 2 without
clutter rejection pre-processing. (a–i) Each panel refers to the measurement lines from 1 to 9.
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Figure 6. Radargrams corresponding to experimental scattering scenario shown in Figure 2 with
clutter rejection pre-processing. (a–i) Each panel refers to the measurement lines from 1 to 9.

The radargrams in Figure 6 show that the scattered signals mainly consist of many
shallow buried hyperbolas and less strong hyperbolas almost in the middle of the pathway
and more deeply located. This is consistent with the presence of a reinforcement grid
located very close to the air/soil interface and a pipeline supplying water to the fountain.

To obtain the reconstructions, the time traces are Fourier-transformed and frequencies
within the band 100–800 MHz are retained with a frequency step of 25 MHz. Accordingly,
the collected data for each measurement line are M = 254× N f = 29 = 7366, where M
and N f refer to the spatial and frequency samples, respectively. This is the oversampled
data set. By contrast, the warping method requires M = 21× N f = 29 = 609 data. The
corresponding spatial layout of the measurement points is shown in Figure 7. In particular,
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the measurement grid is obtained from (23) by assuming that the lower half-space has
relative dielectric permittivity of 3.5 and by considering zo = 0.05 m and the scattering
domain SD = [−1.6,−0.1]× [0.25, 2.25], so that zmax = −0.1 and Xs = 1 for each slice.
Note that to derive (23), we assume that OD and the x-axis of SD are symmetric with
respect to the origin. The latter is not a limitation because the points can be derived for a
symmetric reference system and then translated into a non-symmetric one. As can be seen
from Figure 7, the measurement points are non-uniformly arranged on OD; in fact, the
sampling step is low at the center and it enlarges as the measurement point approaches the
edge of OD. To point out the actual data reduction brought about by the warping approach,
we observe that, for the case at hand, if the sampling criterion introduced in [34–36,48]
is employed, then the required spatial measurement points would be more than four
times the ones returned by the warping. In general, for near-zone configurations, warping
always requires fewer spatial data, with the reduction ratio depending on the scattering
configuration (see [39] for more comparative analyses between warping and the sampling
approach introduced in [34,48]). According to previous arguments, we can conclude that the
warping sampling allows for a dramatic reduction in the number of spatial measurements.
Note that this reduction is even greater if all nine slices are considered.

Figure 7. Schematic of each slice 2D subsurface scattering scenario. Blue points are the spatial
positions from which to collect data as returned by the warping sampling. The measurement grid
was obtained from (23) by assuming that the lower half-space has relative dielectric permittivity of
3.5 and by considering zo = 0.05 m and the scattering domain SD = [−1.6,−0.1]× [0.25, 2.25], so
that zmax = −0.1 and Xs = 1 for each slice.

However, we still need to check the achievable performance in the reconstructions. To
this end, the scene reconstruction is pursued by a slice approach: for each measurement
line, a 2D slice of the scene is obtained. Then, the slices are interpolated and shown as a
3D isosurface plot. For each slice, SD is discretized into 48× 48 pixels. Furthermore, slice
reconstructions are obtained by the backpropagation algorithm based on the matrix version
of the adjoint of the scattering operator, as recalled above.
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As noted above when inspecting Figure 6, there are two main buried targets: the
shallow grid and the more deeply buried pipe. Therefore, for a clearer display of the
reconstruction, the overall buried region is split into two parts: the region very close to
the interface and the deeper subsurface. In the following, we report all the reconstructions
corresponding to the deeper region, where we aim to detect the buried pipe.

The normalized slice reconstructions (from slice 1 to 9) are reported in Figures 8 and 9.
In particular, in Figure 8, the measurements are collected according to the oversampled set.
Figure 9 shows the reconstruction results when data are collected on the non-uniform grid
shown in Figure 7 returned by the warping approach. In both cases, a detection threshold of
0.2 is employed. The corresponding 3D interpolated reconstructions are instead displayed
in Figures 10 and 11. As mentioned above, due to the linear scattering model exploited
in this paper, only a qualitative reconstruction of the scattering scenario is expected to be
achieved. However, this should be sufficient to detect and localize the buried targets. This
is confirmed by Figures 8–11. In fact, for both sampling strategies, we achieve a qualitative
reconstruction that allows us to detect and localize the pipe. Moreover, by comparing
Figure 8 to Figure 9, it can be observed that although some differences appear, the quality
of reconstructions is comparable, and the buried pipe is, in both cases, clearly detected and
localized. This is even clearer when considering Figures 10 and 11. This definitively shows
that the warping sampling method works effectively.
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Figure 8. Normalized slice reconstructions of the pipe in the subsurface region when measurements
are collected over a uniform oversampled grid from each observation line. (a–i) Each panel refers to
the measurement lines from 1 to 9.
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Figure 9. Normalized slice reconstructions of the pipe in the subsurface region when measurements
are collected over the non-uniform grid shown in Figure 7 (returned by warping strategy) from each
observation line. (a–i) Each panel refers to the measurement lines from 1 to 9.

Figure 10. A 3D reconstruction of the pipe in the subsurface region when measurements are collected
over a uniform oversampled grid from each observation line.

Figure 11. A 3D reconstruction of the pipe in the subsurface region when measurements are col-
lected over the non-uniform grid shown in Figure 7 (returned by warping strategy) from each
observation line.

5. Discussion and Conclusions

The aim of this paper was to check the effectiveness of the warping sampling method
in the case of a realistic subsurface scattering scenario. The presented analysis confirmed
that the warping sampling allows for a significant reduction in the number of spatial
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measurements compared to other sampling criteria described in the literature, without
compromising the quality of the reconstructions. This is a remarkable advantage since
it allows us to use fewer sensors for real aperture radar systems or reduces the time for
data collection in synthetic aperture radar systems. Moreover, the computational burden in
obtaining the reconstructions and the required storage resources is also diminished. This is
important, particularly as subsurface imaging deals with large spatial regions.

It must be stressed that for convenience and according to the available instrumentation,
we considered a GPR working in contact with the air/soil interface. However, the theory
behind the warping sampling is general and can be applied regardless of the stand-off
distance and, in particular, to the case of a GPR mounted on a flaying platform. In the latter
case, reducing the number of data to deal with could be even more important.

A key point that is worth emphasizing is that the warping method allows us to
determine the spatial measurement arrangement analytically and explicitly takes into
account all the main components of the problem, i.e., the extent of the measurement line,
the size of the subsurface area to be imaged, the dielectric permittivity of the embedding
half-space, etc. This is in contrast to other general-purpose methods addressed in the
literature as sensor selection procedures. In fact, these methods are merely numerical and
require some iterative procedure to select the sensors’ positions.

A slice approach addressed the subsurface imaging, and the warping sampling was
applied only to each measurement line. In this way, the spatial sampling was addressed
within the framework of a 2D imaging problem. One future development concerns the
extension and the validation of the warping sampling in the entire 3D case. In this regard,
we remark that the related dyadic nature of the involved scattering operator is not, in
principle, a problem, since the Green function’s phase term plays a major role in sampling.
A simple means to address the 3D case is to separately apply the warping sampling along
the two transverse dimensions of the measurement aperture. While this would allow one
to obtain a dramatic reduction in the spatial measurements (always compared to sampling
strategies in the literature), it is a sub-optimal method to employ the warping. The reason
is that for near-field configurations, the phase term of the Green function does not factorize
with respect to the two transverse variables of the measurement aperture. Therefore, more
involved warping transformations are required. Preliminary results in this direction have
been presented in [57].

A further point of interest that we plan to address as a future development is the case
of more involved background media—for example, when it consists of a layered medium
with more than two half-spaces.

Finally, we point out that warping sampling considers only spatial sampling, whereas
the frequency is sampled by employing common Fourier-based arguments. In principle,
there is room for further data reduction if the frequency sampling is optimized. However,
as mentioned in the paper, this can lead to cumbersome measurement settings where the
spatial positions change with frequency. Research activities are ongoing regarding this
question and, in particular, to find a convenient solution to optimize the sample data in
both the spatial and frequency domains.
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