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Abstract: The categorization and identification of agricultural imagery constitute the fundamental
requisites of contemporary farming practices. Among the various methods employed for image
classification and recognition, the convolutional neural network (CNN) stands out as the most
extensively utilized and swiftly advancing machine learning technique. Its immense potential for
advancing precision agriculture cannot be understated. By comprehensively reviewing the progress
made in CNN applications throughout the entire crop growth cycle, this study aims to provide
an updated account of these endeavors spanning the years 2020 to 2023. During the seed stage,
classification networks are employed to effectively categorize and screen seeds. In the vegetative stage,
image classification and recognition play a prominent role, with a diverse range of CNN models being
applied, each with its own specific focus. In the reproductive stage, CNN’s application primarily
centers around target detection for mechanized harvesting purposes. As for the post-harvest stage,
CNN assumes a pivotal role in the screening and grading of harvested products. Ultimately, through
a comprehensive analysis of the prevailing research landscape, this study presents the characteristics
and trends of current investigations, while outlining the future developmental trajectory of CNN in
crop identification and classification.

Keywords: convolution neural network; crop classification; crop recognition; whole crop growth cycle

1. Introduction

The precise recognition and classification of crops form the bedrock of agricultural
intelligence and automation, benefiting from the advancements in image recognition and
machine learning technologies. Effective seed identification and classification play a pivotal
role in crop breeding endeavors. By accurately identifying the growth status of plants, one
can monitor the overall crop development and facilitate precise fertilization practices. Ad-
ditionally, the identification and enumeration of plants and fruits hold significant potential
for the application of automated harvesting systems, such as autonomous picking robots.

The process of image classification and recognition throughout the entirety of the
crop growth cycle presents certain challenges. Firstly, the same crop exhibits noticeable
morphological variations across different stages of growth. Furthermore, distinct crops
may exhibit similar visual characteristics during the seedling stage, such as cabbage and
cauliflower, cucumber, and pumpkin. Secondly, diverse production settings, including
fields, facilities, and orchards, present intricate backgrounds that often encompass elements
such as soil, stones, weeds, and various structures. Thirdly, the quality of the captured
images may be adversely affected by factors such as illumination, shooting angles, and
weather conditions. Lastly, in the context of large-scale cultivation, branches, leaves,
flowers, fruits, and canopies can intertwine and obstruct each other, posing challenges
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in accurately delineating the complete boundaries of plants, flowers, and fruits within
the images.

Conventional image-processing methods traditionally emphasize shallow image fea-
tures, including morphology, gray difference, and color [1]. However, these methods are
constrained by artificial features and fail to fully exploit the rich potential of image charac-
teristics. In contrast, the convolutional neural network (CNN) possesses the capability to
independently learn image features and uncover latent potential. By leveraging extensive
training data, CNN continually enhances its proficiency in extracting deep image features.
As a result of its remarkable recognition accuracy and robustness, CNN has emerged as the
dominant network in the realm of crop image classification and recognition. Within the
realm of agricultural image processing, the convolutional neural network (CNN) stands
as the prevailing framework among deep learning models. This can be attributed to its
remarkable capacity to rapidly and precisely extract highly discriminative representations
from diverse image features. However, it is important to acknowledge that CNN’s effective-
ness hinges upon the availability of ample datasets accompanied by annotated labels. This
necessitates an arduous process of collecting extensive datasets and undertaking manual
labeling efforts.

Existing scholarly investigations have primarily focused on two main areas within
the domain of crop phenotyping: the utilization of Multiscale-Deep-Learning [2,3] and
the advancements in agriculture IoT technologies [4]. Moreover, specific tasks such as
unmanned aerial vehicle (UAV) applications [5], crop yield measurement [6], and weed
identification [7] have been the subject of comprehensive analysis. Nevertheless, it is
crucial to recognize the interconnectedness of different stages throughout the crop growth
cycle. The research methodologies employed in one stage may hold valuable insights
and applicability to other stages. Thus, the objective of this study is to consolidate and
summarize the advancements made in the application of convolutional neural networks
(CNN) across the entire growth cycle of crops during the past three years. To ensure the
timeliness and relevance of our findings, a comprehensive search was conducted in the
Web of Science core library using pertinent keywords in January 2023. This yielded a total
of 1056 pertinent studies reported between 2020 and 2023. From this dataset, a meticulous
manual screening process was undertaken, resulting in the inclusion of 213 papers that met
the criteria for our study.

This study initially introduces the concept of the entire crop growth cycle, the basic
framework of CNN, and representative algorithms pertaining to different branches. Sub-
sequently, the progress of CNN application is analyzed and compared across the entire
crop growth cycle, while common issues and special cases encountered in CNN applica-
tion are also addressed. Furthermore, the application characteristics of CNN in various
image-processing tasks are thoroughly analyzed and compared. Lastly, the challenges and
prospects of CNN in crop identification and classification are assessed.

2. Whole Crop Growth Cycle and CNN
2.1. Whole Crop Growth Cycle

This study encompasses an examination of various types of crops, including grain,
cash, feed, and medicinal crops. The term “whole crop growth cycle” denotes the com-
prehensive progression from the initial sowing stage to the acquisition of new crop seeds.
Typically, this cycle is divided into three distinct stages based on their defining characteris-
tics. Additionally, due to the necessity of grading and the identification of commercialized
crop products in the postharvest stage, this particular stage has been incorporated into the
framework. The definition of each stage within the entire crop growth cycle is as follows:
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• Seed stage: This stage encompasses the period from the fertilization of maternal
egg cells to the germination of seeds. During this stage, crops undergo embryonic
development and seed dormancy.

• Vegetative stage: from seed germination to the differentiation of flower buds.
• Reproductive stage: Following a series of changes during the vegetative stage, crops

initiate the development of flower buds on the growth cone of their stems. Subse-
quently, the crops blossom, bear fruit, and eventually form seeds.

• Postharvest stage: This stage involves the harvesting of mature crop plants, seeds,
fruits, roots, and stems. Once harvested, these crops undergo screening and grading
to facilitate subsequent sale or seed production.

2.2. CNN and Its Development

The prototype of CNN traces its origins back to the LeNet-5 network model, initially
proposed by Le Cun et al. [8] in 1998. A conventional CNN architecture (Figure 1) com-
prises several layers, namely, input, convolution, activation, pooling, and fully connected
layers [9]. In this study, the CNN utilized represents a series of algorithm models developed
within this framework, based on these foundational principles.
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Figure 1. Basic Framework of CNN. The input layer reads images as input to the CNN network; the
convolution layer achieves feature enhancement; the activation layer performs nonlinear transfor-
mations on image features; the pooling layer performs down-sampling to sparse the feature map to
reduce computation; the full connection layer reduces feature information loss through re-fitting; the
output layer returns image categories.

The introduction of AlexNet [10] in 2012 signified the emergence of deep learning and
its subsequent advancements. Subsequently, algorithms such as GoogLeNet, VGG, ResNet,
and others, built upon the CNN framework, attained significant success in the ImageNet
visual recognition challenge. Consequently, CNN has evolved into the predominant net-
work framework within the realm of deep learning, especially in the field of computer
vision. Figure 2 depicts the progression of CNN development and the exploration of
representative algorithms. Based on their functionalities, CNN can be categorized into
three distinct groups:

• The Classification network solely determines the category to which the entire picture
belongs, without providing object positions or object count calculations.

• The Target-detection network precisely identifies the category and location of a spe-
cific object within the image. It can be categorized into one-stage and two-stage
algorithms, with the one-stage algorithm being faster and the two-stage algorithm
being more accurate.

• The Segmentation network classifies and segments all the pixels in the image at a
pixel level. It can be further categorized into semantic and instance segmentation.
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3. Progress of CNN Applications in Crop Growth Cycle

Crop image targets vary across different stages of growth, thereby necessitating distinct
tasks in CNN image processing. Figure 3 illustrates the image-processing tasks and research
focuses at various stages throughout the entire crop growth cycle.
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Figure 3. Image processing tasks and research objects of crops at different growth stages.

3.1. Seed Stage

Seeds, as the reproductive organs of crops, exhibit slight variations in shape, color,
and texture. The collection of crop seed images was conducted within a controlled indoor
environment. The image-acquisition systems predominantly utilized static setups, enabling
the capture of high-quality images with minimal noise against a consistent background.
Figure 4 showcases a typical image-acquisition device and sample pictures. The primary
components of this setup comprise a photographing unit (RGB/multispectral camera) for
image acquisition, a light source to provide optimal illumination conditions, a focusing
plate to display and secure samples, a darkroom to eliminate illumination noise, and a
computer equipped with software to facilitate the operation of the entire acquisition system.
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In this stage, CNN primarily finds applications in seed variety classification and
seed identification. Table 1 provides a comprehensive overview of the latest research
advancements in the seed stage.

3.1.1. Seed Variety Classification

The conventional approach to seed variety classification involves extracting phe-
notypic information from seed images to derive relevant features. These features are
subsequently utilized as input for seed classification. For instance, Koklu et al. [1] extracted
106 phenotypic features, encompassing morphology, shape, and color attributes, from rice
seed images. They then employed an artificial neural network (NN) and a deep neural
network (NN) for the classification of these seeds.

Due to their small size, dense arrangement, and subtle variations, seeds are particu-
larly suitable for classification networks. These networks have been applied or enhanced
to classify different crop varieties using visible or multispectral images (MSI) of seeds.
For instance, utilizing RGB images, researchers proposed the Lprtnr1, VGG, self-built
CNN, and ResNet models to classify hazelnut [11], chickpea [12], rice [13], and pepper [14]
seeds, achieving impressive accuracy rates of 98.63%, 94.0%, and 99.87%, respectively. The
combination of MSI and CNN is a common approach. Several studies [15–19] obtained
MSI of seeds and subsequently developed or improved classification networks for the
classification and recognition of barley, rice, soybean, pepper, ladies finger plant, and other
seed varieties. By utilizing both visible images and MSI, researchers can leverage comple-
mentary advantages, obtaining visual information and the spectral reflection characteristics
of the seeds, leading to improved seed variety classification. For example, Zhou et al. [20]
proposed a pixel spectral image reconstruction method based on CNN, employing visible
and near-infrared (NIR) images, achieving a recognition rate of 98.15% for corn seed vari-
eties. Furthermore, the classification network has been utilized for depth feature extraction
in traditional machine-learning classification models, resulting in enhanced classification
accuracy. Javanmardi et al. [21] demonstrated the superiority of CNN-based feature ex-
traction models over traditional approaches, showcasing the accurate classification of corn
seed varieties through the combination of the classification network and the artificial neural
network (NN). Similarly, Unlersen et al. [22] employed seven pre-trained CNN models to
extract depth features from wheat seed images, subsequently utilizing a support vector
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machine for classification, achieving a classification accuracy rate of 98.1%, surpassing that
of a single traditional machine-learning model.

3.1.2. Seed Screening and Identification

Damaged and unhealthy seeds can adversely impact crop growth and breeding pro-
cesses. To address this, researchers have employed self-built or enhanced classification
networks using RGB images or MSI of the same crop seeds to identify and screen dam-
aged or imperfect seeds. For instance, five different CNN models [23], an improved VGG
model [24], a self-built CNN [25], and an enhanced ResNet model [26] were utilized to
identify damaged and imperfect seeds of rice, corn, and wheat, respectively. The classifica-
tion network effectively screened seed phenotypes during breeding activities. Additionally,
Sabadin et al. [27] capitalized on the distinction between haploid and diploid maize seed im-
ages, employing an improved CNN model. This approach successfully identified haploid
seeds, providing valuable assistance in maize breeding efforts.

Table 1. Application progress of CNN in the seed stage.

Application
Direction

Crop
Varieties Literature Year Image Processing Task Network Framework Accuracy

seed variety
classification

rice [16] 2022 identification of rice seed varieties GoogLeNet, ResNet 86.08%
rice [1] 2021 rice variety classification VGG 16 99.87%
rice [13] 2021 rice seed type classification RiceNet 100.00%

maize [20] 2021 maize seed identification LeNet-5 98.15%
maize [21] 2021 corn seed classification CNN-ANN 98.1%
wheat [22] 2022 wheat varietal classification DenseNet201 98.10%
barley [15] 2021 barley seed variety identification CNN 98.00%

soybean [17] 2020 soybean seed variety identification 97.20%
chickpea [12] 2021 chickpea situ seed variety identification VGG16 94.00%
pepper [18] 2020 pepper seed variety discrimination 1D-CNN 92.60%
pepper [14] 2021 pepper seed classification ResNet 98.05%

hazelnut [11] 2021 variety classification in hazelnut Lprtnr1 98.63%
okra [19] 2021 hybrid okra seed identification CNN 97.68%

seed screening and
identification

rice [23] 2022 milled rice grain damage classification EfficientNet-B0 98.37%
maize [24] 2022 maize seed classification SeedViT 97.60%
maize [27] 2021 haploid maize seed identification CNN 97.07%
wheat [25] 2022 unsound wheat kernel discrimination CNN 96.67%
grain [26] 2022 bulk grain sample classification ResNet 98.70%

3.1.3. Brief Summary

• Dataset construction: MSI and hyperspectral images (HSI) offer richer seed pheno-
typic characteristics compared with visible images, thus finding widespread applica-
tion in CNN-based seed classification and identification. During the seed stage, the
image-acquisition process becomes relatively complex. Furthermore, acquiring image
samples is a time-consuming and labor-intensive task, leading most studies to rely on
self-built datasets.

• Model selection: The seed stage involves relatively simple image processing tasks,
with the CNN application primarily focusing on the classification network. Specifically,
efforts concentrate on improving conventional and self-built classification networks.
These models tend to be compact and highly efficient, with no inclusion of CNN object
detection or segmentation networks within the scope of the selected literature.

• Existing problems: The utilization of standardized indoor collection environments
and uniform image backgrounds result in a limited generalization ability for trained
CNN models. Consequently, much of the research remains in the experimental stage
and struggles to be effectively applied in real-world production scenarios. Moreover,
the scarcity of high-quality seed data samples poses challenges in implementing
large-scale and deep CNN models.
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• Further research: The untapped potential of multispectral and hyperspectral images
warrants further exploration, as they offer the ability to visualize the internal features
and components of seeds in a “non-destructive” manner. By integrating these imaging
techniques with breeding and genetic trait knowledge, CNN networks hold the
promise of providing fast, cost-expensive, and non-destructive detection tools for
breeding and seed production. This would significantly enhance the efficiency of
breeding efforts.

3.2. Vegetative Stage

In the vegetative stage, the focus of research revolves around leaves, plants, and
crop canopies as the primary image targets. Leaves serve as the central organ for crop
photosynthesis, and their phenotypic characteristics reveal variations among different crop
varieties. Plant and canopy images offer a wealth of phenotypic features that reflect crop
varieties, growth, and nutritional status. To obtain crop images in the vegetative stage,
various methods are employed. These images are typically collected from real production
environments such as fields, greenhouses, and orchards. However, the backgrounds of
these images tend to be complex and noisy, while lighting conditions, shooting angles, and
shooting distances can also impact the quality of the images. Table 2 summarizes the latest
research progress in the vegetative stage.

3.2.1. Crop Variety Classification

Crop variety classification and recognition using computer vision techniques is a
vibrant and active research field. The PlantCLEF plant recognition challenge has been
conducted consistently over several years, attracting research teams from around the world
to participate and compete. The primary objective of this challenge is to identify plants
on a large scale in real-world scenarios. In PlantCLEF 2017, a comprehensive collection of
200,000 images was presented, featuring 10,000 different species of herbs, trees, and other
plants. These images encompassed various perspectives and plant organs, including the
whole plant, fruits, leaves, flowers, stems, branches, and scanned leaves [28].

The classification networks are primarily employed for crop variety classification,
where whole pictures serve as the input and a self-built or enhanced classification network
is utilized to classify the crop variety. Leaves are widely utilized to differentiate between
different crop varieties. For instance, Nasiri et al. [29] and Liu et al. [30] employed VGG16
and GoogLeNet, to identify grape varieties based on leaf images captured in orchards.
Selvam et al. [31] achieved the accurate classification of okra varieties using okra leaf
images and a CNN, leveraging features such as leaf morphological characteristics and the
fingerprint function. Leaf venation structure and vein morphology are also considered
significant characteristics for plant variety identification. Grinblat et al. [32] collected leaf
images of three types of bean seedlings, extracted the “fingerprint” of soybean varieties
using leaf vein morphology images, and successfully identified white beans, red beans, and
soybeans. Vayssade et al. [33] employed a Mask-R-CNN segmentation network to segment
densely planted crop leaves.

3.2.2. Weeds Identification and Detection

Food loss due to weeds amounts to approximately 13.2% annually [9]. Therefore, the
accurate and rapid identification of weeds using machine vision enables accurate pesticide
application and reduces the dosage of pesticides [7].

Classification networks play a pivotal role in distinguishing weed varieties from
crops. Manikandakumar et al. [34] used two weed datasets to distinguish various weed
species. By assigning distinct categories to soybean, broad-leaved clover, and soil, a
deep residual CNN [35] was employed to classify weeds in soybean fields. Garibaldi-
Marquez [36] achieved a higher accuracy rate in classifying corn, narrow-leaf weeds, and
broadleaf weeds. By constructing a new network, VGG-Beet, Moazzam et al. [37] used
an airborne multispectral camera to detect weeds in beet fields and achieved a higher
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detection accuracy and a lower detection time. Similar studies have been conducted
by other researchers [38,39]. The feasibility of employing deep CNNs (DCNNs) for the
systematic detection of wheat broadleaf weed seedlings was systematically evaluated [40]
employing models such as AlexNet, DensNet, ResNet, and VGG.

The target-detection network primarily focuses on field weed detection, aiming to
identify and classify “non-crop” plants or regions within specific crop production environ-
ments. Based on the level of detection granularity, it can be categorized into weed plant and
weed area detection. Weed plant detection involves training the network using “close-up”
images of weeds and focuses on detecting, segmenting, and recognizing individual weed
plants. Gao et al. [41] developed a compact YOLOv3 model specifically for weed detection
in beet fields, achieving an accuracy rate of 82.9%. While weed detection models are typi-
cally tailored to specific crop production environments, Sapkota et al. [42] demonstrated
the potential for the “migration learning” of weed identification across different crop fields,
thus enhancing the universality of the weed detection model. They applied YOLOv4 and
Faster R-CNN weed detection models, originally trained in cotton fields, to weed detection
in soybean and corn fields. Weed area detection, on the other hand, involves capturing crop
canopy images using unmanned aerial vehicles (UAVs) or other equipment, followed by
the application of CNNs to identify areas with high weed density within production plots.
This provides valuable information for the precise operation of agricultural machinery,
such as spraying UAVs. With the use of low-altitude UAV images, an improved Faster
R-CNN was utilized to detect weeds in the middle and late stages of soybean fields [43],
and the generalizability of the model was found to be good. Hennessy et al. [44] proposed
YOLOv3-tiny for identifying two weeds in wild blueberry fields, while YOLOv3 was
effectively employed to detect weeds in alfalfa crops [45].

Segmentation networks play a crucial role in distinguishing crops and weeds from the
image background, facilitating the detection of weeds within crop fields. Nasiri et al. [46]
employed a U-Net architecture to achieve pixel-level semantic segmentation of beets, weeds,
and soil in field images. Su et al. [47] introduced a novel data enhancement method specif-
ically designed for semantic segmentation tasks. Their proposed method enhanced the
quality and diversity of the training data, leading to improved segmentation performance.

3.2.3. Classification of Crop Production Plots

The classification network is extensively utilized to differentiate and map various
crop plots using crop canopy images acquired from unmanned aerial vehicles (UAVs) and
remote-sensing satellites. Agilandeeswari et al. [48] classified different crop plots, including
corn, soybean, and lettuce, by measuring their reflectivity under visible light (Vis), NIR,
and short-wave IR (SWIR). Pandey et al. [49] proposed a novel architecture called the
conjugate dense network (CD-CNN), which employed RGB images captured by drones to
achieve the accurate classification of diverse crop fields, yielding an accuracy rate of 96.2%.
Additionally, a DCNN framework incorporating a conditional random field classifier was
proposed [50], establishing a UAV hyperspectral image (WHU-Hi) dataset for precise crop
plot classification. Similar studies have also been conducted by other researchers [51–56].

Segmentation networks are employed to segment and map production plots based
on crop canopy images. Jayakumari et al. [57] obtained the point cloud data of cabbage,
tomato, and eggplant through a high-resolution lidar and designed a DCNN model, Crop-
PointNet, to semantically segment crops from a 3D perspective. Ji et al. [58] proposed
a 3D FCN embedded with global pool and channel attention modules, which extracted
the spatiotemporal features of different crop types from multi-temporal high-resolution
satellite images. Wang et al. [59] utilized the China GF-2 remote-sensing satellite to acquire
winter wheat images, and developed the RefineNet-PCCCRF model, which accurately
extracted the large-scale spatial distribution of winter wheat.
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3.2.4. Crop Identification and Detection

The accurate identification, location, and detection of crop plants or plant organs
are crucial requirements for the operation of intelligent agricultural machinery and the
implementation of “machine replacement” in agriculture. During the vegetative stage, the
focus of crop identification and detection primarily revolves around individual plants.

Target-detection networks are employed to detect plant seedlings in the field.
Tseng et al. [60] utilized migration learning techniques with EfficientDet-D0 and Faster
R-CNN models to identify and detect the field rice seedlings photographed by a UAV. Ae-
berli et al. [61] leveraged multi-temporal UAV spectral images for the automatic detection
of crop plants. Liu et al. [62] achieved the fast and automatic counting of corn seedlings
using Faster R-CNN with RGB images obtained from drones. Furthermore, target-detection
networks have been applied to tree mapping in forest environments. Pearse et al. [63]
proposed a rapid and large-scale mapping approach for conifer seedlings using CNNs and
RGB orthogonal imaging, achieving an accuracy of 98.8%.

Additionally, target-detection networks can also be combined with segmentation
networks to facilitate instance segmentation based on the target location. Zhang et al. [64]
first extracted the sub-image of individual target leaves from the entire plant image using
Faster R-CNN and subsequently performed leaf segmentation. Wu et al. [65] collected
data from apple trees in orchards using a UAV, and with the assistance of a Faster R-CNN
detector and U-Net model, they successfully detected, counted, and segmented apple trees
while extracting crown parameters. The Faster R-CNN detector detected apple trees, while
the U-Net model performed segmentation on the detected trees.

3.2.5. Health and Growth Monitoring

Leaf images play a significant role in crop health diagnosis, particularly in the identi-
fication of crop diseases. The PlantVillagedataset is widely utilized for image diagnosis,
providing images of healthy leaves as well as leaves affected by various diseases across
35 different crop types, all against a black background. Building upon this dataset, the AI
Challenge 2018 image dataset was developed, featuring real-scene images of healthy and
diseased leaves from 28 crop types, which has also gained considerable usage.

Classification networks are employed for crop state diagnosis based on leaf images.
Crop growth can be monitored by classifying images of different crop growth stages.
Segmented mango leaves were used for the stress recognition of various mango leaves
based on a self-built CNN [66]. Similarly, A CNN model was utilized to classify medicinal
crop varieties and their maturity based on leaves [67]. Gang et al. [68] employed ResNet 50
to establish an estimation model for the growth indexes (fresh and dry weights, height, leaf
area, and diameter) of lettuce in a greenhouse. Another study utilized a GL-CNN model
to classify red phoenix vegetables based on leaf images during the growth period [69].
Tan et al. [70] achieved the automatic detection of rice seedlings at different varieties,
seedling densities, and sowing dates using EfficientnetB4, with an accuracy of 99.47%.

Target-detection networks can also contribute to crop health monitoring by assigning
different labels to distinct health conditions. Yarak et al. [71] combined high-resolution
images with faster R-CNN to automatically detect and classify oil palm trees and proposed
a new method for their management with an accuracy of 86.96%.

Segmentation networks enable the monitoring of crop growth stages by segmenting
crop canopies. For example, Tian et al. [72] monitored the growth status of corn and rice
using an updated CNN structure. Zhang et al. [73] employed a segmentation network
to separate lettuce plants from the background and estimated the canopy area of lettuce
according to the pixel area. By establishing the relationship between images and related
traits such as fresh and dry leaf weights and leaf areas, the growth stage of lettuce was
effectively monitored.
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Table 2. Application progress of CNN in the vegetative stage.

Application
Direction

Crop
Varieties Literature Year Image Processing Task Network Framework Accuracy

crop variety
classification

grape [30] * 2021 grapevine cultivar identification GoogLeNet 99.91%
grape [29] 2021 grapevine cultivar identification VGG16 99.00%

ladies finger
plant [31] 2020 ladies finger plant leaf classification CNN 96.00%

weeds
identification and

detection

weed [34] 2023 weed classification CNN 98.58%
weed [42] 2022 weed detection YOLOv4, Faster R-CNN 88%
weed [47] 2021 crop–weed classification 98.51%
weed [46] 2022 weed recognition U-NET 96.06%
weed [45] 2022 weeds growing detection 98%%
weed [39] 2020 weed and crop recognition GCN-ResNet-101 99.37%
weed [36] 2022 weed classification 97.00%
weed [40] 2021 broadleaf weed seedlings detection
weed [37] 2021 weeds detection VGG16
weed [43] 2020 weed detection Faster RCNN 85%
weed [44] 2021 weed identification YOLOv3-Tiny 97.00%
weed [38] 2020 mikania micrantha kunth identifying MmNet 94.50%
weed [35] 2022 weed detection in soybean crops DRCNN 97.30%

crop production
plots classification

vegetable [52] 2020 8 vegetables and 4 crops ARCNN 92.80%

blueberries [54] 2020 legacy blueberries recognition CNN composed of eight
layers 86.00%

crop [50] 2020 crop identification CNNCRF
crop [51] 2020 crop classification 2D-CNN 86.56%

wheat [59] 2020 winter wheat spatial distribution RefineNet-PCCCRF 94.51%
crop [49] 2022 crop identification and classification CD-CNN 96.20%
crop [48] 2022 crop classification 99.35%
crop [55] 2020 crop classification CNN-Transformer
crop [53] 2020 crop classification Conv1D-RF 94.27%
rice [56] 2020 rice-cropping classifying AlexNet 94.87%

vegetable [57] 2021 vegetable crops object-level classification CropPointNet 81.00%
crop [58] 2020 precise crop classification 3D FCN 86.50%

crop identification
and detection

tree [63] 2020 tree seedlings detecting Faster R-CNN 97.00%

rice [60] 2022 rice seedling detection EfficientDet, Faster
R-CNN 88.80%

banana [61] 2021 banana plants detection 93.00%
apple [65] 2020 apple tree crown extracting Faster R-CNN 97.10%
maize [62] 2022 maize seedling number estimating Faster R-CNN
potato [64] 2021 leaf detection Faster R-CNN 89.06%
flower [74] 2021 detection and location of potted flowers YOLO V4-Tiny 89.72%

health and growth
monitoring

medicinal
materials [67] 2021 medicinal leaf species and maturity

identification CNN 99.00%

lettuce [68] 2022 lettuce growth index estimation ResNet50
lettuce [73] 2020 growth monitoring of greenhouse lettuce CNN 91.56%

rice [70] 2022 rice seedling growth stage detection EfficientnetB4 99.47%
gynura
bicolor [69] 2020 gynura bicolor growth classification GL-CNN 95.63%

mango [66] 2022 mango leaf stress identification CNN 98.12%
oil Palm [71] 2021 oil palm tree detection Resnet-50 97.67%

maize, rice [72] 2022 corn and rice growth state recognition

* The research has been applied in real scenarios.

3.2.6. Brief Summary

• Dataset construction: In this stage, the collection of image data is diverse, with various
production scenarios, image targets, and collection devices. The majority of data
are collected from real-life scenes, and there is an abundance of publicly available
data resources.

• Model selection: The classification network is primarily utilized for crop variety clas-
sification, weed identification, production plot classification, and health monitoring.
The target-detection network is mainly employed for plant, organ, and weed detec-
tion, crop counting, and growth stage identification. The commonly used algorithms
include the YOLO series and Faster R-CNN. The segmentation network is primarily
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used for separating plants or organs from the background and is applied in growth
modeling. Semantic segmentation algorithms such as SegNet, Fully Convolutional
Network (FCN), U-Net, DeepLab, and Global Convolutional Network are commonly
used [37].

• Existing problems: Each dataset may vary in terms of collection perspective, hardware
platform, collection cycle, image type, and other aspects. This leads to the limited
adaptability of datasets across different tasks. The CNN-based target-detection net-
work can effectively detect weed areas and patches, but the model size and operational
efficiency can be limiting factors. Additionally, crop production land classification
based on remote sensing images may suffer from low image resolution and small
feature size, which can impact the accuracy of CNN classification and segmentation
networks.

• Further research: To enhance the generalization ability of models, multiple publicly
available image datasets can be used for training and improvement. Transfer learning
techniques can also be applied to leverage knowledge from one image processing task
to another. In the context of weed identification, the target-detection and segmentation
networks hold significant value. Instead of focusing on identifying specific weed
species, farmers are more interested in identifying whether a plant is a weed and its
location. In real-field operations, an “exclusion strategy” can be considered, where
green plants not identified as “target crops” are assumed to be “weeds”. Leveraging
the regular spatial attributes of mechanized planting, weeds (areas) can be accurately
identified and located with reduced computational requirements.

3.3. Reproductive Stage

The reproductive stage encompasses various image objects, such as leaves, plants,
canopies, flowers, and fruits. Flowers and fruits, being the reproductive organs of crops,
exhibit distinctive morphological and color characteristics, making them the primary focus
of target detection. Similar to the vegetative stage, the image-acquisition process in this
stage involves a complex environment, diverse methods, and variations in image quality.
Most of the pictures are in RGB/RGB-D format; HSI and MSI applications are rare.

This stage attracts mechanized picking, which requires fast and accurate image recog-
nition. In addition to conventional equipment, such as cameras, UAVs, and mobile phones,
various special image-acquisition devices have been developed to assist in mechanized har-
vesting (Figure 5). The acquisition devices generally include a photography unit (camera)
to collect images, a moving unit that includes driving motor and moving device, which
moves autonomously and collect images and videos continuously and efficiently, as well as
a computer with software to control the operation of the entire acquisition system. Table 3
summarizes the latest research progress in the reproductive stage.

3.3.1. Crop Variety Classification

In this stage, classification networks play a crucial role in categorizing crop varieties
based on fruits, flowers, and other organs [75–78]. Notably, improved versions of AlexNet,
GoogLeNet, and ResNet have been employed in grape variety recognition using grape
cluster fruit images [75]. Wang et al. [76] proposed a dynamic ensemble selection method
based on MobileNet, achieving an impressive accuracy of 95.5% in classifying five different
types of flowers.

3.3.2. Fruit and Flower Detection

Classification networks are employed for fruit detection in various applications.
Aquino et al. [79] successfully recognized fruits on olive trees by analyzing cut sub-images
to determine the presence of fruit targets.
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Target-detection networks play a vital role in fruit and crop detection, particularly in
the context of increasing demand for mechanized harvesting. The accurate identification
and detection of crops fruits or harvestable parts can improve the performance of picking
robots. Fu et al. [80] proposed a fast and accurate target-detection algorithm, YOLOv3-Tiny,
which automatically detected kiwifruit in the orchards and improved the applicability of
real-time detection. Similarly, a YOLOv3-Tiny litchi network model was proposed [81], ac-
curately identifying the distribution of fruits on litchi trees and providing a spatial map for
precise mechanical picking. Chen et al. [82] improved the YOLOv3 cherry tomato detection
algorithm, achieving efficient detection and recognition of small target tomato fruits with
an average processing time of 58 ms. Additionally, Faster R-CNN [83,84], MobileNetV2 [85],
ResNet [86], and SwinGD [87] have been utilized for apples, kiwifruit, tomato, and grape
detection, respectively. The accurate detection of crop flowers is helpful in accurate polli-
nation to improve the pollination rate. The accurate determination of spikelet flowering
time is vital for the timely pollination of hybrid rice seed production [88]. Liu et al. [89]
realized corn tassel detection based on UAV images and Fast R-CNN. Chandra et al. [90]
proposed a reliable spike detector for wheat and sorghum using Faster R-CNN. Mask
R-CNN was used to segment, identify, and count grape inflorescence samples [91]. The
real-time detection of apple flowers [92], outdoor strawberry flowers [93], and apple flower
buds [94] was achieved using YOLOv4 and Faster R-CNN, respectively.

Segmentation networks also play a crucial role in fruit detection. Gene-Mola et al. [95]
proposed an apple detection and 3D positioning method based on Mask R-CNN instance
segmentation networks and moving structure photogrammetry. By projecting a 2D seg-
mentation mask onto a 3D point cloud, the detection accuracy of apple fruits on trees
was improved by 9.5%. Xu et al. [96] utilized an improved Mask R-CNN model for in-
stance segmentation to accurately segment cherry tomatoes. The combination of the Otsu
binarization algorithm and CNN efficiently enabled the recognition of coffee flowers [97].
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3.3.3. Growth Stage and Maturity

Classification networks can also be utilized to detect crop growth stages and maturity
by assigning different category labels to fruits or flowers at various stages of growth and ma-
turity. A DCNN was employed to extract features, generate a feature transformation matrix,
reason target markers [98], and recognize cotton boll maturity states. Khosravi et al. [99]
successfully recognized the recognition of four mature stages of two olive varieties based on
RGB images and DCNN. Zheng et al. [100] proposed a strawberry appearance quality recog-
nition method called Swin-MLP, which combined the Swin Transformer and multilayer
perceptron to achieve accurate recognition.

Target-detection networks are employed to assign different “category labels” to differ-
ent growth stages of the same crop and to identify the growth stages of target individuals
in the image. Psiroukis et al. [101] effectively classified and detected the three maturity
levels of broccoli crops by constructing Faster R-CNN and CenterNet. In a hydroponic
greenhouse, a fast R-CNN was improved to monitor the maturity of tomato fruit [102];
Hsieh et al. [103] proposed a beef tomato fruit maturity and position recognition model
based on R-CNN and binocular imaging technology. Sweet pepper development stages
were detected by integrating CNN and MLP models [104].

Segmentation networks are also utilized to assess the state of flowers or fruits. An
improved Mask R-CNN algorithm, MASU R-CNN, was proposed to recognize and segment
apple blossoms in three states, achieving a high detection rate of 96.43% [105]. Efficient-
NetB0 was employed to detect the maturity of fresh oil palm fruit [106].

3.3.4. Biomass and Yield Measurement

Classification networks can be employed to estimate crop biomass and yield. Phe-
notypic characteristics such as above-ground biomass and leaf area during crop growth
are key indicators of crop growth status. Oliveira et al. [107] improved a classification
network based on UAV-RGB images, enabling the effective prediction of the dry matter
yield of pastures.

Target-detection networks play a crucial role in identifying and detecting harvestable
crops in images, thus enabling yield prediction through counting. Lu et al. [108] enhanced
the field prediction of the YOLOv3 of soybean yield based on pod and leaf images; the
soyabean leaves and pods were identified and counted, respectively. Similarly, Faster
R-CNN with Inception v2 was used to recognize and count three types of fruits [109].
The accurate monitoring of crop growth and development stages is of great significance
to fine crop management and the precise operation of agricultural machinery. Target-
detection networks are also utilized for the non-destructive detection of crop growth
stages. Kartal et al. [110] counted mung bean and chickpea plants using 3D laser scanning.
Wang et al. [111] detected anomalies in tomato plants through improvements to the YOLO-
Dense algorithm. Xu et al. [112] detected and counted corn plants by acquiring corn leaf
images using a UAV.

Segmentation networks are mainly utilized for biomass estimation based on plant
partition and yield estimation based on fruit partition. Safonova et al. [113] utilized
Mask R-CNN to segment olive crowns based on UAV-RGB images, and the accuracy in
estimating the individual volume of the crown reached 82%. Lin et al. [114] integrated
image segmentation with CNN models to develop a pipeline for sorghum ear detection
and counting.

The combination of target-detection and segmentation networks finds wide application
in target recognition for harvesting robots. Blok et al. [115] designed an image-acquisition
robot for broccoli. By acquiring RGB and depth images, the count of broccoli was realized
by Mask R-CNN. A fuzzy Mask R-CNN model was proposed to identify the maturity
of cherry tomatoes, with which detection and segmentation networks were used [116].
Furthermore, a vision detector model for harvesting robots based on Mask R-CNN was
proposed, achieving a high detection rate of 97.31% for overlapping apples [117].
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Table 3. Recent progress of CNN application in the reproductive stage.

Application
Direction

Crop
Varieties Literature Year Image Processing Task Network Framework Accuracy

crop variety
classification

grape [75] 2021 grape variety identification AlexNetGoogLeNet 96.90%
tree [76] 2021 pollen monitoring SimpleModel 97.88%

flower [77] 2022 flower classification MobileNet 95.50%
tree [78] 2021 tree species classification ResNet-18

fruit and flower
detection

kiwifruit [80] 2021 kiwifruit detection DY3TNet 90.05%
litchi [81] * 2022 litchi harvester YOLOv3-tiny litchi 87.43%

cherry [82] 2021 cherry tomatoes detection Yolov3-DPN 94.29%

apple [83] 2020 apple detection Faster R-CNN with
ZFNet and VGG16 89.30%

apple [84] 2020 apple detection Faster R-CNN with
VGG16 87.90%

kiwifruit [85] * 2020 kiwifruit detection MobileNetV2,
InceptionV3 90.80%

tomato [86] 2020 Immature tomatoes detection Resnet-101 87.83%
olive [79] 2020 olive fruit identification 98.22%
fruit [95] 2020 fruit detection 88.10%

grape [87] 2021 grape bunch detection SwinGD 91.50%
tomato [96] 2022 cherry tomato recognition Mask R-CNN 93.76%

chickpeas [110] 2021 plant detection and automate counting 93.18%
maize [89] 2020 maize tassel detection Faster R-CNN 94.99%
apple [92] 2020 apple flower detection YOLO v4 97.31%
coffee [97] 2020 coffee flower identification VGGNet 80.00%

strawberry [93] 2020 strawberry flower detection Faster R-CNN 86.10%
apple [94] 2022 apple flower bud classification YOLOv4

growth stage and
maturity detection

olive [113] 2021 olive tree biovolume Mask R-CNN 82%
guineagrass [107] 2021 estimate dry matter yield of guineagrass AlexNet, ResNeXt50

soybean [108] 2022 soybean yield prediction YOLO v3 90.30%
tomato [111] 2021 tomato anomalies YOLO-Dense 96.41%
tomato [116] 2020 tomato ripeness identification Fuzzy Mask R-CNN 98.00%
broccoli [115] * 2020 broccoli head detection Mask R-CNN 98.70%
sorghum
panicle [114] 2020 sorghum panicle detection and counting U-NET CNN 95.50%

apple [117] 2020 overlapped fruits detection and
segmentation mask R-CNN 97.31%

biomass and yield
measurement

tomato [102] 2021 tomato fruit monitoring Faster R-CNN 90.20%
olive [99] 2021 olive ripening recognition M2 + NewBN 91.91%

sweet pepper [104] 2021 sweet pepper development stage
prediction YOLO v5 77.00%

cotton [98] 2020 cotton boll status identification NCADA 86.40%

broccoli [101] 2022 broccoli maturity classification Faster R-CNN,
CenterNet 80.00%

tomato [103] 2021 tomato fruit location identification ResNet-101, Mask
R-CNN 95.00%

strawberry [100] 2022 strawberry appearance quality
identification Swin-MLP 98.45%

oil palm [106] * 2021 oil palm ripeness classification EfficientNetB0 89.30%
apple [105] 2020 apple flowers instance segmentation MASU R-CNN 96.43%

* The research has been applied in real scenarios.

3.3.5. Brief Summary

• Dataset construction: Similar to the vegetative stage, there is an abundance of image
resources available for fruit detection. Specifically, there are ample resources for
detecting fruits in images.

• Model selection: The focus of CNN applications in this stage is on CNN object
detection networks, with the Faster R-CNN and YOLO algorithms being popular
choices. These algorithms primarily enable the detection of fruits and flowers, and
also facilitate crop yield or maturity detection. Classification networks are mainly
utilized for classifying flowers and fruits. Segmentation networks are employed, for
instance in the segmentation of crop fruits, flowers, and plants, with the Mask R-CNN
framework being a popular choice.
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• Existing problems: While there are numerous image acquisition devices available,
the combination of multiple acquisition devices is not commonly practiced. The
reported accuracy of the existing research is mostly above 80%, but this is limited to
specific datasets. When trained models are deployed in real production scenarios,
their accuracy and speed often fall below the benchmark.

• Further research: In crop variety classification, exploring the use of organ images
other than leaves, flowers, and fruits for classification can be attempted. For large-
scale planting, using whole plant images for classification is recommended during
the seedling stage or when plants are independent. When plants are overlapping
or densely planted, it is recommended to classify crops using specific and distinct
organs such as flowers, ears, and fruits. Leveraging CNN object detection networks to
identify fruits at different maturity levels and integrating them into hardware devices
can enable precise mechanical picking in batches and stages. Instance segmentation
based on CNN classification networks can achieve the precise segmentation of fruit
contours, providing precise targeting for mechanical operations.

3.4. Postharvest Stage

In this stage, the image target is the crop harvest, which is separated from the plant.
Consequently, the images are typically collected in artificial environments such as labo-
ratories and warehouses with uniform backgrounds and low noise. Similar to the seed
stage, some static image-acquisition devices are commonly employed. However, there is a
difference in the postharvest stage, as it involves commercial agricultural products, and the
screening and grading of some harvests should be carried out in batches under dynamic
scenes to improve the efficiency of postharvest grading. A typical image-acquisition device
in the postharvest stage is shown in Figure 6.
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Table 4 lists the latest research progress in the postharvest stage.

3.4.1. Harvests Screening and Grading

Grading crop harvests based on their appearance is crucial for achieving high quality
and prices, which enhances the viability of a farm. Classification networks are utilized to
screen and classify crop harvests [118], providing a non-destructive and fast classification
method for agricultural products. Mahmood et al. [119] enhanced AlexNet and VGG16
to classify the maturity of jujube fruit by transfer learning. Momeny et al. [120] improved
CNN to detect and grade the appearance of cherry fruit and enhanced the accuracy of
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the algorithm. Iqbal et al. [121] automatically classified eight mango varieties based on
VGG16, ResNet152, and Inception v3. A new multi-view spatial network was developed to
address apple grading challenges [122]. A lightweight model, CarrotNet, based on machine
vision and DCNN was proposed to classify carrots [123]. Similar studies have also been
conducted [118,124–128].

Detection networks are employed to detect the special characteristics that impact
the quality and grading of harvests, such as sprouts, scars, and gaps. Wang et al. [129]
developed an automatic loading system for apple stem/calyx real-time recognition based on
YOLO-v5, and the recognition accuracy reached 94%. A Faster R-CNN based on ResNet50
was constructed to detect potato buds [130]. Khaki et al. [131] designed a detection and
counting algorithm using a sliding window to count grains on corn cobs.

Table 4. Application progress of CNN in the postharvest stage.

Application
Direction

Crop
Varieties Literature Year Image Processing Task Network Framework Accuracy

harvests screening
and grading

apple [122] 2022 apple quality grading Multi-View Spatial Network 99.23%
carrot [123] 2021 detecting defective carrots CarrotNet 97.04%
potato [127] 2021 potato detecting 97%
lemon [124] 2020 sour lemon classification 16–19 layer CNN 100%

nut [118] 2021 nuts quality estimation CNN 93.48%
cherry [120] 2020 cherry classification CNN 99.40%

ginseng [128] 2021 ginseng sprout quality prediction ResNet152 V2 80%

persimmon [126] 2022 persimmon fruit prediction VGG16, ResNet50,
InceptionsV3 85%

apple [125] 2021 apple quality identification CNN 95.33%
potato [130] 2020 potato bud detection Faster R-CNN 97.71%

mangoe [121] 2022 mangoes classification and grading InceptionV3 99.2%
apple [129] 2022 apple stem/calyx recognition YOLO-v5 94%

jujube fruit [119] 2022 jujube fruit classification AlexNet, VGG16 99.17%
corn [131] 2020 corn kernel detection and counting CNN

3.4.2. Brief Summary

• Dataset construction: The dataset construction in this stage is similar to the seed stage,
where efforts are made to collect and curate relevant image data.

• Model selection: The model selection in this stage is also similar to the seed stage.
The main image-processing tasks involve the screening and grading of harvested
crops, and most CNN applications focus on the utilization of classification and target-
detection networks. Additionally, the application of hyperspectral imaging (HSI) and
multispectral imaging (MSI) techniques is also observed in some studies [22,115].

• Existing problems: Similar to the seed stage, there are existing challenges and limita-
tions in this stage that need to be addressed.

• Further research: Future research endeavors can explore the application of multispec-
tral and hyperspectral images for batch agricultural product detection. By leveraging
these advanced imaging techniques, it becomes possible to achieve the early identifi-
cation of internal damage, diseases, and insect pests in agricultural products. This can
significantly contribute to improving the quality assurance and screening processes of
agricultural products.

4. Discussion
4.1. Self-Built Network

Self-built CNN classification networks with fewer layers have many applications,
particularly in crop classification based on spectral images, including MSI, HSI, and NIR.
Taner et al. [11] designed a novel CNN model, Lprtnr1, which consists of one input layer,
four convolution layers, one pooling layer, one full connection layer, and one output layer.
Khosravi et al. [99] constructed a new CNN for identifying the mature stage of olives
on branches, which consists of three groups of convolution blocks and GAP layers and
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two fully connected layers. Moazzam et al. [37] developed a new VGG-Beet network for
weed identification, which is a modified VGG16 model with 11 convolution layers. Several
studies are available on self-built CNN classification models [13,15,18,38,121,123,132]. The
possible reasons are as follows: the classification network with fewer layers has fewer
parameters and low computation, improving the operation efficiency of the model. This
is particularly beneficial for MSI and HSI images with rich spectral information, as even
simple models are challenging to over-fit.

4.2. Special Image Acquisition Device

Various image-acquisition devices have been developed for crop image classifica-
tion and recognition tasks. Alongside cameras and mobile phones, UAVs and remote-
sensing satellites are the most used image-acquisition devices. Multi-temporal UAVs
offer advantages such as low cost, high flexibility, abundant phenological information, and
real-time data acquisition, making them a crucial data source for agricultural
monitoring [42,43,52,77,101,107,113,133]. They are suitable for various open-air agricul-
tural production scenes, including fields, orchards, and forests. Currently, remote-sensing
satellites provide images with wide coverage, stable time sequences, and high spatial and
temporal resolutions, making them ideal for agricultural land mapping [56,58,59,134]. The
more commonly used satellites are the Sentinel-2 satellite of Europe and the GaoFeng (GF)
series satellite of China. Some special image-acquisition devices are also of significance.
For example, Sabanci et al. [14] used Epson flat scanner to capture images of pepper seeds
on a black background. Hennessy et al. [44] captured pollen images through a microscope
in the laboratory. Hsieh et al. [103] employed binocular imaging technology to collect
tomato fruit images from multiple angles and realized position recognition. The terres-
trial laser scanner can automatically, accurately, and efficiently obtain the 3D geographical
coordinates and stereo-image data of the research object. Jayakumari et al. [57] utilized a ter-
restrial laser scanner installed on a movable and height-adjustable tripod to obtain 3D point
cloud data and constructed the PointNet model to classify cabbage, tomato, and eggplant.
Tian et al. [72] integrated a laser rangefinder into a three-axis PTZ and dynamically scanned
the observation area to acquire the position point set of rice and corn. Serkan et al. [110]
scanned 3D images of mung bean and chickpea crops using a PlantEye laser scanner.

4.3. Special Objects

Most of the research in this field focuses on leaves, flowers, fruits, seeds, plants, and
canopies as the primary objects of study. However, there are also studies that involve
unique crop organs. For instance, bark [135] and pollen [78] were utilized to classify tree
species. Tillering number is an important agronomic trait that affects rice yields. Rice
harvest cross-section images have been employed to automatically detect rice tillering,
which is an important agronomic trait that affects rice yield [136]. The detection of some
unique objects can provide targets for mechanical operations, such as grape-picking robots,
apple automatic loading systems, and farming agricultural machinery. Targets such as
grape stems [137], apple stems [129], and rice seedling rows [138] have been successfully
detected. While most studies focus on a single target object, using multiple target objects
can lead to more generalized crop classification and recognition. For example, a soybean
yield prediction method was proposed by simultaneously counting soybean pods and
leaves [108]. Wheat plant and seed images were both used to realize variety classifica-
tion [139]. Multi-target detection enables more accurate operation targets for picking robots.
Tomato fruit strings and stems were simultaneously segmented to provide targeting for
machine picking [96]. The multi-class target detection of apple trunk and fruit was used
to predict the vibration position of the self-shaking apple harvesting robot [140]. Simi-
larly, there have been studies that simultaneously detect the fruit and branches of citrus
plants [141].
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4.4. Multimodal Data

The most prevalent image pattern currently used is the 2D RGB image. Compared
with RGB images, MSI provides richer images and spectral information. Table 5 lists some
publicly available image datasets. In addition to a single image type, there is a growing
trend towards the fusion of multi-modal data. For instance, [83,96,140] detected and located
tomatoes and apples, respectively, by fusing RGB and depth images. Gene-Mola et al. [95]
realized apple detection and 3D positioning by projecting a 2D partition mask onto a
3D point cloud. [68,73] segmented canopies and estimated the growth index of lettuce,
respectively, through RGB and depth image fusion. Agilandeeswari et al. [48] classified
crop plots by fusing and measuring Vis, NIR, and SWIR wavelengths.

Table 5. Partially available public image datasets.

Datasets Name Data Volume Obtain Address

global wheat detection 4700 https://www.kaggle.com/c/global-wheat-detection/data (accessed on
12 January 2023)

flower recognition dataset 4242 https://www.kaggle.com/datasets/alxmamaev/flowers-recognition
(accessed on 19 December 2022)

pest and disease library 17,624 http://www.icgroupcas.cn/website_bchtk/index.html (accessed on
5 January 2023)

AI Challenger 2018 50,000 https://aistudio.baidu.com/aistudio/datasetdetail/76075 (accessed on
16 January 2023)

plant village 54,303 https://data.mendeley.com/datasets/tywbtsjrjv/1 (accessed on
5 January 2023)

lettuce growth images 388 https://doi.org/10.4121/15023088.v1 (accessed on 25 January 2023)

ABCPollen dataset 1274 http://kzmi.up.lublin.pl/~ekubera/ABCPollen.zip (accessed on
19 December 2022)

WGISD (grape) 300 https://github.com/thsant/wgisd (accessed on 22 January 2023)

hyperspectral remote sensing scenes http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes (accessed on 15 January 2023)

weed dataset http://agritech.tnau.ac.in/agriculture/agri_weedmgt_fieldcrops.html
(accessed on 19 December 2022)

ICAR-DWR database (weed) http://weedid.dwr.org.in/ (accessed on 19 December 2022)
CWD30 dataset (weed) 219,770 https://arxiv.org/abs/2305.10084 (accessed on 17 May 2023)

4.5. Cross Stage

Several research explorations have utilized multi-time sequence images to investigate
the cross-growth stages of crops. Abdalla et al. [142] successfully combined convolutional
neural networks (CNN) with long short-term memory (LSTM) in the classification of rape-
seed nutritional status. Their model exhibited good generalization performance across
different datasets. In a study by Trevisan et al. [133], a UAV was employed to capture
soybean growth images over three growing seasons. By constructing a CNN, they achieved
high-throughput phenotypic analysis of soybean maturity. Another noteworthy research
contribution was the establishment of a CNN-based model for male rapeseed plant recogni-
tion, enabling the segmentation of male rapeseed plants from complex backgrounds [143].
Gao et al. [139] proposed CMPNet, a wheat classification model based on ResNet and
SENet. By incorporating images from the tillering stage, flowering stage, and seed stage,
they significantly improved the classification accuracy of wheat varieties. Furthermore,
a corn yield estimation model based on spectral and color images was introduced [144].
Additionally, a highly efficient deep convolutional neural network (DCNN) structure was
proposed for detecting the development stage of rice using handheld cameras [145]. The
proposed model achieved a detection accuracy of 91.3% by utilizing multiple views.

4.6. Application Deployment

Despite the majority of studies still being in the experimental phase, there is an en-
couraging increase in research with practical applications, yielding tangible value. For
instance, Blok et al. [115] set up a cauliflower image-acquisition robot, which automatically
detects and identifies broccoli heads and picks them by walking in the fields. Through
cost accounting, picking robots have considerable economic benefits over manual picking.

https://www.kaggle.com/c/global-wheat-detection/data
https://www.kaggle.com/datasets/alxmamaev/flowers-recognition
http://www.icgroupcas.cn/website_bchtk/index.html
https://aistudio.baidu.com/aistudio/datasetdetail/76075
https://data.mendeley.com/datasets/tywbtsjrjv/1
https://doi.org/10.4121/15023088.v1
http://kzmi.up.lublin.pl/~ekubera/ABCPollen.zip
https://github.com/thsant/wgisd
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://agritech.tnau.ac.in/agriculture/agri_weedmgt_fieldcrops.html
http://weedid.dwr.org.in/
https://arxiv.org/abs/2305.10084
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Massah et al. [146] designed and developed a crawler kiwifruit yield estimation robot uti-
lizing machine vision technology. Li et al. [81] conducted field experiments with a column
comb-type litchi harvesting robot. Furthermore, numerous mobile applications have been
developed for various purposes, such as palm oil fruit maturity classification [106], grape
variety classification [30], automated rice tiller detection [136], and kiwifruit detection [85],
to name a few. These practical applications highlight the significant progress in the field.

5. Research Prospect

To enhance the practical application of these research findings, it is crucial to transition
from experimental studies to real-world agricultural production scenarios. This entails
developing corresponding software by integrating improved and trained models to serve
agricultural operations in practical settings. One of the reasons for the gap between
experiments and application lies in the complexity of agricultural production environments,
which often differ from the idealized conditions under which sample images are collected.
To address this, efforts should be made to improve the collection of sample images in real
operation scenes.

In terms of algorithmic applications, it is important to diversify the choice of algorithms
in crop classification and recognition. While studies in recent years have predominantly
focused on algorithms such as VGG, AlexNet, and ResNet in classification networks, YOLO
series, Fast R-CNN, and Mask R-CNN in target-detection networks, and instance segmen-
tation algorithms based on Mask R-CNN in segmentation networks, there is potential for
exploring other deep learning models such as RNN and LSTM. Leveraging the advantages
of RNN and LSTM in processing time-series data, the combination of multi-time-series
images and CNN can enable the classification, recognition, and prediction of crop phe-
notypes in the temporal dimension. LSTM, in particular, will play a significant role in
time-series analysis in precision agriculture [52,122]. Additionally, considering a CNN as
the pre-feature extraction module of the traditional machine-learning model can prove to
be a promising approach.

The performance of CNN models is heavily influenced by the number of sample
images, and thus it is essential to increase the quantity of available samples. For complex
agricultural scenes, achieving acceptable target-detection results often requires at least 3000
to 4000 marked samples per class [97]. However, among more than 200 related studies
conducted between 2020 and 2023, the number of image samples exceeded 20,000 in less
than 10% of the cases. Data augmentation techniques can help mitigate overfitting, improve
model robustness, and compensate for the limited original data by generating additional
training samples. Countermeasure networks can also be employed to address the challenge
of insufficient sample sizes, allowing for the manual synthesis of more samples based on
existing ones [105,147]. In addition, large-scale, diverse, holistic, and hierarchical datasets
would facilitate the development of more accurate, robust, and generalizable deep learning
models [148].

Furthermore, the combined application of 3D crop models and multi-modal data can
provide more comprehensive information on crop growth. By constructing 3D models of
crops and incorporating environmental parameters (such as temperature, humidity, and
light intensity), as well as physiological parameters (such as water content, photosynthetic
efficiency, and chlorophyll content), a multi-modal crop model based on CNN can facilitate
more in-depth and comprehensive research on crop phenotypes. This integrated approach
enables a more accurate description of crop growth dynamics.

6. Conclusions

Convolutional Neural Networks (CNNs) have emerged as the dominant framework
within deep learning models for agricultural image processing, playing a crucial role in
advancing precision agriculture. This comprehensive study presents a systematic overview
of CNN applications across four stages of the whole crop growth cycle: the seed stage,
vegetative stage, reproductive stage, and postharvest stage. By reviewing and comparing
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current research, this article offers insights into the progress made in CNN-based image
processing tasks, research objectives, algorithm selection, and image acquisition equipment.
Furthermore, it explores future directions for the development of CNN applications in
agriculture. This study also highlights common challenges and unique applications within
this field, providing valuable references for future research endeavors in this domain.
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