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Abstract: This paper presents a method for dynamically maintaining a regional elevation datum
using CORS stations as core nodes. By utilizing CORS station data and surface mass loading data
(including land water storage, sea level, and atmospheric pressure), the normal height changes of
each station can be determined and dynamically maintained. The validity of this method is verified
using multiple leveling survey results from five CORS stations in Beijing’s subsidence area between
January 2012 and June 2021. Results show that it is necessary to derive and correct the height anomaly
variation of CORS stations caused by surface mass loading using the remove-calculate-restore method
and the Green’s function integration method, with the influence of surface mass changes reaching a
subcentimeter level. CORS stations exhibiting great observation quality achieve a mean accuracy of
2.7 mm in determining normal height changes. Such accuracy surpasses the requirements of second-
class leveling surveys covering route lengths exceeding 1.35 km, as well as conforming/closed loop
routes with distances greater than 0.46 km. By strategically selecting CORS stations with long-term
continuous observations and high-quality data as core nodes within the elevation control network,
dynamic maintenance of the regional elevation datum can be achieved based on CORS station data.

Keywords: CORS; normal height; CEEMDAN; surface mass loading

1. Introduction

Land subsidence in many regions of China caused by factors such as crustal move-
ment, urbanization, groundwater extraction, and mineral resource development has led to
inaccuracies in the regional height control networks [1–3], limiting the real-time accuracy
and applicability of the height reference framework. Regular maintenance and updates of
the framework are crucial to ensure its real-time relevance and applicability. In China, the
elevation reference framework is implemented through two methods: the primary method
used involves using leveling networks at various elevations to transfer height [4,5], while
the other method employs GNSS and precise geoid models to measure the normal height
of a point. With improvements in geoid model accuracy and resolution, the GNSS-based
method has the potential to replace the method relying on leveling control networks [6–8].
However, for the maintenance and application of the height reference framework, a height
control network based on leveling networks is currently indispensable.

The maintenance of a height control network through repeated leveling surveys is
costly, time-consuming, and especially challenging in regions with frequent ground sub-
sidence. China has established a national and multiple regional (provincial/municipal
level) Continuously Operating Reference Station (CORS) networks for satellite navigation
positioning [9,10]. These CORS networks can monitor the three-dimensional position
changes of surface points with millimeter accuracy continuously and in all weather con-
ditions [11]. If CORS stations are used as benchmarks to maintain a dynamic elevation
reference framework, it could reduce leveling survey distances and frequency, lowering
the costs and workload of maintaining the regional height reference frame. This approach
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has significant practical value for engineering purposes and warrants further research.
Given that national-level elevation systems generally rely on the normal height system
with respect to the geoid, whereas CORS station time-series observations are based on
ellipsoidal heights referenced to the reference ellipsoid, a disparity in elevation anomalies
arises between these two systems. As a result, this method also investigates the refinement
of elevation anomalies to address this disparity and ensure consistency between the two
systems [12–14].

This paper proposes a method for dynamically maintaining an elevation datum based
on CORS station data. The CORS stations are used as the core benchmarks of the regional
height control network, and the normal height changes of the stations are determined using
continuous observation data and surface loading data. The normal height of each station is
then dynamically corrected. The feasibility of this method is verified and analyzed using
the CORS station network and leveling measurement data in a subsidence area of Beijing.

2. Method for Obtaining Normal Height Variations

The geodetic height H of a point on the earth’s surface consists of two components as
shown in Figure 1 and Equation (1): h is the orthometric height, N is the elevation of the
geoid, h∗ is the normal height, and ζ is the elevation anomaly.

H = h∗ + ζ = h + N (1)
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Figure 1. Diagram of different kinds of elevations.

The elevation system adopted in China primarily employs the normal height system,
with the quasi-geoid serving as the reference surface. Thus, to assess changes in normal
height, one only needs to know variations in geodetic height and elevation anomaly.
Variations in geodetic height can be obtained from CORS observation data, while variations
in elevation anomaly can be calculated using surface loading models.

This paper uses the subsidence area of Beijing as a case study to demonstrate dynamic
maintenance of the elevation reference system. The proposed technique involves five CORS
stations—CHPN, NLSH, XIJI, CHAO, and DSQI—distributed as shown in Figure 2 for
maintaining elevations in the subsidence area of Beijing.
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3. Geodetic Height Variations Obtained from CORS Stations

Geodetic Height (GH) variations can be accessed from CORS station observations,
which required pre-processing of the GNSS data using GAMIT/GLOBK software. The
single-day regional loose solution of stations can be obtained by data solving the daily GNSS
observation data for several parameters, including station location, receiver clock difference,
and satellite clock difference. The constraints of coordinates, orbits, and other related
parameters, however, in these single-day solution files, are generally loose. Therefore, it
is necessary to unconstrain the single-day solution files of each CORS station for seven
consecutive days after aggregation and then merge them into a comprehensive solution
(weekly solution) based on the high-precision coordinates of the IGS station ITRF2014
frame using the Kalman filtering method.

Despite the processing, the observed time series still contains significant amounts
of noise. This includes white noise (WH) with a constant power spectrum, flicker noise
(FN) with a power spectrum inversely proportional to frequency, and random walk noise
(RW) accumulated because of WH. Previous studies have revealed variations in noise
characteristics across different regions [15]. For instance, a combination of WH and FN is
more suitable for globally consistent models, while predominantly FN or RW models are
better suited for the southern regions of California and Nevada. In China, a combination of
WN, FN, and RW noise models is more appropriate.

To determine the GH variations, a weekly solution is also required to perform a time
series analysis to obtain a fitted model characterizing the GH variations since the CORS
signal is always accompanied by a lot of noise. In dealing with these noises, Wdowinski
and Nikolaidis [16,17] proposed that the raw coordinate time series at reference stations
exhibit high spatial correlation in height and that large-scale common deformation char-
acteristics across a relatively wide area can obscure small-scale intranetwork deformation
features. Therefore, they suggested the use of regional filtering methods to remove Com-
mon Mode Errors. Building on this approach, Dong [18] applied principal component
analysis and Karhunen-Loeve transform for spatial filtering. Wavelet-based methods have
demonstrated effectiveness in analyzing signal time–frequency localization, while the least
squares variance component estimation method can provide accurate estimates of station
motion parameters. Both methods have been applied to GNSS coordinate time series analy-
sis. Amiri-Simkooei [19] used the least squares variance component estimation method to
simultaneously estimate motion parameters for multiple IGS stations based on a combined
model of white noise and scintillation noise. Wu [20] employed wavelet and wavelet
packet denoising methods to eliminate both white noise and scintillation noise from GNSS
coordinate time series. Li and Guo [21,22] combined wavelet and Fourier transforms to
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identify abrupt changes in geodetic measurement signals recorded in the time domain and
extract the frequency range of signal discontinuities in the frequency domain.

Simulations were conducted in this paper using a noisy signal, where the underlying
true signal was set to y = (sin(t) + 2sin(2t))/3, and the random noise followed a normal
distribution with a mean of 0 and a standard deviation of 0.0278. To perform denoising, we
applied different wavelet functions with varying parameters to the simulated signal. The
resultant denoised signals were evaluated, and the remaining noise levels were quantified.
The denoising results, including the residual noise measurements, are summarized in
Table 1. Clearly, different types of wavelets and parameter settings yield varying denoising
results. This highlights that non-data-driven denoising methods, like the ones evaluated
in this study, require a higher level of theoretical and technical expertise from personnel
involved in the maintenance of elevation benchmarks.

Table 1. Comparison of Wavelet denoising results.

Wavestyle Num Level std

sym 4 8 0.0627
sym 2 2 0.0843
db 1 2 0.0998
fk 4 2 0.0922

bior 1.3 6 0.1065

The spatial filtering methods and wavelet analysis denoising discussed in the above
studies both require significant human intervention. Spatial filtering methods necessitate
the selection of an appropriate filter window length and filter function, while wavelet
analysis requires selecting an appropriate wavelet to mitigate overprocessing and incom-
plete processing issues. Given these challenges and limitations imposed by the uncertainty
principle, this paper has opted for a data-driven, nonlinear, and non-stationary signal pro-
cessing method—the Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) method. By leveraging data-driven techniques, this method automati-
cally extracts the local features of signals based on the characteristics of actual signals and
processing requirements [23,24]. CEEMDAN is an improved version of Empirical Mode
Decomposition (EMD), first proposed by E. Huang [25,26]. The EMD method posits that
any signal can be decomposed into the sum of several Intrinsic Mode Functions (IMFs)
satisfying two constraints:

i. The number of extreme points and the number of zero crossing points differ by no
more than one across the entire data segment.

ii. At any moment, the average value of the upper envelope formed by the local extreme
value points and the lower envelope formed by the local minimal value points is zero.

The individual components of the IMF represent each frequency component of the
original signal and are arranged in order from high to low frequency. However, the
IMF obtained by EMD suffers from modal aliasing, where signals of different feature
scales can be present in one IMF component or signals of the same feature scale can be
dispersed into different IMF components. CEEMDAN improves upon EMD by exploiting
the property that white noise has a mean value of 0. It achieves better decomposition
results by introducing uniformly distributed white noise or IMF components of white noise
several times during each decomposition process. Figure 3 illustrates the flowchart of the
CEEMDAN algorithm, where Ek(n) denotes the kth order IMF of n.The result from the
CEEMDAN is as Formula (2):

x =
K
∑

k=1
IMFk + rk (2)



Remote Sens. 2023, 15, 2935 5 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 19 
 

 

The high-frequency IMF can be considered as noise and rejected. The low-frequency 
IMF represents the trend component of CORS station data, while the remaining IMFs cap-
ture the periodic variations of the station. These periodic and trend terms must be fi ed 
separately to obtain the GH variation time series. 

Figure 4 illustrates the outcomes of applying CEEMDAN to data from the CHAO 
and XIJI CORS stations. The method effectively decomposes the high-frequency noise, 
medium-frequency periodic signal, and low-frequency trend signal present in the obser-
vation data. Specifically, IMF1 and IMF2 correspond to high-frequency noise signals, 
IMF3 represents a mixture of some periodic signals at medium frequencies, IMF4 corre-
sponds to the annual signal, and IMF5 captures the motion trend of the CORS stations. 
After ignoring noisy signals at high frequencies, the periodic and trend signals are inter-
polated and smoothed with linear interpolation and smooth spline fi ing, respectively. 
The result is a GH variation time series with a one-day time resolution. Figure 5 presents 
the time series results for the five CORS stations—CHAO, CHPN, XIJI, NLSH, and DSQI. 

 
Figure 3. Flow Chart of CEEMDAN Algorithm. 
Figure 3. Flow Chart of CEEMDAN Algorithm.

The high-frequency IMF can be considered as noise and rejected. The low-frequency
IMF represents the trend component of CORS station data, while the remaining IMFs
capture the periodic variations of the station. These periodic and trend terms must be fitted
separately to obtain the GH variation time series.

Figure 4 illustrates the outcomes of applying CEEMDAN to data from the CHAO and
XIJI CORS stations. The method effectively decomposes the high-frequency noise, medium-
frequency periodic signal, and low-frequency trend signal present in the observation data.
Specifically, IMF1 and IMF2 correspond to high-frequency noise signals, IMF3 represents a
mixture of some periodic signals at medium frequencies, IMF4 corresponds to the annual
signal, and IMF5 captures the motion trend of the CORS stations. After ignoring noisy
signals at high frequencies, the periodic and trend signals are interpolated and smoothed
with linear interpolation and smooth spline fitting, respectively. The result is a GH variation
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time series with a one-day time resolution. Figure 5 presents the time series results for the
five CORS stations—CHAO, CHPN, XIJI, NLSH, and DSQI.
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Two accuracy indicators, Root Mean Square Error (RMSE) and Goodness of Fit (GF),
are used to quantitatively assess the results of CORS station GH variation time series fitting.
RMSE, calculated using Equation (3), measures the degree of deviation between the fitted
and observed values, with smaller values indicating less deviation. GF, calculated using
Equation (4), indicates the goodness of fit, with values closer to 1 implying a better fit. The
Signal-to-Noise Ratio (SNR) is utilized to evaluate the observation quality of CORS stations,
and its computation formula is presented in Equation (5). Higher SNR indicates better
observation quality. Assessment of observation quality and fitted signal for CORS stations
is shown in Table 2.

RMSE =

√
1
k

k
∑

i=1

(
ĥp

i + ĥt
i − hi

)2
(3)

GF = 1−
√

k
∑

i=1

(ĥp
i +ĥt

i−hi)
2

∑k
i=1 hi

2
(4)

Table 2. The SNR, RMSE, and GF of each CORS station.

CORS SNR RMSE (mm) GF

CHAO 31.6131 2.4332 0.9738
CHPN 16.2721 2.4832 0.8473
DSQI 34.8321 2.6878 0.9819
NLSH 34.9793 2.3231 0.9822

XIJI 23.9864 2.5712 0.9370

ĥp
i indicates the period signal of the fitted estimate, ĥt

i indicates the trend signal of the
fitted estimate, hi indicates the observed GH variations, and k is the number of samples.

SNR = 10lg Ps
Pn

= 10lg ∑k
i=1(ĥp

i +ĥt
i)

2

∑k
i=1[hi−(ĥ

p
i +ĥt

i)]2
(5)

Ps denotes signal power, Pn denotes noise power, and lower SNR indicates higher
noise content.

The accuracy assessment reveals that the RMSE of all five CORS stations is below
3 mm, indicating a very low deviation in the fitting results. CHAO, DSQI, and NLSH all
achieved GF values above 0.97. However, due to high noise influence caused by low SNR,
CHPN and XIJI both had lower GF values.

4. Elevation Anomaly Variations Caused by Surface Loading

The geoid is not static and changes due to the Earth’s surface and internal mass
migration. This change is mainly attributed to various global dynamic processes, including
land water storage changes (including groundwater), fluctuations in sea and glacial levels,
glacial isostatic adjustment (GIA), tectonic uplift and subsidence, and earthquakes [12–14].
In most regions of China, variations in land water storage (including groundwater), sea
level, and atmospheric pressure are the primary contributors to changes in the geoid.

The remove-compute-restore method, which is used to determine the static geoid,
can be applied to divide changes in the geoid at a point on the Earth’s surface into far-
field and near-field contributions. The global uniformly distributed mass element change
undergoes spherical harmonic expansion to obtain loading spherical harmonic coefficients
that are combined with loading Love numbers to perform a spherical harmonic synthesis
calculation. This determines the contribution of global mass element change to the geoid
change at the point in question, which represents the reference of the geoid change at
the point and is defined as the far-field contribution [27,28]. By integrating surface mass
element changes within a certain range of the Earth’s surface point in question, together
with the global mass element spherical harmonic expansion model, and by using the
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remove-compute-restore method and mass loading Green’s function integration [29–31],
more detailed spectral information on height anomaly change can be obtained. The effect of
surface mass element changes within this range is referred to as the near-field contribution.
Since geoid changes are generally at the millimeter level, this discussion assumes that
height anomaly variations are equivalent to geoid changes.

Figure 6 illustrates the main process for calculating high-precision regional height
anomalies using the remove-compute-restore method. Firstly, the global surface mass
model that reflects the intermediate-to-long wavelength signals in the region of interest
undergoes spherical harmonic analysis to calculate the reference height anomaly variations
and equivalent water height in the reference area. Then, the regional high-precision surface
mass model that reflects the short wavelength signals in the region of interest is subtracted
by the equivalent water height in the reference area. The residual equivalent water height is
integrated using Green’s function to obtain the residual height anomaly variations. Finally,
the reference and residual height anomaly variations are combined and restored as the
regional height anomaly variations.
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4.1. Calculation of Far-Zone Contribution

The Earth’s surface atmosphere [29], land water storage, and sea level [32] changes are
non-tidal, and these surface non-tidal loading changes can be expressed uniformly by the
equivalent water height changes at the ground surface. The equivalent water height ∆hw at
the ground point (r, θ, λ) can be expressed as the normalized loading spherical harmonics,
which is calculated in Equation (6).

∆hw(r, θ, λ) = r ∑∞
n=1 ∑n

m=0[∆Cw
nmcosmλ + ∆Sw

nmsinmλ]Pnm(cosθ) (6)

where: (r, θ, λ) denote the ground point distance from the center of the earth, and the
ground point co-latitude and longitude, respectively; ∆Cw

nm and ∆Sw
nm denote the nth

degree mth order normalized loading spherical harmonic coefficients; and Pnm(cosθ) is the
fully normalized Legendre function.

From the theory of surface mass loading deformation, it is known that the reference
height anomaly caused by the change in surface mass loading is ∆ζre f determined by
Formula (7).

∆ζre f = GM
γr ∑∞

n=2
( a

r
)n
(1 + kn)∑n

m=0
(
∆Cnmcosmλ + ∆Snmsinmλ

)
Pnm(cosθ)

∆Cnm = 3
2n+1

ρw
ρe

∆Cw
nm

∆Snm = 3
2n+1

ρw
ρe

∆Sw
nm

(7)

where G is the universal gravitational constant, M is the total mass of the Earth, ρw is
the density of water, ρe is the average density of the Earth’s crust, a is the radius of the
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long semi-axis of the Earth, γ is the normal gravity, and kn is the nth degree loading
Love-number.

The land water global data used in the study of reference height anomaly at CORS is
the Global Land Data Assimilation System (GLDAS) data from NASA and the National
Centers for Environmental Prediction. The data are derived from land surface modeling
and data assimilation techniques [33,34] to output land surface hydrological parameters
at a spatial resolution of 0.25◦ × 0.25◦ monthly. The global data used for atmospheric
pressure are the European Centre for Medium-Range Weather Forecasts (ECMWF) global
atmospheric pressure model at a spatial resolution of 0.25◦ × 0.25◦ monthly [35]. The
global data used for sea level are the Maps of Sea Level Anomaly (MSLA) provided by
the Archiving, Validation, and Interpretation of Satellites Oceanographic Data (AVISO)
of the Centre National d’Etudes Spatiales (CNES), which is generated from the monthly
mean sea surface height anomalies from multiple global satellite altimetry at a spatial
resolution of 0.25◦ × 0.25◦ monthly (Resource of the data can be found in the supplementary
material part).

The reference height anomaly variations caused by global terrestrial water changes,
global atmospheric pressure changes, and global sea level changes in the subsidence area
of Beijing can be calculated using the global loading data. Some of the calculated reference
height anomaly variations are shown in Figures 7–9.
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4.2. Calculation of Near-Zone Contribution

The gravitational potential directly generated by the surface mass near the ground
point is UD(ψ) (8).

UD(ψ) =
ga
M ∑

n
Pn(cosψ) (8)

The unit mass produces a loading on the solid Earth, and the Earth is thus deformed,
which in turn indirectly causes gravitational potential UI(ψ) (9).

UI(ψ) =
ga
M ∑

n
knPn(cosψ) (9)

where g is the value of gravity, p is the fully normalized associative Legendre function, ψ is
the spherical angular distance between the calculated point (r, θ, λ) and the ground flow
point (r′, θ′, λ′), and the cosine of ψ is calculated as Equation (10):

cosψ = cosθcosθ′ + sinθsinθ′cos(λ′ − λ) (10)

The gravitational potential due to unit mass is the sum of the direct and indirect
gravitational potential, and U(ψ) (11) can be obtained according to Equations (8) and (9)

U(ψ) = UD(ψ) + UI(ψ) =
a
M

[
1

2sin ψ
2
+ ∑

n
knPn(cosψ)

]
(11)

Provided that the equivalent water height change due to surface mass loading is ∆hw,
the geoid change ∆ζresi is the spatial convolution of ∆hw with the Green’s function (12).

∆ζresi = ρw
∫

S ∆hwU(ψ)dS (12)

where dS is the flow integration surface element, and the integration radius is generally
taken as 200~300 km.

The regional data used for calculating residual height anomaly variations in this
paper are from the Chinese Land Data Assimilation System (CLDAS)-V2.0 data, containing
barometric pressure data and soil water data, at a spatial resolution of 0.0625◦ × 0.0625◦

daily(Resource of the data can be found in the supplementary material part).
The residual height anomaly variations caused by regional terrestrial water changes

and global atmospheric pressure changes in the subsidence area of Beijing can be calculated
using the aforementioned regional loading data. Some of the calculated residual height
anomaly variations are shown in Figures 10 and 11.

4.3. Restoration of Regional Height Anomaly Variation

After clarifying the far-zone and near-zone contributions to the height anomaly change,
a more refined variation can be derived by using the remove-compute-restore method.
The restored results of some of the regional height anomaly variations are shown in the
Figure 12.

This is also a calculation method for the regional loading deformation field. By
calculating the loading deformation field of the Beijing area every day from 2012 to 2021, it
is possible to obtain temporal results of height anomaly variation in five CORS stations,
as shown in Figure 13 The statistical table of height anomaly changes in these five CORS
stations can be found in Table 3.
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Figure 13. Height Anomaly variations due to surface mass load.

Based on Table 3 and Figure 12, it can be seen that the height anomaly variation
caused by surface loading exhibits clear periodic changes with variations from year to
year, and the change varies between −6 mm and 5 mm. To achieve high-accuracy normal
height solutions for CORS stations, it is necessary to introduce corrections for the height
anomaly changes.
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Table 3. Statistics on height anomaly variations of all CORS stations (unit: mm).

CORS Station Max Min Mean Std

CHAO 5.3070 −6.6243 −0.7579 3.3221
CHPN 5.4677 −6.5303 −0.5975 3.2975
DSQI 5.4387 −6.4078 −0.5211 3.2152
NLSH 5.4934 −6.3452 −0.4878 3.2216

XIJI 5.1903 −6.9182 −0.9722 3.4094

5. Calculation and Validation for Normal Height Variations

By referring to the schematic diagram in Figure 1, the Normal Height (NH) variation
of CORS stations can be calculated using Equation (13).

∆h∗ = ∆H − ∆ζ (13)

where ∆h∗ is the NH variation, ∆H represents the geodetic height variation obtained from
CORS stations, and ∆ζ is the height anomaly variation obtained from surface loading. The
RMSE is calculated using Equation (14).

m∆h∗ =
√

m∆H
2 + m∆ζ

2 =
√

mH(t1)
2 + mH(t2)

2 + (0.2× ∆ζ)2 (14)

where mH(t1)
and mH(t2)

represent the geodetic height RMSE at times t1 and t2, respectively,
and ∆ζ represents the corresponding height anomaly variation. The height anomaly RMSE
is estimated based on a 20% uncertainty.

To validate the NH variation calculation method proposed in this paper, multiple
periods of leveling measurement results were used. The leveling measurements of five
CORS stations in the subsidence area of Beijing were independently calculated by the
Beijing Surveying and Mapping Institute and compared with the NH variation calculated
in this paper, constituting a double-blind review. The calculation formula for NH variation
in the leveling measurement is given by Equation (15), and its RMSE calculation formula is
given by Equation (16).

∆h∗s = h∗s2 − h∗s1 (15)

m∆h∗s =
√

mh∗s2
2 + mh∗s1

2 (16)

h∗s1, h∗s2 are the NH variation obtained from the level measurements at observation
time t1 and observation time t2, respectively, while mh∗s1

, mh∗s2
are the RMSE of the NH

variation at t1 and t2.
Table 4 presents a comparison between the normal height changes obtained by the

proposed method and the leveling measurement results, which validates the effectiveness
of the proposed method.

∆h∗ represents the normal height change calculated in this paper, with its correspond-
ing RMSE denoted as m∆h∗ ; ∆h∗s represents the normal height change obtained from leveling
measurements, with its corresponding RMSE denoted as m∆h∗s .

The comparison and validation table shows that the normal height variations calcu-
lated using the proposed method for CHAO, DSQI, and NLSH stations differ from the
leveling measurement results by less than 10 mm. Even after accounting for the computed
RMSE error, the difference is still less than 10 mm, meeting the general engineering design
requirements for elevation datum accuracy.

According to the “National First- and- Second Order Leveling Survey Specification”,
the tolerance limit for the RMSE of a second-class leveling survey is 2 mm/km, and the
tolerance limit for the closure error and loop closure error of conforming routes is 4

√
L

(L represents the length of the leveling route). Using this information, Table 5 calculates
the corresponding lengths of the leveling routes for the maximum absolute difference and
average absolute difference between CORS stations and leveling surveys regarding normal
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height variations. The average accuracy of the normal height changes over 11 periods
from CHAO, DSQI, and NLSH stations is 2.7 mm. These results suggest that normal
height dynamic maintenance based on CORS station data can substitute for second-class
leveling surveys with route lengths exceeding 1.35 km and conforming or closed loop
routes exceeding 0.46 km.

Table 4. Verification results of normal height variation accuracy of CORS stations.

CORS
(Reference Year) Year ∆h* ∆h*

s ∆h*−∆h*
s m

∆h* m
∆h*

s

NLSH
(2012)

2016 −136.5 −138.0 1.5 5.1 1.0
2017 −165.1 −162.0 −3.1 3.9 0.8
2018 −179.0 −177.0 −2.0 4.1 0.9
2019 −164.0 −164.0 −0.0 4.0 0.7
2020 −151.6 −156.0 4.4 4.8 1.7
2021 −152.5 −153.0 0.5 4.2 0.7

XIJI
(2012)

2016 −33.5 −44.0 10.5 7.2 1.8
2017 −41.6 −53.0 11.4 6.0 2.3
2018 −56.1 −67.0 10.9 6.5 3.7
2019 −69.2 −74.0 4.8 7.3 3.9
2020 −70.0 −85.0 −5.0 8.6 2.9
2021 −85.2 −97.0 11.8 7.1 2.8

CHPN
(2012)

2016 17.9 3.0 14.9 5.4 4.0
2017 −1.9 1.0 −2.9 4.1 4.0
2018 2.2 1.0 1.2 4.2 3.7
2019 11.2 1.0 10.2 4.0 3.7
2020 20.5 2.0 18.5 4.3 3.5
2021 8.2 −1.0 9.2 4.3 3.5

CHAO
(2016)

2017 −31.4 −32.0 0.6 5.1 2.5
2018 −64.3 −63.0 −1.3 5.4 3.8
2019 −86.6 −87.0 0.4 5.0 2.1
2020 −110.0 −104.0 −6.0 5.4 2.8
2021 −110.9 −114.0 3.1 5.1 3.8

DSQI
(2017)

2018 −60.2 −61.0 1.1 4.2 1.1
2019 −98.8 −100.0 −1.6 5.0 0.9
2020 −119.3 −130.0 9.2 5.5 1.2
2021 −141.1 −146.0 5.3 4.4 0.9

Table 5. The length of the second-class leveling survey route corresponding to the normal height
difference between CORS stations.

∆h*−∆h*
s Survey Route Length Conforming or Closed Loop Length

Max = 9.2 mm 4.6 km 5.3 km
Min = 2.7 mm 1.35 km 0.46 km

As shown in Table 2, which presents an evaluation of geodetic height variation, the
SNRs for the CHPN and XIJI stations were only 16 and 24, respectively, while the remaining
three stations had an SNR higher than 30. This indicates that these two stations have more
noise that affects the fitting effect of geodetic height, leading to a significant difference
between the calculated normal height variation in this paper and that obtained from
leveling measurements.

All difference values for the XIJI station are less than 12 mm, although the difference re-
sults for 2016, 2017, 2018, and 2021 are greater than 10 mm. From analysis of Tables 2 and 6,
it can be inferred that the processing accuracy of the vertical direction data for XIJI station
is worse compared to that of the other stations. The mean error reaches 4.9 mm, which is
the worst among these five CORS stations, and the average error in normal height variation
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of multi-year leveling measurements reaches 3 mm. The comparison results are influenced
by CORS data processing and leveling measurement errors.

Table 6. Error in vertical direction of CORS stations.

Error Type XIJI NLSH DSQI CHPN CHAO

Min 2.8 2.2 2.4 2.4 2.6
Max 13.7 8.8 6.7 11.5 9.1

Mean 4.9 3.4 3.1 3.7 3.3

The multi-period comparison results for the CHPN station show that the maximum
difference is 18 mm. Although the normal height variation from leveling measurements
indicates that the station is relatively stable, the normal height variation obtained in this
paper suggests that the station has an uplift tendency. The inconsistency between the two
results leads to low checking accuracy.

The error in the normal height variation of multi-year leveling measurements at the
CHPN station is approximately 4 mm. By using the 2016 level results as a reference to
analyze the accuracy of the NH variation at the CHPN station (Table 7), it is evident that
the accuracy results from 2019 to 2021 have significantly improved. At the same time, the
NH change value from leveling measurements also changed by about 3 mm. Therefore, it
can be inferred that the poor accuracy check results for the CHPN station are influenced by
the leveling measurement error at this station in 2012.

Table 7. Verification results of normal height variation accuracy of CHPN station.

CORS
(Reference Year) Year ∆h* ∆h*

s ∆h*−∆h*
s m

∆h* m
∆h*

s

CHPN
(2016)

2017 −19.8 −2.0 −17.8 5.6 4.0
2018 −15.7 −2.0 −13.7 5.7 3.7
2019 −6.8 −2.0 −4.8 5.6 3.7
2020 2.5 −1.0 3.5 5.7 3.5
2021 −9.8 −4.0 −5.8 5.7 3.5

In this comparison, it is assumed that the leveling measurement results are more
accurate and used to compare against the normal height variation calculated in this paper.
However, there may still be errors in leveling measurements that could also affect the
checking results. The Beijing Institute uses the Yuyuantan benchmark in Beijing as the
elevation transfer point for its leveling measurements. The CHPN and XIJI stations are
located at opposite ends of the measuring leveling network, and the weaker leveling control
from the Yuyuantan benchmark over these two stations may also contribute to the poorer
checking results.

6. Conclusions

This paper proposes a method for dynamically maintaining an elevation datum using
CORS stations as regional elevation benchmarks to overcome the disadvantages of tradi-
tional leveling methods, such as long cycles, time-consuming processes, heavy workload,
and non-real-time measurement. The proposed method involves calculating the loading
deformation field of the CORS station network in the Beijing subsidence area from 2012
to 2021 and denoising and reconstructing the time series of continuous observations from
CORS stations. By calculating the normal height variation of CORS stations, the proposed
method enables dynamic maintenance of an elevation datum. The main findings of the
paper are as follows:

The height anomaly variations of CORS stations in the Beijing subsidence area were
investigated by calculating the loading deformation field. The remove-compute-restore
method was employed, and global mass distribution data with medium-to-long-wavelength
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information and regional high-precision mass distribution data with short-wavelength
information were combined to obtain a high-precision load deformation field. Results
showed that the deformation effect caused by surface mass movement was between −6
mm and 5 mm, indicating that the correct height anomaly variation is essential for the
dynamic maintenance of height benchmarks.

In contrast to conventional methods such as regional filtering and wavelet analysis,
this study employed a data-driven approach using the CEEMDAN method to analyze
and denoise CORS station signals. This technique is capable of decomposing signals
into different modes, and by considering the movement patterns of CORS stations, high-
frequency modes can be identified and removed as noise. The key advantage of this
approach is that it reduces the need for human intervention in signal processing, thereby
increasing its applicability in engineering applications.

Based on the results of leveling tests, this study has shown that when the observation
quality of CORS stations is good and the SNR is above 30, the proposed method for dynam-
ically maintaining elevation benchmarks using CORS stations can achieve a verification
difference of normal height changes for CORS stations of less than 10 mm. Thus, the
proposed method can be used as an alternative to second-class leveling surveys with route
lengths greater than 2.3 km or conforming/closed loop routes with distances greater than
1.4 km. However, when the observation quality of CORS stations is poor, it is recommended
to use denoising methods specific to certain stations to process the observation data or to
exclude those stations altogether from the dynamic maintenance of elevation benchmarks.

Supplementary Materials: Global land water data can be downloaded at GLDAS, Project Goals|LDAS:
https://ldas.gsfc.nasa.gov/gldas/ (accessed on 1 June 2023); global data used for atmospheric
pressure can be downloaded at ECMWF|Advancing global NWP through international collaboration:
https://www.ecmwf.int/ (accessed on 1 June 2023); and global data used for sea level can be
downloaded at Home: https://www.aviso.altimetry.fr/en/home.html (accessed on 1 June 2023).
CLDAS can be downloaded at China Meteorological Science Professional Knowledge Service System:
http://101.201.220.232/mekb/?r=data/detail&dataCode=NAFP_CLDAS2.0_NRT (accessed on 1
June 2023).
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