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Abstract: In recent years, ship target detection in synthetic aperture radar (SAR) images has sig-
nificantly progressed due to the rapid development of deep learning (DL). However, since only
the spatial feature information of ship targets is utilized, the current DL-based SAR ship detection
approaches cannot achieve a satisfactory performance, especially in the case of multiscale, rotations,
or complex backgrounds. To address these issues, in this paper, a novel deep-learning network
for SAR ship rotation detection, called a morphology and topology-based feature alignment net-
work, is proposed which can better exploit the morphological features and inherent topological
structure information. This network consists of the following three main steps: First, deformable
convolution is introduced to improve the representational ability for irregularly shaped ship targets,
and subsequently, a morphology and topology feature pyramid network is developed to extract
inherent topological structure information. Second, based on the aforementioned features, a rotation
alignment feature head is devised for fine-grained processing as well as aligning and distinguishing
the features; to enable regression prediction of rotated bounding boxes; and to adopt a parameter-
sharing mechanism to improve detection efficiency. Therefore, utilizing morphological and inherent
topological structural information enables a superior detection performance to be achieved. Finally,
we evaluate the effectiveness of the proposed method using the rotated ship detection dataset in SAR
images (RSDD-SAR). Our method outperforms other DL-based algorithms with fewer parameters.
The overall average precision is 90.84% and recall is 92.21%. In inshore and offshore scenarios, our
method performs well for the detection of multi-scale and rotation-varying ship targets, with its
average precision reaching 66.87% and 95.72%, respectively.

Keywords: synthetic aperture radar (SAR); ship target detection; rotating bounding boxes; morphology
features; topological structure information

1. Introduction

Synthetic aperture radar (SAR) technology is widely utilized in military and civilian
domains owing to its all-weather capability and increasingly high-quality data advan-
tages [1,2]. Specifically, SAR technology is gaining more interest in marine applications,
such as oceanic exploration, maritime rescue, and traffic management. Despite the increas-
ing resolution of SAR images, their manual interpretation remains a cumbersome task [3].
Recently, the developments and progress in SAR technology have led to an enhanced focus
on deep-learning techniques for SAR image analysis. These techniques help individuals
to better leverage SAR images for marine applications, including target detection, ship
identification, and coastline monitoring [4]. As a result, SAR images can facilitate marine
resource management and conservation, and can offer significant support for maritime
rescue and coastal military defense warnings.
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At present, SAR technology has been widely used in the field of oceanography, espe-
cially in ship monitoring and detection. Traditional SAR ship detection methods can be
classified into three types: methods based on the statistical characteristics of sea clutter [5,6],
which use the sea clutter information in SAR images to distinguish ship targets from sea
clutter and judge the existence of ship targets based on statistical features; methods based
on polarimetric decomposition [7], which use different scattering mechanisms of various
objects to detect ship targets; and methods based on texture features [8,9], which use the
local image features of ship targets for detection. Overall, traditional SAR ship detection
methods work well for simple sea conditions within a specific range, but lack robustness
and struggle with target discrimination in complex scenarios.

With the development of artificial intelligence technology, data-driven methods have
become an important research direction in ship detection, and significant progress has
been made in the field [10]. Therefore, in the SAR field, more and more researchers are
turning to deep learning (DL)-based ship detection methods [11–14]. Regarding SAR
datasets, several datasets have been published for various detection tasks [15,16]. In
terms of network structure, DL-based SAR ship detection methods can be divided into
anchor-based and anchor-free methods. Two-stage anchor-based detection methods mainly
include region proposal extraction and bounding box classification regression, which have
high accuracy, but increase the cost of detection time [17–19]. One-stage anchor-based
methods have faster computation speeds and do not require region proposal extraction,
but they sacrifice some accuracy [20–24]. Anchor-free detection algorithms eliminate the
extra computational burden brought by anchors and have better recall [25,26]. In the field
of ship detection, compared with traditional methods, deep learning-based approaches
use multi-layer network structures to learn complex data representations, thus achieving
higher accuracy and efficiency [15]. The superiority of this method lies in its ability to
autonomously discover valuable features in the data and transform them into patterns that
can be used to detect ships.

Although DL has been widely applied in SAR ship detection, some problems remain.
Especially considering the diversity of ship target shapes and considerable background
interference, existing object detection algorithms often struggle to achieve the ideal perfor-
mance. Traditional horizontal bounding boxes (HBBs) provide unsatisfactory fitting results
for oriented ships, introducing more background interference and leading to false positives
or missed detections [27], as shown in Figure 1a,b. In addition, the dense arrangement
of ships results in considerable overlap between HBBs, as shown in Figure 1a,c, which
reduces detection accuracy.
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shows that the HBBs contained more background noise, and (c) shows that the bounding boxes 
overlapped. There were different degrees of missed detection and false detection. The blue boxes 
indicate detected ship targets. 
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Figure 1. Horizontal bounding box detection results: (a) depicts the dense arrangement of ships,
(b) shows that the HBBs contained more background noise, and (c) shows that the bounding boxes
overlapped. There were different degrees of missed detection and false detection. The blue boxes
indicate detected ship targets.

Methods based on rotated bounding boxes [28–30] can effectively suppress back-
ground interference and improve detection accuracy. However, problems such as irregular
ship target morphology and insufficient utilization of inherent topological information of
ship targets still need to be solved. Due to the various geometric changes (rotation, scaling,
deformation, etc.) of ship targets in SAR images [29–31], as shown in Figure 2, the shapes
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of ship targets exhibit a high degree of irregularity, which increases the difficulty of object
detection. Further, traditional CNN cannot extract features from such irregular shapes,
causing the network’s to incompletely recognize the target. In addition, in previous ship
target detection methods, only pixel information was usually considered. In contrast, the
inherent topological information of the target was ignored, as shown in Figure 2, which
also led to an insufficient understanding of the target. Therefore, when designing SAR
ship target detection models, it is necessary to improve their ability to extract features from
irregular target shapes and fully utilize the inherent topology information of the target to
ensure that the network’s feature learning is closely related to the actual target. This can
result in better suppression of false positives and missed detections, thus improving the
accuracy and robustness of detection.
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Figure 2. Irregular shape and topology of ship targets. The topology is represented by clusters of
points, and the yellow lines represent the irregular shapes of ship targets. (a) represents an ellipse-like
shape, (b) represents an E-like shape, (c) represents a rectangle-like shape, and (d) represents an
arrow-like shape.

To overcome the above limitations, we proposed a novel morphology and topology-
based feature alignment network (MT-FANet) for SAR ship target detection. First, we
adopted deformable convolutions to cope with the irregular shape of the ship target in
SAR images. Deformable convolutions can adaptively adjust the shape and position
of the convolution kernel, thus more accurately extracting target morphology features.
Second, we developed a morphological and topological feature pyramid network (MT-FPN),
which combines the extracted target morphological features and dynamically allocates
different weights based on the mutual relationships between scatter points at different
locations. This process can capture the inherent topological structure information of ship
targets, thereby achieving fewer missed detections and false alarms. Finally, we designed
a rotation alignment feature head (RAFH), including prediction fine-tuning and feature
differentiation, to solve issues such as feature misalignment and to implement rotated
bounding box prediction. Our proposed method had better practicality and effectiveness
in detecting irregularly shaped ship targets with complex backgrounds.

Our main contributions can be summarized as follows:

1. We adopted deformable convolutions to improve the network’s feature representa-
tion ability for irregularly shaped ship targets, focusing more on the features of the
target itself rather than the background, and thus mitigating the impacts of complex
background interference.

2. It is well-known that the topological structures of ship targets contain important
feature information. Therefore, we developed a novel morphology and topology
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feature pyramid network (MT-FPN) to exploit the inherent topological structure
information of SAR ship targets, which can elucidate effective features for consequent
ship target detection.

3. To achieve a balance between the speed and accuracy of the proposed detection model,
a rotation alignment feature head (RAFH) was designed to predict fine-tuning and
feature differentiation. This addresses the feature misalignment issue and enables
rotation bounding box prediction, thus improving the model’s detection performance.

The remaining sections of this paper are organized as follows. Section 2 discusses
related work. In Section 3, we provide a detailed description of the proposed methods. The
experimental results and ablation studies are presented in Section 4, and we further discuss
the experimental results in Section 5. Finally, in Section 6, we conclude the paper.

2. Related Work

In this section, we introduce the development of deep learning-based detection algo-
rithms for SAR ship targets and improvements in the feature pyramid structure.

2.1. Deep Learning Detection Method for SAR Ship Targets

Compared to traditional detection algorithms, CNNs can adaptively extract features
and have better generalization ability [30]. SAR ship target detection based on deep learning
has received widespread attention [32–34]. As shown in Table 1, recently, some research
has focused on enhancing the performance of feature extraction [35–39]. Rostami et al. [36]
proposed a framework based on domain-transferred knowledge to train from related
domains where large amounts of data are readily available to achieve SAR images better
generalization capabilities. It is also a good idea to increase the sample perspective in order
to enhance feature extraction [38,39]. Lou et al. [38] used a knowledge transfer network to
generate fake SAR images, then used both the fake image and the real image as the input
of the ship detection network, which improved the generalization performance.

Table 1. Classification of methods to enhance feature extraction performance in SAR ship and
object detection.

Method Obtained Results Related References

Pre-training and transfer learning Mitigating limitations of fewer samples [35–37], etc.
Data augmentation [38,39], etc.

Feature selection Enhanced model architecture [22,40–42], etc.

Some studies exploit target features to optimize feature extraction. Guo et al. [40]
proposed a method of rotating Libra R-CNN to balance multiple semantic levels, including
sample level, feature level, and object level, to solve the problem of the dense distribution
of objects. Fu et al. [41] introduced a context-aware feature selection module to suppress
the interference of the background, and defined a set of scattered key points to describe
the characteristics of local scattering regions, thus improving the detection performance
for complex scenes. Kang et al. [42] designed a scatter feature relational network using the
scatter point relation module to realize the analysis and the association of scatter points
to ensure the integrity of object detection. In addition, the fusion module and contextual
feature attention were used to capture semantic and spatial information. With the rapid
development of deep learning in the SAR field, many detectors based on oriented bounding
boxes have been proposed [30,31,43]. Shao et al. [22] designed a rotation-balanced feature
alignment network to accurately identify SAR ship targets. This method reduces the
negative impact of multi-scale feature differences by balancing the attention pyramid, and
uses a deformable convolutional network [31] to deal with feature misalignment so as to
achieve accurate recognition of SAR ship targets.

Despite the significant achievements in SAR ship detection during our preliminary
work, numerous challenges remain to be overcome in the detection of rotated ship targets in
SAR. In the above method [41,42], only the relevance of ship target scattering points is used,
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and information on the ship’s target shape is not paid enough attention. The irregular shape
and underutilization of the inherent topology of ship targets limit the feature extraction
performance of existing models, resulting in limited detection performance. Therefore, in
order to improve the effectiveness of ship target feature extraction and to achieve accurate
detection of SAR ship targets in complex scenes, we propose a novel network architecture
based on morphological and topological information.

2.2. Feature Pyramid Structure

Multi-scale detection is significant for network scale invariance in image detection.
The effective fusion of features at different scales can promote the interaction of cross-scale
information and improve the detection performance of the network [22–26,44–46]. FPN [44]
is a pioneering work that includes a top-down path and skip connections, providing rich
semantic information and multi-scale context to improve detection performance and handle
objects at different scales. Fu et al. [45] found that different layers do not contribute equally
to balancing semantic features when designing a feature balance and refinement network
(FBR-Net). Therefore, they used level-based attention and spatial channel attention to
adaptively learn the weight of fusion, so as to balance multiple features at different levels
and improve the detection performance of SAR ship targets. The attention-guided balanced
feature pyramid network (A-BFPN) [46] represents a further optimization of the FPN
structure. The method uses an enhanced refinement module to improve balance and
FPN’s ability to represent ship objects after feature fusion. It also uses channel attention
to guide the recovery of features at different levels, thereby reducing the feature overlap
problem caused by fusion and improving detection performance. These methods balance
the weights of semantic information and spatial location information at different levels by
different means, thereby improving the accuracy of detection.

We hope to design a concise and effective FPN structure without being overly complex.
Therefore, we propose a morphology and topology feature pyramid network (MT-FPN).
The network uses known ship morphology and topology information to reconstruct features
and builds a feature fusion module on this basis. MT-FPN makes full use of the target shape
and inherent topological structure information to make the features of each level more
robust. At the same time, the high-level semantic information is simply and effectively
transferred through the top-down path, thereby improving the detection performance of
the network.

3. Proposed Method Description

In this paper, we propose a morphology and topology-based feature alignment net-
work (MT-FANet), which consists of three parts: a backbone network; a feature fusion
network, which is the morphological and topological feature pyramid network (MT-FPN);
and a detection head, which is the rotation alignment feature head (RAFH), as shown in
Figure 3. The backbone network uses ResNet50 [47] to extract features from the original
images. MT-FPN improves upon the FPN module in RetinaNet [23] by adding a designed
morphology and topology module (MTM) for the purpose of strengthening the ship targets’
morphology features and extracting topological information. RAFH includes rotation offset
prediction for feature alignment and decoupled feature prediction for final classification
and prediction. This section introduces the overall structure of MT-FANet, explains each
module’s functionality and characteristics, analyzes the network structure’s important
calculation method, and presents the loss function used in the training process.

3.1. Overview of the Proposed MT-FANet

In this section, we introduce the proposed MT-FANet, the architecture of which is
shown in Figure 3. The proposed method is based on the single-stage detector Reti-
naNet [23], which has fewer network parameters and a faster speed than two-stage algo-
rithms. Based on RetinaNet, we propose that the irregular shape of ship targets and the
topological structure information between scatter points be used for ship targets to guide
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feature extraction and fusion in the network and to improve its detection performance.
Specifically, we first used ResNet50 [47] as the backbone to extract the raw features of
the images. ResNet50 has 50 layers and comprises 5 convolutional stages. The outputs
of the last three stages of the backbone network ResNet50, denoted as {C3, C4, C5}, had
downsampling ratios of {8, 16, 32} relative to the input image and channel output sizes of
{512, 1024, 2048}, and were used as the input features of the subsequent morphology and
topology module (MTM).
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sizes of the input and output feature maps of the MTM remain the same.

We designed a brand-new feature pyramid network, MT-FPN, to refine the features.
This network uses MTM to enhance the representation ability with respect to the ship targets’
morphologies and combines the more accurate morphology features to fully extract inherent
topological information for the ship targets. MT-FPN also performs a simple fusion of the
features from each layer, enhancing the interaction of information between each layer to
improve the multi-scale detection performance. Finally, the prediction head, RAFH, uses a
parameter-sharing mechanism and a two-stage prediction strategy, reducing the complexity
of the network while achieving feature alignment and differentiation processing to optimize
the network’s performance further. In rotation offset prediction, we used the prediction
of rotation box regression and the input feature map to align the features. In decoupled
feature prediction, we refined the features to better complete the final classification and
regression tasks. The anchor is represented by a 5-dimensional vector (x, y, w, h, θ) for both
regression tasks, as shown in Figure 4. Here, (x, y) are the coordinates of the center point;
(w, h) denotes the long and short sides of the rectangle; and θ is the angle between the
positive x-axis and the long side, with a range of [−π/4, π3/4), where clockwise is positive
and counterclockwise is negative. The classification task distinguished between targets and
backgrounds in the predicted boxes.

3.2. Morphology and Topology Feature Pyramid Network

In this section, we introduce the proposed MT-FPN network, which is a crucial module
in MT-FANet for refining the feature maps of the ResNet50 backbone network. It can
improve the detection performance of multi-scale irregular targets in complex backgrounds.
MT-FPN comprises the morphology and topology module (MTM) and the feature pyramid
network (FPN).
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3.2.1. Feature Fusion

Three operations were performed in the morphology and topology feature pyramid
network (MT-FPN). Firstly, the deformable convolution [31] in the morphology topology
module (MTM) was utilized to extract the morphology feature of the target, thereby
enhancing the network’s capability to represent ship morphology. Then, by using the
topology-aware attention in the morphology and topology module (MTM) and combining
it with complete morphology features, the topological relationships between each scattering
point in the ship target were calculated, thus completing the extraction of topological
information among the scattering points in the ship target. Finally, the morphology and
topology features at different levels were downsampled and added together for simple and
effective cross-scale fusion, as shown in Figure 5. Previous studies [48] have suggested that
in the remote sensing detection field, due to the size characteristics of the target, the P6 and
P7 layers are redundant structures. In SAR ship detection, we also made corresponding
operations. In the subsequent sections, we describe a burn experiment to prove that this
conclusion applies to SAR ship detection.
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pyramid network (MT-FPN).

3.2.2. Morphology and Topology Module

The detailed structure of the morphology and topology module (MTM) is shown in
Figure 6, where “MR” represents morphology representation. In this section, we provide a
detailed description of morphology representation, including the source of the morphology
representation problem, available methods and measures, and implementation details of
our approach.

Due to the different imaging mechanisms and conditions in SAR images [10], ship
targets exhibit significant geometric variations (rotation, scaling, deformation, etc.), re-
sulting in highly irregular target shapes. This also leads to the model paying excessive
attention to background features. To overcome the influence of geometric transformations
on the target images of the model, data augmentation [49] and DCN [31] can be used. Data
augmentation generates more training samples by performing random operations, such
as rotation, scaling, and translation, on the images. It provides the model with diverse
samples during training, improving its generalization ability.
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respectively, represent the weights of the 1 × 1 convolution operation, and their purpose is to project
features into low dimensions; PP represents the global average pooling operation of multiple scales;
concatenation represents channel splicing, and convolution is used for channel adjustment.

The enhancement of SAR images may yield unnatural data and cause model over-
fitting [49]. In addition, the shapes of ship targets in SAR images vary under different
imaging conditions. Therefore, we used deformable convolution [31] to improve the ability
to represent ship morphology after uniform channel adjustment (compressed to 128) on the
output of the backbone network. This convolution was able to adaptively adjust the convo-
lution kernel based on input features, thereby improving the detection performance of the
model in the presence of rotation and multiscale targets and better capturing the diverse
shapes of ship targets in the feature map. Specifically, deformable convolution calculates
new sampling positions and weight coefficients through offset convolution for each feature
point in the input feature map. Then, it performs convolution using the offset and weight.
As shown in Figure 7, this convolution is implemented by adding a learnable offset layer
before the traditional convolution layer, with a channel number of 3 × *N, where N repre-
sents the number of convolution kernels of the deformable convolution. The output offset
is used to adjust the sampling position of the convolution kernel in the input feature map,
while the weight ensures the effectiveness of feature extraction. This method improves
the robustness of the network to geometric transformations, better matches the irregular
shapes of ship targets in the feature map, and enhances the network’s representation ability
for target morphology. The specific mathematical expression is shown below:

y(p) =
K

∑
k=1

ωk·x(p + pk + ∆pk) · ∆mk (1)

where x(·) represents the location of the input feature map, the feature map is set to
H ×W × 128 y(p) and represents the location of the output feature map, ωk represents the
weight of the convolution kernel, ∆pk represents the offset of the sampling position, K is the
number of convolution kernels (usually taken as 3× 3), ∆mk is the weight coefficient of the
sampling point, and the final output size remains as H×W× 128. Adding offset and weight
to the original convolution operation increased our ability to explore target morphology.

In complex backgrounds, ship targets have highly similar features to their surrounding
environments [22,29,30,41]. More than simply strengthening the target’s morphology rep-
resentation is required to achieve accurate detection. After the analysis of SAR images, ship
targets are usually regarded as groups of continuous scattering points, and the arrangement
of these scattering points and their relationships can provide inherent topological structure
information about the ship target. For example, the rear of a ship is usually wider than
the front, and some scattering points may concentrate in specific areas of the ship, such
as the bow and stern. Therefore, we developed topological structure-aware attention to
extract topological structure information from between the ship target’s scattering points,
thus identifying rich and novel topological features for the network. In previous stud-
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ies, Hu et al. [50] have proposed an attention module derived from the Transformer [51]
to describe pairwise relationships between targets. To better describe the topological
structure features between the scattering points of ship targets, we designed topological
structure-aware attention in MTM, as shown in Figure 6. We applied the self-attention
mechanism to extract topological structure information, assuming that the feature Fm after
shape representation consists of shape features topological features to be extracted. The
feature Fm underwent feature projection to obtain the easy-to-use shape feature fs and the
to-be-extracted topology feature ft. Then, the relative distances between scattering points
were calculated for ship targets based on the feature ft and these distances were used as
attention weights to weigh the features and obtain a feature representation that contained
topological structure information.
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The self-attention mechanism can effectively capture topological structure features
between scattering points of ship targets. In scaled dot-product attention, given an input
consisting of queries, keys, and values represented by the matrices Q, K, and V, respectively,
the output value can be efficiently computed using the following formula:

υout = softmax(
QTK√

dk
)V (2)

where Q and K are computed along the dimension of dk and normalized by a scale factor√
dk to regulate the magnitude of attention weights. In our work, to reduce the computa-

tional burden of matrix multiplication, we adopt a method inspired by [52] to simplify the
computation of self-attention using the following expression:

K(dk×N) = [GAP1(K), GAP3(K), GAP6(K), GAP8(K)] (3)

V(dk×N) = [GAP1(V), GAP3(V), GAP6(V), GAP8(V)] (4)

where K and V are obtained by 1× 1 convolution encoding and dimension reduction,
resulting in matrices with sizes (dk, H×W). Here, dk is the number of channels (we set it to
64) and H ×W denotes the height and width of the feature map. GAPn(·) denotes global
average pooling, with an output size of n× n. Using the idea of pyramid pooling, represen-
tative points are sampled from different scales and then concatenated to obtain K(dk×N) and
V(dk×N), where N = 1 × 1 + 3 × 3 + 6 × 6 + 8 × 8 = 110 and [·] represents concatenation.

The above equation effectively captures the topological structure information between
scattering points and enables the extraction of topological features. Specifically, it computes
the similarity (position relation) between each scattering point and all other scattering
points to determine its weight, which is then applied to calculate the output of that point.
The extracted topological features, denoted as Ft, are concatenated with the shape feature
fs as follows:

Fst = conv([Ft, fs]) (5)
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where the conv(·) operation refers to a 1× 1 convolution (input channel = 256, output chan-
nel = 128), which aims to keep the number of channels in the output feature Fst consistent
with that in the input feature fs. The obtained feature Fst contains rich information on the
shape and topology of the target, which can effectively enhance the feature representation.

After obtaining the feature F from the MTM structure, in order to ensure that the
features extracted by the backbone network were fully utilized, we performed a cascading
operation to aggregate F with the original feature map fo, then used the result for feature
pyramid network fusion:

Fout = conv([ fo, F]) (6)

where conv(·) operation refers to a 1× 1 convolution, it has 256 input channels, and the
number of output channels is 256. This aims to keep the number of channels in the output
feature Fout consistent with that in the input feature fo for the purpose of facilitating
subsequent feature fusion.

In MTM, deformable convolution greatly enhances adaptability to the morphological
variations of the ship targets. Meanwhile, the use of topology-aware attention leads to
the deconstruction of morphology features and the extraction of topological structure
information. This enables the network to better focus on the morphological and topological
structural features of the target itself with complex backgrounds, thus achieving a deeper
understanding of the morphology and inherent topology structure of the ship target, and
better suppressing false negatives and false positives in the network.

3.3. Rotation Alignment Feature Head

In horizontal bounding-box detection networks, convolutional features and horizontal
anchors are aligned, making it easy to predict bounding boxes [32]. However, in rotated
anchor networks, the asymmetric nature of the rotated boxes causes misalignment between
convolutional features and anchors. To solve this problem, we developed a rotation
alignment feature head (RAFH), which adopted a two-stage prediction strategy. We first
made regression predictions, then used the first regression predictions to align and sample
features, and finally performed the classification and regression predictions. The detection
head adopted a parameter-sharing mechanism [24] where three output scales shared one
detection head, significantly reducing the model parameters. This section explains the first
regression prediction part (rotation offset prediction) and the second precise prediction
part (decoupled feature prediction). Compared with the baseline’s decoupled head, our
RAFH detection head only adds a few extra parameters to achieve feature alignment and
second-stage prediction while omitting the classification subnet in the first stage, making
our network lighter and more accurate.

3.3.1. Rotation Offset Prediction

We design a rotation offset prediction structure to address the misalignment between
rotated bounding boxes and axis-aligned convolution features in SAR ship detection [33,34].
This structure used regression prediction to refine features for more accurate prediction in
the subsequent decoupled feature prediction. Specifically, we first performed regression
prediction on the aforementioned MT-FPN’s features (H ×W × 256); then used the pre-
diction result to project the offset adjustment information sampled by convolution; and,
finally, aligned the input feature map fi. As shown in Figure 8, this structure only had a
regression prediction branch, and the convolution layer of the branch was consistent with
the baseline setting. Since we used the five-parameter definition method for rotated boxes,
the regression output was a feature map with a size of H ×W × 5. Through decoding, we
were able to obtain the coarse anchor boxes for each feature point, and then to map them to
the required sampling offset information. The specific formula for calculating the offset O
was as follows:

O =
{

LPk
Po
− Pk

}
(7)
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LPk
Po

=
1
S
(

1
K
(w, h) · Pk ·RT(θ)) (8)

where O represents the offset value; LPk
Po

represents the new sampling position obtained
by projecting the sampling kernel of the sampling position P0 using the predicted anchor
box; S represents the stride of the feature map; K represents the size of the convolution
kernel, which was set to 3 in our case; PK represents the grid coordinates of the original
sampling position, which belonged to {(−1, −1), (−1, 0), . . . , (0, 1), (1, 1)}, according to
the convolution size; RT(θ) = (cos,−sin; sin, cos)T represents a rotation matrix used for
horizontally projecting the new sampling position.
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After obtaining the offset information, the feature alignment operation was performed
by inputting the feature fi and offset into the regression alignment layer. It is worth noting
that the output size of the regression alignment layer remained as H ×W × 256. For each
point, the feature alignment result FA was the product of the learnable convolution weights
and the feature at the new sampling position. The calculation formula was as follows:

FA = ∑
o∈O

ω(Pk)X(Pk + o) (9)

where ω(·) represents the convolution kernel weight, and X(·) represents the sampled
value in the feature map.

3.3.2. Decoupled Feature Prediction

This section introduces the decoupled feature prediction in the RAFH detection head,
which is used for detecting and classifying ship targets in SAR images. Due to the difference
in required features for regression and classification tasks, conflicts may arise [24]. To
overcome this issue, we used a spatial decoupling method to separate features and to
complete target boundary regression and classification using regression and classification
subnets, as shown in Figure 9. Specifically, for the input that underwent feature alignment,
we use active rotation convolution [53] for direction encoding to further enhance the
direction perception of ship targets. This explicitly encodes the feature perception of the
target direction on the channel. For the input feature map F, the output Fo in the i direction
can be represented as:

Fo
(i) =

{
ω

(k)
θi
· F(k)

}
0,1,··· ,K−1

, θi = i
2π

N
, i = 0, . . . , N − 1 (10)

where θi represents the angle information encoded in clockwise manner;ω(k)
θi
·F(k) indicates

the calculation between the feature map F and the rotation convolution kernel ω in the k-th
channel; and K ∗ N should be equal to the number of channels of the input feature F. For
example, if the channel number is 256 and N is set to 8, then K would be 32. Obtaining
orientation-aware features will help to improve the accuracy and precision of bounding
box regression. Secondly, we preferred to obtain features invariant to the direction for the
classification task. To achieve this, we chose the global average pooling of each encoding
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channel to extract invariant features, realizing the differentiation of classification and
regression features. The formula was as follows:

~
F = mean(F(n)), 0 < n < N − 1 (11)

where F(n) represents each encoding channel and the size of F(·) is H ×W × 32. Finally,
the features with direction sensitivity and invariant features were fed into the regression
and classification subnetworks, respectively, to obtain the target box prediction output
(H ×W × 5) and classification prediction output (H ×W × 1).
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Figure 9. Architecture of decoupled feature prediction. Rotation sensitive means explicitly en-
coding the angle information on the feature channel; feature divergence means merging the an-
gle information on the channel; cls. represents the classification subnetwork; reg. represents the
regression subnetwork.

3.4. Loss Function

MT-FANet uses a type of multi-task loss that includes the rotation offset prediction
and decoupled feature prediction losses. The rotation offset prediction loss only consists of
a regression loss, while the decoupled feature prediction loss has both a classification loss
and a regression loss. The multi-task loss function is defined as follows:

L = LR + LD (12)

LR = λ
1

NR
∑

i
p∗i Lreg(ti, t∗i ) (13)

LD =
1

ND

(
∑

i
Lcls(pi, p∗i ) + λ∑

i
p∗i Lreg(ti, t∗i )

)
(14)

where NR and ND are the number of positive samples in rotation offset prediction and de-
coupled feature prediction, respectively; p∗i equals 1 if sample i is positive, while otherwise
it equals 0; pi represents the ground truth label of anchor i; focal loss [23] is used for classi-
fication loss Lcls; ti represents the offset between anchor and ground truth; t∗i represents
the offset between prediction and ground truth; smooth L1 [17] is used for regression loss
Lreg; and λ is a hyperparameter for balancing classification and regression losses, usually
set to 1. However, in our work, the loss function contained a classification loss and two
regression losses. Thus, we set λ = 0.5 for simple balance. In follow-up experiments, we
intend to provide ablation experiments to verify the effectiveness of the hyperparameter
λ setting.

4. Experimental Results

In this section, we describe the experiments performed to validate the performance
of the proposed MT-AFNet for ship detection in SAR images. Further, we demonstrate
the effectiveness of the designed MTM and RAFH. First, we introduce the RSDD-SAR
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dataset [16] used in this paper, the evaluation metrics, and the experimental details. Then,
we report the advanced performance of our MT-AFNet compared to existing methods
on the RSDD-SAR dataset. Finally, we describe the ablation studies which were used to
evaluate the impact of each module on performance.

4.1. Experimental Datasets and Details
4.1.1. Datasets

The dataset used in this paper was the RSDD-SAR dataset [16], which currently has
the largest number of samples and the richest scenes with respect to SAR ship rotation
detection. It contains 7000 images and 10,263 ship instances. The dataset includes images
of multiple imaging modes, polarization modes, and resolutions. The specific data statistics
are shown in Table 2.

Table 2. Basic information of RSDD-SAR dataset.

Parameter Value

Number of images 7000
Image size 512 × 512

Number of trains 5000
Number of tests 2000

Polarization HH, HV, VH, DH, DV, VV
Imaging mode SM, FSII, FSI, QPSI, UFS, SS

Resolution 2~20 m

We display the ship targets’ rotation angles and aspect ratios in Figure 10a,b. The
rotation angles ranged from−π/4 to π/2, with fewer instances between π/2 and 3π/4, and
the distribution was generally uniform. The aspect ratios were mainly between 1.5 to 7.5.
These values suggest that the targets have diverse rotations and significant aspect ratios.
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the ships.

The images in Figure 11 illustrate the RSDD-SAR dataset, which encompasses a diverse
range of ship target scenes with a wide range of scales. In inshore environments, ship
targets are frequently blended into intricate backgrounds, and it is possible for them to
be arranged densely, making their precise detection and localization more challenging.
Therefore, the introduction and utilization of this dataset is highly significant for advancing
and investigating ship target detection algorithms.
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4.1.2. Experimental Details

We used Resnet50 [47], pre-trained on ImageNet, as the backbone network for MT-
FANet and other comparative algorithms, unless there were special experimental instruc-
tions. Data augmentation included horizontal random flipping with a probability of 0.5.
We used SGD as the optimizer, with an initial learning rate of 0.0025, a momentum of
0.9, and a weight decay of 0.0001. We used L2 norm gradient clipping to increase the
model’s training stability, with a maximum gradient norm of 35. The iteration was set to
12, and the learning rate was reduced by a factor of 10 at the 7th and 10th iterations. The
first 500 batches used a linear warm-up learning rate, with an initial warm-up learning
rate of one-third of the initial learning rate. The batch size during the training stage was
set to 4. The algorithm’s training and testing image sizes were unified at 512 × 512, and
the confidence threshold for testing was set to 0.05. All experiments were repeated five
times, and the results are presented as mean and standard deviation. When discussing
the experiment, we mainly describe the mean change. We implemented the algorithm
using the PyTorch and MMDet toolbox and tested it on a personal computer with an Intel
Core i5-11400F CPU and an NVIDIA GeForce RTX3060 GPU. We published the code at
https://github.com/CQUSARDet/MT-FANet (accessed on 29 May 2023).

4.2. Evaluation Metrics

We used multiple evaluation metrics to assess the performance of the network, includ-
ing network parameters (Params) such as the number of floating-point operations (FLOPs),
inshore AP50, offshore AP50, recall, F1 score, and overall AP50. AP50 represents the average
precision (AP) when the intersection over union (IoU) threshold is 0.5. The higher the AP

https://github.com/CQUSARDet/MT-FANet
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value, the higher the network detection accuracy. To calculate AP, we first need to calculate
recall and precision. Precision and recall can be defined as:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

where TP is the number of ships detected correctly, FP is the number of false positives, and
FN is the number of ships missed. The formula for calculating AP was as follows:

AP =
∫ 1

0
P(R)dR (17)

where P represents precision and R represents recall. P(R) represents the precision–recall
curve.

The F1 score takes into account the precision and recall of the model, and can be
calculated by the following formula:

F1-score = 2× Precision× Recall
Precision + Recall

(18)

4.3. Comparison with State-of-the-Art Methods

To validate the superiority of our algorithm, we compared it with seven other rotation
detection algorithms on the RSDD-SAR dataset, as shown in Table 3 The detection results
of the different methods are taken from reference [16]. MT-FANet outperformed the seven
state-of-the-art methods based on the two-stage, one-stage, and anchor-free algorithms.
Regarding overall AP50, MT-FANet performed 1.48% better than the second-best algorithm,
while in inshore and offshore AP50, it performed 0.36% and 1.19% better, respectively. It is
worth noting that the second-best algorithm was different for each metric. Additionally,
MT-FANet had the second-lowest number of model parameters and the lowest number
of floating-point operations. These results indicate that MT-FANet fully considers the
morphology representation of ship targets and the extraction of topological information,
achieving a state-of-the-art performance in SAR ship target detection. Furthermore, it
exhibits outstanding performance in recall, F1 score, model parameters, and floating-point
operations, proving its superiority in practical applications.

Table 3. Comparison of detection results for different algorithms in the RSDD-SAR dataset.

Method AP50 (%) Recall (%) F1 O. AP50 (%) I. AP50 (%) Params (M) FLOPs (G)

R-FasterR-CNN [17] 83.44 ± 0.34 86.93 ± 0.19 85.15 ± 0.26 90.47 ± 0.40 49.44 ± 0.51 41.41 50.38
RoI Transformer [32] 88.39 ± 0.02 89.95 ± 0.02 89.17 ± 0.01 94.53 ± 0.17 60.19 ± 0.56 55.32 51.48
Oriented R-CNN [19] 88.69 ± 0.29 90.50 ± 0.23 89.59 ± 0.26 90.56 ± 0.30 65.73 ± 0.28 41.35 50.41

R-FCOS [26] 85.35 ± 0.13 87.60 ± 0.13 86.46 ± 0.12 92.94 ± 0.13 50.12 ± 0.45 32.17 51.73
CFA [33] 89.36 ± 0.09 91.50 ± 0.39 90.41 ± 0.23 90.80 ± 0.32 66.51 ± 0.17 36.83 48.58

R3Det [43] 80.58 ± 0.34 82.88 ± 0.14 81.77 ± 0.25 89.76 ± 0.46 56.47 ± 0.39 41.81 83.91
S2ANet [34] 87.84 ± 0.14 89.17 ± 0.19 88.50 ± 0.16 93.31 ± 0.16 63.32 ± 0.17 36.45 49.40

Proposed method 90.84 ± 0.18 92.21 ± 0.21 91.52 ± 0.22 95.72 ± 0.19 66.87 ± 0.39 33.73 43.96

The best-performing detection algorithm for each metric is shown in bold, while the second-best-performing
algorithm is underlined. In all tables, “O.” stands for offshore and “I.” stands for inshore.

Figure 12 shows the detection results of our method compared to other methods,
which performed second-best or best in different scenes and on different scales. From the
figure, it can be seen that compared to methods such as R-FCOS [26], RoI Transformer [32],
and CFA [33], our method, MT-FANet, focuses on the morphology and topology of the
ship itself rather than its background features, resulting in better performance in terms of
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suppressing false alarms and missed detections in SAR images. In addition, our method
demonstrates better localization accuracy for densely arranged ship targets.
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4.4. Ablation Studies

In this section, we describe the ablation experiments which were conducted on two
critical areas requiring improvement in MT-FANet: the morphology and topology feature
pyramid network (MT-FPN) and the rotation alignment feature head (RAFH). We quantita-
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tively analyze the contributions of each module to MT-FANet and qualitatively analyze the
advantages of our method compared to the baseline.

In Section 3.2.1, we mentioned that some structures in FPN were redundant for SAR
ship detection. To validate this, we conducted a quantitative experiment on the RSDD-SAR
test dataset, as shown in Table 4. Specifically, we removed the output layers P6 and P7
from RetinaNet and obtained a detector called “Modified-Baseline”. We found that the
“Modified-Baseline” achieved an AP50 of 84.28% in detection performance and reduced
the number of floating-point operations and parameters (from 52.39 G to 51.7 G and from
36.13 M to 30.82 M, respectively). It also improved slightly in terms of recall and F1-
score. Therefore, we used the “Modified-Baseline” as a new reference line for subsequent
ablation studies.

Table 4. Analysis of different baseline architectures on RSDD-SAR.

Method F.P.L AP50 (%) R (%) F1 O. AP50(%) I. AP50 (%) P. (M) Fs. (G)

Baseline P3~P7 83.97 ± 0.10 88.34 ± 0.10 86.10 ± 0.15 90.64 ± 0.15 54.62 ± 0.18 36.13 52.39
Modified-Baseline P3~P5 84.28 ± 0.13 88.82 ± 0.17 86.49 ± 0.18 90.83 ± 0.14 55.55 ± 0.20 30.82 51.70
Proposed method P3~P5 90.84 ± 0.18 92.21 ± 0.21 91.52 ± 0.22 95.72 ± 0.19 66.87 ± 0.39 33.73 43.96

“F.P.L.” refers to the number of levels in the feature pyramid. “R” refers to the recall. “P.” refers to the params.
“Fs.” refers to the FLOPs. Bold text indicates the proposed method and its metrics in this and subsequent tables

Table 5 shows the quantitative impact of each critical improvement on detection
accuracy. This experiment aimed to evaluate the performance improvement of the MT-
FANet model, including the design of the MT-FPN module and the rotation alignment
feature head (RAFH). In the table, “

√
” indicates the presence of an improved module,

and “×” indicates the absence of the module. The results show that with the addition of
improvements, the detection accuracy of the network gradually improved. In the SAR
ship target detection task, compared with the baseline network, the AP50 of MT-FANet
increased by 6.56% (from 84.28% to 90.84%) and the offshore AP50 increased by 4.89% (from
90.83% to 95.72%). The detection effect of inshore AP50 improved even more significantly,
with an increase of 11.32% (from 55.55% to 66.87%). In addition, we further illustrated the
effectiveness of each step in the proposed method by providing the visualization results
corresponding to each step. Figure 13 demonstrates the gradual improvement in missed
and false detections of ship targets by introducing each essential improvement. Our method
performed best in the detection of results, as shown in Figure 13d.

Table 5. Ablation study on various improvements proposed in MT-FANet on RSDD-SAR dataset.

MT-FPN RAFH AP50 (%) Recall (%) F1 O. AP50 (%) I. AP50 (%) Params (M) FLOPs (G)

× × 84.28 ± 0.13 88.82 ± 0.17 86.49 ± 0.18 90.83 ± 0.14 55.55 ± 0.20 30.82 51.70√
× 87.32 ± 0.20 89.13 ± 0.18 88.22 ± 0.14 92.90 ± 0.21 59.20 ± 0.33 33.68 53.62√ √

90.84 ± 0.18 92.21 ± 0.21 91.52 ± 0.22 95.72 ± 0.19 66.87 ± 0.39 33.73 43.96
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The MT-FPN module enhanced the morphology representation of ship targets and
enabled the extraction of topological information, allowing the network to more fully extract
the features of ship targets and, thereby, to more successfully suppress false positives
and missed detections of SAR images. The rotation alignment feature head efficiently
achieved feature alignment and target prediction through two-stage prediction and feature
separation strategies. It greatly reduced the model’s floating-point operation count (from
51.70 G to 43.96 G) through its parameter-sharing mechanism, which improved its detection
performance and efficiency.

When conducting ablation experiments on the MT-FPN module, we compared two
identical networks, both using RAFH. The only difference was their feature refinement
methods. One used traditional FPN, while the other used MT-FPN, which we proposed.
Table 6 shows the ablation results of MT-FPN, demonstrating that the MT-FPN module can
significantly improve detection accuracy. This shows that in MT-FPN, the morphological
representation of the ship target is enhanced and the inherent topological information of
the ship target is effectively utilized. As a result, the detection accuracy of the ship target
was significantly improved.

Table 6. A study on the effectiveness of MT-FPN on RSDD-SAR.

Method AP50 (%) Recall (%) F1 O. AP50 (%) I. AP50 (%) Params (M) FLOPs (G)

FPN 88.64 ± 0.21 90.34 ± 0.25 89.47 ± 0.22 92.66 ± 0.28 58.42 ± 0.24 30.86 42.03
Proposed method 90.84 ± 0.18 92.21 ± 0.21 91.52 ± 0.22 95.72 ± 0.19 66.87 ± 0.39 33.73 43.96

To efficiently perform object classification and location regression simultaneously, we
balanced classification loss and regression loss in the loss function design. We set the
hyperparameter λ to 0.5 to avoid overweighting the regression loss. Through experimental
verification, we found that when the network used MT-FANet, after setting λ from 1 to 0.5,
all evaluation indicators were improved (see Table 7). This shows that setting λ to 0.5 in the
proposed method can achieve a better balance between object classification and location
regression, thus improving the overall detection performance.
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Table 7. A study on the effectiveness of hyperparameter λ settings on RSDD-SAR.

Hyperparameter λ set AP50 (%) Recall (%) F1 O. AP50 (%) I. AP50 (%)

λ = 1 90.19 ± 0.26 91.71 ± 0.24 90.94 ± 0.24 95.52 ± 0.32 63.54 ± 0.18
Proposed method (λ = 0.5) 90.84 ± 0.18 92.21 ± 0.21 91.52 ± 0.22 95.72 ± 0.19 66.87 ± 0.39

In Figure 14, we show the heat maps of the baseline and proposed MT-FANet in order
to analyze and understand the advantages of our method qualitatively. We extracted the P3-
level features of the MT-FPN and baseline FPN, and then performed max pooling on them
to compress the channels. Next, we visualized the values and proportionally mixed them
with the original images. The figure shows that MT-FANet can more successfully focus the
features on the target morphology while effectively suppressing attention to interfering
noise. This is mainly because our method focuses on representing the morphology of the
ship target, and the extracted features can be adaptively mapped to obtain a more accurate
shape of the ship target. In the case of the inshore, due to the high level of similarity between
the complex background and the ship target, the baseline method cannot effectively extract
features. This is shown in Figure 14b, where the generated heat map shows no significant
difference in response to the ship or the noise. In contrast, as shown in Figure 14c, MT-
FANet uses the inherent topological information of ship targets to guide the network model
for feature selection, and can successfully suppress the network’s attention to similar noise,
thus enhancing the response to ship targets.
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We also investigated the performance of MT-FANet and the baseline on different
backbone networks to explain our choice of backbone network. As shown in Table 8, our
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MT-FANet significantly outperformed the baseline regardless of the backbone network
which was used. For example, even when using ResNet18, our method showed consid-
erable improvement over the baseline, with an increase in AP50 of 5.96% (from 83.25%
to 89.21%), demonstrating the significant robustness and effectiveness of our proposed
method. Furthermore, we observed that as the feature extraction capability of the backbone
network increased, the detection performance of SAR ship targets gradually improved; an
example is the increase in AP50 from 89.21% to 90.84% and then to 90.72%. Among these
networks, ResNet50 achieved comparable performance to ResNet101, with relatively fewer
parameters, making it a more efficient choice as a backbone network.

Table 8. MT-FANet and baseline ablation study on RSDD-SAR with a different backbone network.

Backbone Method AP50 (%) Recall (%) F1 O. AP50 (%) I. AP50 (%) Params (M) FLOPs (G)

ResNet101
Baseline 85.09 ± 0.23 88.99 ± 0.14 86.99 ± 0.18 91.17 ± 0.21 58.15 ± 0.31 49.81 71.17

Proposed method 90.72 ± 0.24 91.93 ± 0.28 91.31 ± 0.25 95.93 ± 0.23 67.47 ± 0.28 52.72 63.43

ResNet50
Baseline 84.28 ± 0.13 88.82 ± 0.17 86.49 ± 0.18 90.83 ± 0.14 55.55 ± 0.20 30.82 51.70

Proposed method 90.84 ± 0.18 92.21 ± 0.21 91.52 ± 0.22 95.72 ± 0.19 66.87 ± 0.39 33.73 43.96

ResNet18
Baseline 83.25 ± 0.20 87.68 ± 0.17 85.40 ± 0.18 90.39 ± 0.38 51.22 ± 0.30 17.86 38.98

Proposed method 89.21 ± 0.14 90.76 ± 0.29 89.98 ± 0.20 94.83 ± 0.12 61.83 ± 0.54 21.12 31.60

5. Discussion

Based on the experimental results, our MT-FANet outperformed other networks in
terms of performance metrics while also achieving a better balance between network
detection accuracy and efficiency. Our network had the second-fewest parameters and
the fewest floating-point operations, yet it was able to achieve the best detection accuracy.
Although our MT-FANet achieved good results, as with other current networks, some
issues still need to be addressed. Our topology information extraction module used self-
attention for construction. Thus, its interpretability needs to be further strengthened. In
addition, for densely arranged small targets in SAR images, our model still had some
missed detection problems caused by the insufficient feature extraction of small targets.
Moreover, our model needs to improve its accuracy in predicting rotation angles, as even
minor angle differences can cause significant changes in target accuracy. These problems
are important issues that must be addressed in future research. Our research shows that
prior information, such as morphology and topology, play an essential role in our network
for SAR ship detection. Therefore, future research should focus on using prior knowledge
of ship targets to enrich the representations of their features.

6. Conclusions

In this article, we propose a novel method called MT-FANet for SAR ship target
detection using rotated bounding boxes. Due to the irregular shape of the ship target in
SAR images and the fact that the previous ship target detection methods often ignored the
inherent topological information of the ship target, the detection performance of the existing
methods is not satisfactory. The proposed method uses the morphology features and
inherent topological information of ship targets to guide feature extraction and fusion and
provides more accurate features for the network to describe the ship target. Specifically, this
method first uses ResNet50 as the backbone to extract the original image features, then uses
MT-FPN to enhance the morphological features of the ship target, and then deconstructs
the morphological features to extract the topological features. The final prediction head
(RAFH) completes the detection of ship targets based on the aforementioned morphological
and topological features, and uses parameter sharing and two-stage prediction strategies
to reduce network complexity and optimize performance. Extensive ablation experiments
were conducted to demonstrate the effectiveness of each improvement. The comparative
experimental results show that MT-FANet outperformed the other methods on the RSDD-
SAR dataset in terms of detection performance.
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