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Abstract: In this work, a novel object-level building-matching method using cross-dimensional
data, including 2D images and 3D point clouds, is proposed. The core of this method is a newly
proposed plug-and-play Joint Descriptor Extraction Module (JDEM) that is used to extract descriptors
containing buildings’ three-dimensional shape information from object-level remote sensing data
of different dimensions for matching. The descriptor is named Signed Distance Descriptor (SDD).
Due to differences in the inherent properties of different dimensional data, it is challenging to match
buildings’ 2D images and 3D point clouds on the object level. In addition, features extracted from the
same building in images taken at different angles are usually not exactly identical, which will also
affect the accuracy of cross-dimensional matching. Therefore, the question of how to extract accurate,
effective, and robust joint descriptors is key to cross-dimensional matching. Our JDEM maps different
dimensions of data to the same 3D descriptor SDD space through the 3D geometric invariance of
buildings. In addition, Multi-View Adaptive Loss (MAL), proposed in this paper, aims to improve the
adaptability of the image encoder module to images with different angles and enhance the robustness
of the joint descriptors. Moreover, a cross-dimensional object-level data set was created to verify the
effectiveness of our method. The data set contains multi-angle optical images, point clouds, and the
corresponding 3D models of more than 400 buildings. A large number of experimental results show
that our object-level cross-dimensional matching method achieves state-of-the-art outcomes.

Keywords: cross-dimensional remote sensing data; object-level matching; 2D optical image;
3D point cloud

1. Introduction

Building matching (BM) is the task of determining the corresponding data of buildings
in query data from a database with given geographic labels and other information, which
can be applied to the real-time positioning of unmanned aerial vehicles (UAV) [1–3], visual
pose estimation [4–6], and 3D reconstruction [7] in remote sensing. The most common data
type used for BM is images. Image-based retrieval methods for BM (e.g., [8–11]) attempt
to identify similar database images that depict the same landmarks as the query image.
Typically, the retrieved images are ranked according to a given similarity metric (e.g., the L1
norm distance between Bag-of-Words vectors [12], L2 norm distance between the compact
representation and vector [13,14]) to obtain the BM result. In localization tasks, the position
of the best-matching database image is usually treated as the position of the query image, or
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the positions of the top N images are fused to obtain the position of the query image [15–17].
With the rapid development of deep learning, various end-to-end deep methods have been
studied, significantly improving the accuracy of BM.

Although the above methods have led to achievements, it is well-understood that their
BM accuracy is largely dependent on the quality and quantity of images in the database.
Specifically, if the images of the corresponding area in the database have significant differ-
ences from the matching image in terms of shooting angles and lighting conditions, accurate
BM cannot be achieved in the given area. The images in the database are downloaded in
bulk from the network. On the one hand, the number of images of tourist attractions or
landmarks in the network is much higher than that of ordinary buildings, which leads
to a highly uneven distribution of BM accuracy. When the building image to be matched
appears infrequently in the network, it is not easy to obtain accurate matching results. On
the other hand, for large-scale maps [18], this method requires a large number of images in
the database as a support, which requires high computing power and storage resources.
When the target carrier of the localization task is an unmanned aerial vehicle that has lost
network control signals, it will be difficult to complete BM without the support of ground
data resources and computing resources. Compared with two-dimensional image data,
three-dimensional point cloud data composed of coordinates do not have the problem of
the shooting angle and light conditions and do not require the storage a large amount of
image data in the database. Therefore, compared with the image-matching positioning
method, the image-point-cloud-matching method requires less computing power and stor-
age resources at the terminal. Secondly, the image-point-cloud-matching method is not
affected by the quality and quantity of images in the database, reducing the possibility of
erroneous matching caused by the problem of data imbalance in the database. Therefore,
in order to overcome the serious dependence of the localization task on the image database
and reduce the demand for computing and storage resources for BM-based localization
tasks, the pixel-level cross-dimensional matching method for 2D optical images and 3D
point clouds provides a promising strategy, as shown in Figure 1a.

The current cross-dimensional data pixel-level matching methods can be divided into
three categories. The typical process of the first category is to first recover the 3D structure of
the scene [19,20], usually reconstructed from images taken at equal intervals using motion
structure (SfM) [21,22] and multi-view systems (MVS) [23] as the input. Each 3D point is
triangulated using multiple 2D local features (such as SIFT [24]) and associated with the
corresponding image descriptor. Then, the pixel-level cross-dimensional correspondence
between the local feature descriptor in the query image and the 3D point descriptor is
found [15]. These pixel-level descriptors are homogeneous, because the points inherit the
descriptors of the corresponding pixels in the reconstructed 3D scene [25]. The second
category of methods identifies associations between different-dimensional data by mapping
descriptors from different domains to a shared latent space. However, they only construct
block-by-block descriptors, which typically lead to coarse-grained matching results. Instead,
3DTNet [26] takes 2D and 3D local patches as the input and extracts 2D features from 2D
patches using unique 3D descriptors that help it to learn 3D patches. However, 3DTNet
is only used for 3D matching. The network uses 2D features as auxiliary information
to render 3D features more discriminative. Recently, learning descriptors that allow for
direct matching and retrieval between 2D and 3D local patches have been proposed with
2D3DMatch-Net [27] and LCD [28]. Other research has established a connection between
2D and 3D features for specific applications, such as object pose estimation. Additionally,
some methods achieve cross-dimensional matching through registration, such as that
described in [29], by converting registration problems into classification and inverse camera
projection optimization problems using relative rigid transformation for cross-dimensional
matching. The authors of [30] proposed a method that uses a two-stage approach to align
two inputs of data in a virtual reference coordinate system (virtual alignment) and then
compare and align the data to complete the matching. However, even if accurate descriptors
can be extracted from 2D images and 3D point clouds, the above two categories of methods
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still cannot establish accurate pixel-level cross-dimensional matching relationships. There
are two reasons for this phenomenon. Firstly, due to the sparsity of point clouds, local point
descriptors can be mapped to many pixel descriptors in 2D images, increasing matching
ambiguity. To address this problem, Liu et al. [30] proposed a large-scale camera positioning
method based on 2D–3D data matching, adding a disambiguation module that uses global
contextual information to solve the problem of matching ambiguity. Secondly, as 2D images
are usually a 2D mapping of the appearance of the scene [31], while 3D point clouds encode
the structure of the scene, there are significant differences between the attributes of 2D
images and 3D point clouds, and the descriptor loss functions of existing 2D or 3D local
feature descriptions [32–34] cannot achieve accurate convergence in cross-dimensional
matching tasks. Therefore, it is important to perform object-level cross-dimensional data
matching for more effective solutions to the above problems.
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Figure 1. Comparative diagram of pixel-level cross-dimensional matching and object-level cross-
dimensional matching. Pixel-level cross-dimensional matching takes pixels in the image and points
in the point cloud as the core for matching, while object-level cross-dimensional matching takes the
building objects in the image and the building objects in the point cloud as the core for matching.

In the task of matching building images and point clouds, object-level cross-dimensional
data-matching methods match the building objects in the images and the point clouds as
the core, as shown in Figure 1b. Compared with pixel-level matching methods, object-level
matching methods extract joint descriptors from the data containing global information of
the targets and map them to the descriptor space for matching. The global feature extrac-
tion method, which focuses on the overall target effectively, alleviates the problem of fuzzy
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matching caused by the sparsity of point clouds, and the descriptor space solves the problem
of attribute differences in cross-dimensional data, reducing the dependence of traditional
image-based positioning methods on large amounts of image data. This concept provides
new ideas for various fields, such as the precise self-positioning of drones in the state of
control signal loss, urban management, smart city construction, high-quality building shape
reconstruction, and so on. The core of this method lies in the choice of the descriptor space.
By choosing a better descriptor space, one can obtain more accurate cross-dimensional
matching results. The authors of [35] proposed a joint global embedding method for 3D
shapes and images to solve retrieval tasks. By directly binding handcrafted 3D descriptors to
learned image descriptors, cross-dimensional descriptors for object-level retrieval tasks were
generated. The authors of [36] proposed a deep-learning-based cross-dimensional object-
level descriptor space occupancy probability descriptor (SOPD) which uses the occupancy
probability of each unit space of the object as the cross-dimensional descriptor.

In this study, we designed a plug-and-play Joint Descriptor Extraction Module (JDEM)
to extract our proposed new joint descriptors, called Symbolic Distance Descriptors (SDD).
The SDD utilize the 3D geometric invariance of building objects, using features that contain
their 3D structural information as descriptors. This not only overcomes the inherent
differences in attributes between 2D and 3D data but also reduces the fuzzy matching
caused by the similarity between pixel-level descriptors. In addition, we propose Multi-
View Adaptive Loss (MAL) to improve the adaptability of the image encoder module to
images taken from different angles and to enhance the robustness of the joint descriptors.
To achieve cross-dimensional BM, a corresponding database is required. Although Yan
et al. [36] proposed a 2D–3D object-level building-matching data set, only its 3D point
clouds were obtained from the real world. We constructed a fully real-world 2D–3D cross-
dimensional object-level building-matching data set called 2D-3D-CDOBM. The data set
contains multi-angle optical images, point clouds, and the corresponding 3D models for
over 400 buildings. We conducted extensive experiments on our data set to verify that our
proposed descriptors can accurately perform cross-dimensional object-level matching tasks.

The important contributions of this paper are as follows:

• A novel cross-dimensional object-level BM method based on the SDD is proposed.
The method compensates for the modal differences between 2D optical images and
3D point clouds in object-level building data.

• A plug-and-play JDEM is proposed. JDEM utilizes the three-dimensional geometric
invariance of objects in the real physical world to obtain the same domain features by
mapping the different dimensional data of objects to a three-dimensional space.

• MAL is proposed to reduce the distance of descriptors extracted from images of the
same object from different angles in the SDD space. The loss function improves the
adaptability of the image encoder module to images from different angles.

• A cross-dimensional object-level building-matching data set composed of real data,
named 2D-3D-CDOBM, is proposed to verify the effectiveness of our method. It
includes optical images of buildings taken from different angles, LiDAR point clouds
of buildings scanned in different years, and hundreds of corresponding 3D models of
buildings. This data set is available to download at “https://github.com/HEU-super-
generalized-remote-sensing/Cross-dimensional-Object-level-Matching-Data-Set.git
(accessed on 4 June 2023)”.

2. Materials and Methods

This section describes the details of the proposed descriptor, SDD (Section 2.1), the
algorithm structure of the proposed cross-dimensional matching method (Section 2.2), the
used loss function (Section 2.3), the proposed data used for the training, verification, and
testing of the algorithm (Section 2.4), evaluation metrics (Section 2.5), and the training
platform and parameter settings (Section 2.6).

https://github.com/HEU-super-generalized-remote-sensing/Cross-dimensional-Object-level-Matching-Data-Set.git
https://github.com/HEU-super-generalized-remote-sensing/Cross-dimensional-Object-level-Matching-Data-Set.git
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2.1. SDD

Under ideal conditions, the imaging mechanism of 2D images can be simplified to a
pinhole imaging model in which the captured object is projected onto the photosensitive
element through the pinhole. Therefore, the images can be regarded as the projection
of the 3D world scene to the 2D space. The image data format is h × v, where h is
the number of horizontal pixels, and v is the number of vertical pixels. However, in
the projection process, the loss of information is likely to occur due to the positional
relationship, such as the incomplete structure of the occluded object in the image caused by
the occlusion relationship.

While 3D point clouds are usually obtained via LiDAR scanning, by emitting a laser
beam towards an object, LiDAR receives the laser radiation reflected by the scene and
produces a continuous analog signal. At last, LiDAR restores this to a point cloud of the
object scene [37,38]. The data form of the point cloud is shown in (1):

pi = (x, y, z)
P = {p1, p2, p3, p4, · · · } (1)

where x, y, and z are the relative position coordinates of the points pi in the point cloud in
the world’s physical coordinate system. LiDAR is an active sensor, and the number of point
clouds generated by it is positively correlated with the LiDAR scanning time. The point
density at the top of the building is higher than that on the sides of the building. Therefore,
the matching of the 2D images and the 3D point clouds requires effort.

However, neither 2D images nor 3D point clouds are naturally generated. They are
both derived from the 3D physical world via mapping or projection through corresponding
sensors. Although the data formats are different, both are embodiments of the 3D physical
world object containing the corresponding 3D information, that is, the 3D geometric
invariance. According to this characteristic, by extracting 3D geometric descriptors from 2D
images and 3D point clouds, one can repair their missing information and map descriptors
extracted from different dimensional data to the same descriptor space. Therefore, the key
to the cross-dimensional matching method is descriptor extraction.

Our method uses the SDD as a cross-domain descriptor extracted from different
dimensional data. The SDD is a descriptor obtained via sampling of the Symbol Distance
Feature (SDF) [39] at the threshold τ. SDF is a three-dimensional feature that describes the
distance from any point in the normalized metric space to the model boundary, as shown
in Figure 2b. If the sampling point is within the boundary, its SDF feature for the current
sampling point is set to negative. Conversely, if the point is outside the boundary, its SDF
feature is set to positive. The farther the sampling point is from the boundary, the greater
the modulus of SDF will be. Since SDF is a description of distance, the threshold τ is usually
set to zero.

Similar to the SDD, [36] the Spatial Occupancy Probability Feature (SOPF) is used
to describe the three-dimensional structure of the building, that is, the probability of the
current sampling point being inside the model. Therefore, the SOPF of the sampling points
outside the model surface is set to 0, and that inside is set to 1 (100%), as shown in Figure 2c.
Similarly, the SOPD also uses the threshold τ1 to sample the SOPF, and the threshold τ1 is
usually set to 0.5 (50%). Compared with classification problems, deep learning networks
have a better adaptability to regression problems. Therefore, compared with the SOPD,
the network has a more significant learning ability and better learning effect for the SDD,
which is also reflected in the experimental section (Section 3).
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Figure 2. The diagram of the SDF and SOPF. The red line in (b,c) represents the boundary of the
building in (a), green represents the interior of the boundary, while blue represents the exterior
of the boundary, and the darker the color in different positions, the larger the descriptor value in
that position.

2.2. Cross-Dimensional Matching Method

There are many mature image feature extraction methods, such as VGG [40] and
ResNet [41], and many mature point cloud feature extraction methods, such as PointNet [42]
and PointNet++ [43]. In deep learning, the above encoder completes the front-end feature
extraction function. The mapping relationship between the data and feature vectors of
different modes is established. At this time, the formal unification task for different modal
data features is completed. However, although these features contain information on
different modal data, they cannot fully reflect the three-dimensional geometric invariance
of the object. Therefore, we propose a plug-and-play JDEM module which can extract the
SDD for cross-modal data matching after inserting the JDEM module. The classification
results can be obtained through a linear layer after extracting the SDD.

A diagram of the structure of the cross-dimensional data matching method is shown
in Figure 3. Overall, our cross-dimensional matching method consists of two parts: the
front-end traditional feature encoders and JDEM. The feature vector extracted by the front-
end encoder and the random sampling point P are used as the input for the JDEM, and
the SDD feature value satisfying the threshold requirement in the random sampling point
P is used as an output to realize the mapping from a one-dimensional feature vector to
a three-dimensional space descriptor. In the training process, it is necessary to input the
sampling point P randomly. On the one hand, this can reduce the demand for memory; on
the other hand, it can improve the network’s generalization ability. In the training iteration
process, the sampling point P is obtained by sampling the normalized coordinate points
corresponding to the ground truth of the building SDF. The method compares the SDD
value corresponding to the sampling point P obtained through the network’s prediction
with the ground truth and calculates the loss function to guide the network’s training. It
is worth noting that the SDD is a three-dimensional descriptor that can be visualized to
facilitate the observation of the network training process and results.

Specifically, in order to verify the optimal encoder combination for our cross-dimensional
matching method, we used the ResNet and PointNet series as the front-end image and point
cloud encoder, respectively. ResNet18/34/50/101/152 refers to different network depths.
The difference between PointNet and PointNet-k is whether or not the Knn module is added.
After adding the Knn module, the point cloud will be searched for the nearest k points in each
point space before entering the encoder. Then, these k + 1 points are merged and input into
the encoder to improve the regional generalization of the encoder. Inspired by OccNet [44],
we designed several different JDEM modules. The whole encoder combination is shown in
Table 1, and the structures of the different JDEM modules are shown in Figure 4.
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Table 1. Various encoder combinations.

Image Encoder Point Cloud Encoder

Part A Part B Part A Part B

ResNet18 JDEM-CBN-RES PointNet JDEM-CBN-RES
ResNet34 JDEM-CBN-None PointNet-k JDEM-CBN-None
ResNet50 JDEM-BN-RES JDEM-BN-RES
ResNet101 JDEM-None-RES JDEM-None-RES
ResNet152

Joint Descriptor Extraction Module (JDEM).

2.3. Loss Function

The fusion of multiple loss functions is used to calculate our loss function. The overall
objective function L is a multi-task objective function divided into multistage weight loss
and MAL. Multistage weight loss was proposed by the authors of [45].

2.3.1. Multistage Weight Loss

Multistage weight loss is a function that calculates the difference between the SDD
extracted from the image or point cloud and the ground truth. Ground truth is the SDF
obtained by calculating the distance between the point and the model boundary in which
the point is sampled from the unit space, and the model is the normalized 3D model of
the buildings.

Compared with the typical method for calculating feature loss, which treats each
position in the metric space uniformly, as for the L1 norm showed in (2), multistage weight
loss focuses more on the selection of the boundary points on the model surface and gives
greater attention to the points near the model surface. In contrast, the points far from
the model surface are appropriately ignored, as shown in (3). In this way, the network’s
learning ability for building structures can be enhanced, and the SDD extraction effect can
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be optimized. At the same time, although points far away from the model’s surface receive
less attention than others, they are less challenging to learn; thus, there is no negative
impact on the results.
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L(Fβ(I), GT) =
N

∑
n=1

∣∣Fβ(In)− GTn
∣∣ (2)

where In is the image, Fβ is the SDF feature extraction network, GT is ground truth, N is the
number of images.

L(Fβ(I), GT) =
1
B

B

∑
b=1

N

∑
n=1

w(GTnb)×
∣∣Fβ(In)− GTn

∣∣
b (3)

where In is the image; Fβ is the SDF feature extraction network; GT is ground truth; N is the
number of images; B is the number of sampling points; w(GTnb) is the weight corresponding
to the current sampling point, determined by GTnb; and GTnb is the SDF ground truth of
the current sampling point, that is, the distance between the current point and the surface
of the model. w(GTnb) is shown in (4):

w(GTnb) =


2, GTnb ≤ −0.02
4, −0.02 < GTnb < 0.02
1, GTnb ≥ 0.02

(4)

where GTnb is the SDF ground truth of the current sampling point.
Through the new feature loss function, the difference between the predicted value

and the ground truth of the critical points can be amplified so that the feature extraction
network can extract more accurate features through a more authentic relationship.

2.3.2. MAL

The same building is usually displayed in multiple remote-sensing images taken from
different angles. Due to the difference in perspective, the buildings’ features extracted from
different images are usually different. Therefore, the concept of MAL is proposed to reduce
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the feature distance of the images of the same building taken from different angles in the
feature domain. MAL can improve the adaptability of the network to images of the same
building taken from different angles and enhance the robustness of the features. Specifically,
the image data, the building SDF ground truth, and the building ID are input into the
network simultaneously during training. The distance of the SDD extracted from the image
of the same building ID in the feature space is calculated, which alleviates the problem
of cross-dimensional object-level matching errors caused by perspective differences. The
calculation method of MAL is shown in (5) and (6):

Lcls(Ia, Ib) =
1
N

N

∑
n=1

ωepoch × exp(q× D(Ia, Ib) + m) (5)

D(Ia, Ib) =

√√√√ N

∑
n=1

(Fβ(Ia)n − Fβ(Ib)n)
2 (6)

where Ia and Ib are image data of the same building ID, N is the number of the building
ID, w and q are weights, m is offset, D is the SDD feature distance of images taken from
different angles, and Fβ is the SDD feature extraction network.

SDD is the mapping of the 3D structure of the building in the real physical world, but
there are many building structures that are similar or even the same. Therefore, MAL only
focuses on the distance of the SDDs extracted from the images of the same building ID and
does not pay attention to others. The formula shown in (7) is used to load the data so as to
improve the probability of different-angle images of the same building appearing in the
same batch and not affecting the network’s learning ability:

data_index = {a, a + na, a− na, · · · , b, b + nb, b− nb}, a ∈ {0, S} (7)

where S is the number of remaining samples in the current epoch, a and b are two random
numbers from 0 to S, and na and nb are the numbers of images of the current building taken
from different angles in the current epoch.

Since the role of MAL is to shorten the distance of images of the same building taken
from different angles in the descriptor space, MAL is not used at the beginning of the
training. After the original loss reaches the best fit, MAL is added for training until the new
best fit point is reached.

2.4. Proposed 2D-3D-CDOBM Data Set

In this section, the method for obtaining our data set is introduced first. The software
named Labelme (v4.5.13) [46] is used to label the buildings in the airborne optical image on
the object level, cut the object image according to the label, and resize it to 224 × 224 pixels,
as shown in Figure 5a. The software named CloudCompare (v2.11.3) [47] is used to cut the
LiDAR point clouds in the object-level space, as shown in Figure 5c. The software named
Meshlab (v3.3) [48] is used to segment the 3D models corresponding to the optical images
and LiDAR point clouds in order to obtain the object-level model of a single building, as
shown in Figure 5b.

In order to verify the effect of our object-level joint descriptor in cross-dimensional
matching tasks, an object-level data set composed of building images and corresponding
point clouds is needed. In addition, to learn how to extract the SDD accurately, a building
model corresponding to cross-dimensional data is necessary. Therefore, a data set consisting
of object-level optical images, object-level point clouds, and 3D models of the corresponding
buildings is produced. The numbers of various types of data points in the data set are
shown in Table 2.
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Table 2. Details of our data set.

Object-Level Optical Image Object-Level Point Cloud Object-Level 3D Model

11,094 906 453

2.4.1. Optical Images

The Institute of Geodesy and Photogrammetry, ETH Zurich, provides airborne optical
images of the Zurich region that are published in the ISPRS data set [49]. These optical
images cover an area nearby the center of Zurich (Switzerland) and the ETH Hoenggerberg.
The region comprises the center of the quarter of Hoengg, including different residential
areas with different types of buildings (flat roofs, hip roofs, etc.)

The Zurich Hoengg data set is based on aerial photographs collected over Zurich
in 1995. The data set consists of four aerial images of the city of Zurich taken at an
average image scale of ca. 1:5000. The 23 cm × 23 cm color photographs were scanned
at 14 µm, yielding color images of approximately 840 Mb. Each image is approximately
16,500 × 16,400 pixels. The photography equipment was flown ca. 1050 above the ground
with 65% forward and 45% sideward overlap. The camera was a Leica RC20. We annotated,
segmented, and produced a data set containing only 1 building per image, a total of
11,094 images of 453 houses.
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2.4.2. Point Clouds

Twice in 2014 and again from 2017 to 2018, the Federal Government conducted
two high-resolution laser scans of the geographical area of the canton of Zurich (E/N
Min:2669255/1223895; E/N Max:2716900/1283336[m]) using the airborne LiDAR system
method (minimum point density of 5 Pkt/m2). The reference system, CH1903+_LV95, has
a position accuracy of ±0.2 (m) and a height accuracy of ±0.1 (m). The Swiss SURFACE 3D
product and spatial data set (GIS-ZH No.24) were created. We segmented the object-level
buildings and saved individual buildings as point cloud files, yielding a total of 906 point
cloud files of 453 buildings.

2.4.3. Three-Dimensional Model and SDF Ground Truth

The CityGML data of Zurich is available at “https://3D.bk.tudelft.nl/opendata/
(accessed on 24 January 2022)”, which includes the 3D models of buildings. After object-
level splitting, SDF is extracted as the ground truth and input into the training network.

2.5. Evaluation Metrics

After extracting the SDD, PointNet [42] is used to classify the descriptors for cross-
dimensional matching. In order to verify the precision of the SDD in presenting the
3D geometric information of the object, the EMD [50] is used to calculate the similarity
between the SDD extracted from the 2D image and the SDD extracted from the 3D point
cloud. EMD can intuitively describe the distance of the SDDs in the descriptor space. The
smaller the EMD is, the more similar the SDDs are. Moreover, to verify the matching
effect of our method, instance accuracy and category accuracy are used as metrics to
evaluate the matching accuracy of the total sample and matching category accuracy of the
building, respectively.

2.5.1. Instance Accuracy

Instance accuracy refers to the percentage of correctly matched data in the total data
to be matched, as shown in (8):

Ins_acc =
TP

TP + FP
× 100% (8)

where TP is the correct matching sample, and FP is the wrong matching sample.

2.5.2. Category Accuracy

Each building object is regarded as a class, and the category accuracy is the average
accuracy of all the categories, as shown in (9):

Cat_acc =
1
N

N

∑
n=1

An × 100% (9)

where An is the accuracy of each category, and N is the total number of categories.

2.6. The Training Platform and Parameter Settings

All experiments were carried out in the same environment. Training and testing of
the network were conducted under Ubuntu 18.04. The hardware environment included a
single Intel i7 9700 CPU, and the GPU acceleration used a single NVIDIA RTX 2080 Super
with 8 GB of memory. In training, the batch size was 64, the Adam optimizer is used, the
learning rate was set to 1 × 10−4, and the epoch was 1500. We conducted multiple sets of
experiments under different hyperparameter setting conditions and judged the optimal
hyperparameter settings according to the experimental results. The number of points
sampled from the training models was 100,000, with a distance in the range of −0.3 to 0.3
(based on the normalized model).

https://3D.bk.tudelft.nl/opendata/
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In these experiments, the 2D images were divided into training, validation, and test
data in a ratio of 6:2:2. The 3D point clouds scanned in 2014 were used for training and
validation, and the 3D point clouds scanned in 2017–2018 were used for testing.

3. Experiment and Results

In this section, we verify the effect of SDD extraction and the accuracy of cross-
dimensional matching, respectively, under different encoder combinations based on a
large number of ablation experiments. We evaluate the accuracy of different encoder
combinations’ SDDs by calculating the distance between descriptors in the descriptor space
and evaluate its influence on the accuracy of cross-dimensional matching according to
the sample accuracy and category accuracy. Specifically, the EMD is a description of the
descriptor quality. The smaller the EMD is, the better the descriptor’s description of the
target’s three-dimensional information will be. While the instance accuracy is the accuracy
of all the data to be matched, the category accuracy is the average accuracy of all the
categories (building ID). These are representations of the descriptor-matching ability.

3.1. Extraction Effects of Different Descriptors for Cross-Dimensional Matching
3.1.1. Extraction Effect under Different Encoder Combinations

The control variable method is used to intuitively obtain the influences of different
encoder combinations on the matching results. Specifically, when performing the image-
point-cloud-matching task, the image descriptors are extracted by the encoder combination
“ResNet18 + JDEM-CBN-RES” and matched with the point cloud descriptors extracted by
various encoder combinations. The same goes for the point-cloud-matching images. When
performing the task of image point cloud matching, the descriptor of the point cloud is
extracted by the encoder combination “PointNet + JDEM-CBN-RES”. In addition, since our
EMD calculation method does not normalize the SDD in advance, the range of the results
is not fixed, and its value is related to the size of the building model. Firstly, the superiority
of the SDD over the SOPD is verified. The results are shown in Tables 3 and 4.

Table 3. The EMD between descriptors extracted from 2D images and 3D point clouds under different
encoder combinations.

Image Encoder
SOPD SDDPart A Part B

ResNet18 JDEM-CBN-RES 74.6084 42.7909 (−31.8175)
ResNet34 JDEM-CBN-RES 75.7076 128.6485 (+52.9409)
ResNet50 JDEM-CBN-RES 77.0661 63.7674 (−13.2987)
ResNet101 JDEM-CBN-RES 73.8090 45.9396 (−27.8694)
ResNet152 JDEM-CBN-RES 76.7682 46.1051 (−30.6631)
ResNet18 JDEM-BN-RES 77.9651 43.2792 (−34.6859)
ResNet18 JDEM-None-RES 77.7802 43.2648 (−34.5154)
ResNet18 JDEM-CBN-None 74.4358 43.1497 (−31.2861)

In the table, the bold underline represents the best result among the comparison algorithms in the same column,
and the content in parentheses shows the difference in evaluation indicators between the same row. If the
Evaluation Metrics becomes smaller, it is displayed in green; if it becomes larger, it is displayed in red. Specifically,
for the EMD, smaller values are better, while for the accuracy, larger values are better. The following tables are the
same. Signed Distance Descriptor (SDD).

Table 4. The EMD between descriptors extracted from 3D point clouds and 2D images under different
encoder combinations.

Point Cloud Encoder
SOPD SDDPart A Part B

PointNet JDEM-CBN-RES 74.6084 42.7909 (−31.8175)
PointNet JDEM-BN-RES 77.9872 46.2336 (−31.7536)
PointNet JDEM-CBN-None 75.4318 42.9513 (−32.4805)
PointNet JDEM-None-RES 76.3757 46.9127 (−29.4630)
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From the above experimental results, it can be seen that the distance in the descriptor
space between the extracted SDD and ground truth is closer than that of the SOPD. In other
words, the SDD describes the 3D geometric invariance of the object more accurately. The
following section verifies the influence of the proposed MAL on the SDD extraction effect.

3.1.2. Extraction Effect under Different Proposed Methods

In this experiment, the number in “JDEM-CBN-RES+MAL-0%” refers to the ratio of
MAL to the original function multistage weight loss. The results are shown in Table 5.

Table 5. The EMD between descriptors extracted from 2D images matching 3D point clouds using
different ratios of MAL.

Image Encoder
SDDPart A Part B

ResNet18 JDEM-CBN-RES+MAL-0% 42.7909
ResNet18 JDEM-CBN-RES+MAL-5% 42.1315 (−0.6594)
ResNet18 JDEM-CBN-RES+MAL-10% 41.9423 (−0.8486)
ResNet18 JDEM-CBN-RES+MAL-20% 41.5696 (−1.2213)
ResNet18 JDEM-CBN-RES+MAL-30% 42.3517 (−0.4392)
ResNet18 JDEM-CBN-RES+MAL-40% 41.7006 (−1.0903)
ResNet18 JDEM-CBN-RES+MAL-50% 42.1304 (−0.6605)
ResNet18 JDEM-CBN-RES+MAL-60% 42.6350 (−0.1559)
ResNet18 JDEM-CBN-RES+MAL-70% 41.9715 (−0.8194)
ResNet18 JDEM-CBN-RES+MAL-80% 42.0579 (−0.7330)
ResNet18 JDEM-CBN-RES+MAL-90% 42.1455 (−0.6454)
ResNet18 JDEM-CBN-RES+MAL-100% 41.5711 (−1.2198)

From the experimental results, it can be seen that the addition of MAL improves the
extraction effect of the SDD. Meanwhile, the setting of different weights for MAL has no
obvious causal relationship.

Finally, we identified the value of the k of PointNet-k that is most suitable for our
proposed data set. The results are shown in Table 6.

Table 6. The EMD between descriptors extracted from 3D point clouds matching 2D images with
different k of PointNet-k.

Point Cloud Encoder
SDDPart A Part B

PointNet JDEM-CBN-RES 42.7909
PointNet-2 JDEM-CBN-RES 44.4586 (+1.6677)
PointNet-4 JDEM-CBN-RES 41.9119 (−0.8790)
PointNet-6 JDEM-CBN-RES 42.9444 (+0.1535)
PointNet-8 JDEM-CBN-RES 41.1428 (−1.6481)
PointNet-10 JDEM-CBN-RES 41.7385 (−1.0524)
PointNet-12 JDEM-CBN-RES 42.2998 (−0.4911)

According to the above experimental results, it can be seen that the value of k in-
fluences the extraction effect of the SDD. Because the value of k determines the spatial
coding range of PointNet-k, when k is small, the nearest neighbor points are too few in
number to support PointNet-k in learning. This is why the quality of the SDD extracted by
“PointNet-2 + JDEM-CBN-RES” and “PointNet-6 + JDEM-CBN-RES” does not improve. In
conclusion, PointNet-k works best when k is 8. The change curve of the SDD distance with
different ratios of MAL and different parameters k of PointNet-k is shown in Figure 6.
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3.2. Cross-Dimensional Matching Accuracy under Different Encoder Combinations

In order to accurately evaluate the effectiveness of different encoder combinations
and the proposed method for cross-dimensional matching tasks, we continued to use the
sample accuracy and category accuracy to evaluate the cross-dimensional matching results.
The experiment reported in this chapter also used the control variable method, and the
default condition settings were the same as those in Section 3.1. In this experiment, the
comparison between the best matching results based on the SDD and the SOPD matching
results, which were divided into 2D images matching 3D point clouds and 3D point clouds
matching 2D images, was conducted first. The results are shown in Tables 7 and 8.

Table 7. The best accuracy for 2D images matching 3D point clouds.

SOPD SDD

Instance acc Category acc Instance acc Category acc

72.2582% 69.6282% 76.8301% (+4.5719%) 73.2332% (+3.605%)

Table 8. The best accuracy for 3D point clouds matching 2D images.

SOPD SDD

Instance acc Category acc Instance acc Category acc

75.2193% 74.9485% 79.8559% (+4.6366%) 79.6946% (+4.7461%)

According to the experimental results, it can be seen that the instance accuracy is
generally higher than the category accuracy, which indicates that there is an imbalance in
the matching ability between categories. In other words, the matching accuracy of some
buildings is significantly higher than that of other buildings. Furthermore, the experimental
results show that our cross-dimensional matching method is superior to the baseline in
terms of both instance accuracy and category accuracy.

Next, the ablation experiment was divided into three parts. The first part verified the
superiority of the SDD compared with the SOPD. The results are shown in Tables 9 and 10.
The second part verified the effectiveness of MAL, and the results are shown in Table 11.
Finally, the value of the encoder k that is most suitable for our proposed data set was
identified, and the results are shown in Table 12.



Remote Sens. 2023, 15, 2974 15 of 19

Table 9. The accuracy of 2D images matching 3D point clouds under different encoder combinations.

Image Encoder SOPD SDD
Part A Part B Instance acc Category acc Instance acc Category acc

ResNet18 JDEM-CBN-RES 72.2582% 69.6282% 75.5470% (+3.2888%) 72.4163% (+2.7881%)
ResNet34 JDEM-CBN-RES 72.0759% 69.4502% 71.7247% (−0.3512%) 68.8125% (−0.6377%)
ResNet50 JDEM-CBN-RES 72.0556% 69.4846% 74.5746% (+2.5190%) 71.5551% (+2.0705%)

ResNet101 JDEM-CBN-RES 73.4063% 71.1805% 76.5532% (+3.1469%) 73.3839% (+2.2034%)
ResNet152 JDEM-CBN-RES 71.8395% 68.8852% 75.1351% (+3.2956%) 72.2858% (+3.4006%)
ResNet18 JDEM-BN-RES 66.8828% 63.0065% 73.0821% (+6.1993%) 68.3356% (+5.3291%)
ResNet18 JDEM-None-RES 68.4292% 65.3175% 73.3793% (+4.9501%) 69.7284% (+4.4109%)
ResNet18 JDEM-CBN-None 71.1642% 68.3775% 76.2763% (+5.1121%) 72.5993% (+4.2218%)

Table 10. The accuracy of 3D point clouds matching 2D images under different encoder combinations.

Image Encoder SOPD SDD
Part A Part B Instance acc Category acc Instance acc Category acc

PointNet JDEM-CBN-RES 71.8985% 71.6691% 72.3997% (+0.5012%) 72.2247% (+0.5556%)
PointNet JDEM-BN-RES 75.2193% 74.9485% 76.4098% (+1.1905%) 76.2344% (+1.2859%)
PointNet JDEM-None-RES 71.2719% 71.3812% 73.8722% (+2.6003%) 73.6228% (+2.2416%)
PointNet JDEM-CBN-None 71.2719% 71.3812% 73.8722% (+2.6003%) 73.6228% (+2.2416%)

Table 11. The accuracy of 2D images matching 3D point clouds using different ratios of MAL.

Image Encoder SDD
Part A Part B Instance acc Category acc

ResNet18 JDEM-CBN-RES+MAL-0% 75.5470% 72.4163%
ResNet18 JDEM-CBN-RES+MAL-5% 76.1750% (+0.6208%) 72.6685% (+0.2522%)
ResNet18 JDEM-CBN-RES+MAL-10% 76.3979% (+0.8509%) 72.6124% (+0.1961%)
ResNet18 JDEM-CBN-RES+MAL-20% 75.9184% (+0.3714%) 72.6139% (+0.1976%)
ResNet18 JDEM-CBN-RES+MAL-30% 76.0940% (+0.5470%) 72.4914% (+0.0751%)
ResNet18 JDEM-CBN-RES+MAL-40% 76.2966% (+0.7496%) 73.4532% (+1.0369%)
ResNet18 JDEM-CBN-RES+MAL-50% 76.3033% (+0.7563%) 72.9010% (+0.4847%)
ResNet18 JDEM-CBN-RES+MAL-60% 76.3911% (+0.8441%) 73.1598% (+0.7435%)
ResNet18 JDEM-CBN-RES+MAL-70% 75.7361% (+0.1891%) 71.9418% (−0.4745%)
ResNet18 JDEM-CBN-RES+MAL-80% 76.6140% (+1.0670%) 73.0335% (+0.6172%)
ResNet18 JDEM-CBN-RES+MAL-90% 76.7896% (+1.2426%) 73.4325% (+1.0162%)
ResNet18 JDEM-CBN-RES+MAL-100% 76.8301% (+1.2831%) 73.2332% (+0.8169%)

Table 12. The accuracy of 3D point clouds matching 2D images using different k of PointNet-k.

Point Cloud Encoder SDD
Part A Part B Instance acc Category acc

PointNet JDEM-CBN-RES 76.4098% 76.2344%
PointNet-2 JDEM-CBN-RES 73.1830% (−3.2268%) 73.0390% (−3.1954%)
PointNet-4 JDEM-CBN-RES 76.9110% (+0.5012%) 76.6826% (+0.4482%)
PointNet-6 JDEM-CBN-RES 77.8822% (+1.4724%) 77.6392% (+1.4048%)
PointNet-8 JDEM-CBN-RES 79.8559% (+3.4461%) 79.6946% (+3.4602%)
PointNet-10 JDEM-CBN-RES 78.3835% (+1.9737%) 78.2929% (+2.0585%)
PointNet-12 JDEM-CBN-RES 76.3784% (−0.0314%) 76.1185% (−0.1159%)

Through the above experimental results, the same conclusion as that outlined Sec-
tion 3.1 can be drawn: a higher matching accuracy can be obtained by extracting the SDD,
as compared with the SOPD; MAL improves the matching accuracy; and the weight of
MAL does not affect its functionality. Since the same category contains multiple building
images taken from different angles, the quality of descriptors extracted from building
images taken from different angles and the instance accuracy and category accuracy of
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cross-dimensional matching are improved after using MAL. Therefore, it can be proved
that MAL improves the adaptability of the image encoder module to images taken from
different angles.

It is evident in Figure 7 that with the increase in k, the matching accuracy of PointNet-k
undergoes a process of decline–rise–decline. The SDD distance curve in Figure 7 can
provide a similar result to that in Figure 6. This is because the value of k determines the
spatial coding range of PointNet-k. When k is small, the nearest neighbor point is too
small to support PointNet-k learning. When k is too large, the wrong nearest neighbor
causes PointNet-k to learn the wrong spatial encoding. The point cloud density of the data
determines the optimal value of k. In conclusion, it can be found that PointNet-k helps to
improve the accuracy of cross-dimensional matching. For our data set, the best matching
result can be obtained when k = 8.
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4. Discussion

This section can be divided into two parts. The first part provides a discussion to
further explore the specific advantages of our approach, the need for further research,
and the potential applications of this research. The second part provides a discussion
to explain the previous experimental results, which includes further elaboration of the
experimental results, an analysis of the impact on the experimental data set, and future
research directions.

Our method is a new method called JDEM which aims to extract a joint descriptor
named SDD from cross-dimensional data. Through this method, the inherent modal
differences between 2D images and 3D point cloud data are solved, and object-level
matching relationships can accurately be established between different dimensional data.
This research is of great practical value. For example, in the case of a UAV losing its control
signal and positioning signal due to targeted interference, the use of the data matching
method can help the UAV to complete self-positioning so that it can continue to complete
the established task independently under offline conditions. However, due to the wide
range of shooting angles and the great changes in light conditions in traditional image
matching tasks, the image–image matching positioning method requires the storage of
a large number of images of the UAV as a database. With the increase in the number of
2D images taken from different angles and lighting conditions in the same area in the
database, the accuracy of positioning will also increase, but this will consume a lot of
terminal storage space. The use of 3D point cloud data can solve this problem. Firstly,
because the 3D point cloud data composed of coordinates do not have shooting angle and
light condition problems, the image-point-cloud-matching method requires less storage
space at the terminal than the image-matching positioning method. Secondly, the image-
point-cloud-matching method is not affected by the quality or number of images in the
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database, which reduces the possibility of error matching caused by the data imbalance
problem in the database. Therefore, our proposed method has good application value.

In this study, our method was compared with other methods for object-level cross-
dimensional matching. Despite the better results achieved with our network, several
issues remain to be addressed. Firstly, the joint descriptor proposed for our method is
based on the three-dimensional features of the structure and does not contain the color
information of the building. Therefore, it is easy to mismatch the faces of similar structures
or the same building structure with different colors. There are many ways to obtain point
clouds with color texture information [51]. If the color information in such point cloud data
can be added to the descriptor extraction process, the above problems can effectively be
alleviated. Moreover, a problem that must be addressed is the data imbalance. Due to the
characteristics of deep learning, structures with more occurrences in the training set can
achieve better learning results. In comparison, structures with lower occurrences in the
data set are difficult to understand and accurately learn. The data of just over 400 buildings
are not enough to fully support the generalization learning of the network. Therefore, more
buildings are necessary for the data set.

5. Conclusions

This paper proposed a new object-level cross-dimensional building-matching method
based on the SDD. The SDD is a descriptor extracted by the JDEM which uses the 3D
geometric invariance of buildings to achieve the cross-dimensional matching of buildings.
In addition, MAL was designed to improve the adaptability of the image encoder module
for images taken at different angles. A 2D-3D-CDOBM data set was proposed to verify the
effectiveness and robustness of our method. A large number of experimental results showed
that our object-level descriptor extraction method achieves state-of-the-art outcomes. The
effectiveness of our proposed module was also proven. Although this method marks
apparent progress compared with the baseline, SDD can still only describe the 3D geometry
of the object and needs a better resolution when handling different buildings with similar
shapes. This is a challenging issue. Scenario-level cross-dimensional data matching may be
an effective solution, which is the critical issue that we are committed to addressing.
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