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Abstract: The observed radiation data from the second-generation Hyperspectral Infrared Atmo-
spheric Sounder (HIRAS-II) on the Fengyun-3E (FY-3E) satellite contain useful vertical atmosphere
information which can distinguish and retrieve vertical profiles of atmospheric gas components
including ozone (O3), carbon monoxide (CO), and methane (CH4). This paper utilizes FY-3E/HIRAS-
II observational data to optimize each gas channel using the improved Optimal Sensitivity Profile
method (OSP) channel algorithm and establishes a typical convolutional neural network model (CNN)
and a representative U-shaped network model (UNET) with deep features and shallow feature links
to perform atmospheric profile retrieval calculations of O3, CO, and CH4. We chose the clear sky data
of the Indian and its southern seas in December 2021 and January 2022, with reanalysis data from
European Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) and European Center
for Medium-Range Weather Forecasts Atmospheric Composition Reanalysis v4 (EAC4) serving as the
reference values. The retrieval outcomes were then compared against advanced numerical forecast
models including the Whole Atmosphere Community Climate Model (WACCM), Global Forecast
System (GFS), and satellite products from an Atmospheric Infrared Sounder (AIRS) and Infrared At-
mospheric Sounding Interferometer (IASI). Experimental results show that the generalization ability
and retrieval accuracy of CNN are slightly higher compared with UNET. For O3 profile retrieval,
the mean percentage error (MPE) of the whole layers for CNN and UNET data in relation to ERA5
data was less than 8%, while the root-mean-square error (RMSE) was below 1.5 × 10−7 kg/kg; for
CH4 profile retrieval, the MPE of the whole layers for CNN and UNET data in relation to EAC4 data
was less than 0.7%, while the RMSE was below 1.5 × 10−8 kg/kg. The retrieval of O3 and CH4 are
resulted in a significant improvement compared to the forecast data and satellite products in most
pressure levels; for CO profile retrieval, the MPE of the whole layers for CNN and UNET data in
relation to EAC4 data was less than 11%, while the RMSE was below 4 × 10−8 kg/kg. The error of
the CO retrieval results was higher than that of the forecast data at the pressure level of 200~500 hPa
and lower than that of similar satellite products with most pressure levels. The experiments indicated
that the neural network method effectively determines the atmospheric gas profiles using infrared
hyperspectral data, exhibiting a positive performance in accuracy and retrieval speed.

Keywords: FY-3E; HIRAS-II; ozone profile; CO profile; CH4 profile; remote sensing; neural network

1. Introduction

Ozone (O3), carbon monoxide (CO), and methane (CH4) are important gas components
in the atmosphere which have an important impact on processes such as atmospheric
radiative transfer, regional air quality conditions, and global climate change [1]. In the
stratosphere, O3 is a powerful absorber of solar ultraviolet radiation and is critical in
safeguarding the Earth’s biosphere. In the troposphere and near-surface, O3 is a greenhouse
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gas and air pollutant, impacting human health and the ecological environment [2]. When
nitrogen oxides and hydrocarbons reach a certain concentration, they can be formed
through photochemical reaction resulting in secondary pollution [3]. Additionally, the
rise concentration of O3 and CH4 in the atmosphere significantly contributes to global
warming. Examining the vertical distribution of these gas components offers insight into
the distribution of atmospheric chemical components and their impacts on the atmosphere
and ecosystems.

The progression of meteorological satellites offers precise observations of atmospheric
conditions and has facilitated the weather forecasting models, playing a critical role in
monitoring the rapidly changing composition of stratospheric and tropospheric gases [4].
At present, it allows the infrared hyperspectral atmospheric vertical sounding instrument
on weather satellites to reveal the vertical distribution of thermodynamic variables (tem-
perature and water vapor), surface characteristics (surface temperature and emissivity),
and atmospheric gas composition profiles or column concentration information [5]. Be-
cause the infrared spectrum region has very rich gas absorption bands, while the infrared
hyperspectral instrument has narrow weight functions and high vertical resolution, it has
highly sensitive to the gas composition at a specific level. Therefore, detecting atmospheric
composition hierarchical information is one of the advantages of infrared hyperspectral
atmospheric vertical sounding instruments [6]. With the continuous progress of research,
the retrieval of atmospheric temperature and humidity profiles using satellite infrared
hyperspectral data has become relatively mature, but the research on gas composition
profiles still needs to be gradually explored. In the following content, we will introduce
the current means and methods of mining atmospheric composition information using
infrared hyperspectrum.

The gases have varying absorption abilities for spectral radiation at different
wavelengths [7]. For example, O3 has the strongest absorption band at 9.6 µm, and CO
shows strong absorption at 4.67 µm, while CH4 has strong absorption bands at 3.31 µm and
7.66 µm [8]. In order to account for the differing sensitivities of gas components across
various spectral bands, it is typically necessary to conduct channel selection beforeretrieval.
At present, there are several channel selection methods, which can be roughly divided into
two groups. The first group utilizes a weighting function-based selection approach, such as
the data accuracy matrix method and the Jacobian method. These methods primarily focus
on the sensitivity of each channel to atmospheric parameters but may not always fully
consider the effects stemming from channel noise, background fields, and specific retrieval
techniques. The second group involves channel selection methods based on information
capacity, including the degrees of freedom and information content analysis method, the
constant iteration method, and the atmospheric retrievable index method [9].

Some international scholars have utilized infrared hyperspectral instruments such as
CrIS [10], IASI [11], and AIRS [12] to retrieve gas composition profiles or column concen-
trations. Related products have been verified to be accurate on the ground and applied to
some numerical forecast models [13–16]. Currently, algorithms for retrieving atmospheric
profiles based on satellite-based infrared hyperspectral retrieval comprise physical retrieval
methods and statistical regression algorithms such as deep learning [6]. Physical retrieval
methods commonly used include the onion peeling algorithm and the optimization method.
Despite its fast pace, the onion peeling algorithm is prone to accumulating errors from
the upper layer, leading to lower retrieval accuracy. On the other hand, the optimization
algorithm requires a precise calculation of the radiation transmission model and Jacobian
matrix, which can be time-consuming and needs prior information input. The accuracy of
this inputted information directly impacts the retrieval result’s accuracy.

The channel selection method and physical retrieval algorithms were widely used in
numerous studies on infrared hyperspectral. Rodger [17] proposed an information-based
hyperspectral remote sensing channel selection method that combines prior knowledge
about atmospheric composition profiles with observed data to obtain optimal estimations
of the true profile and its error covariance. Cyril [18] developed the optimal sensitivity
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profile method for AIRS, which selects 43 channels for CO2 retrieval and has demonstrated
its effectiveness for other trace gases, such as CO and CH4. Using the Reference Forward
Model (RMF), Zhong [19] simulated the weight function of atmospheric pollution gas
volume mixing ratio in the limb detection mode of a hyperspectral instrument. Meanwhile,
Li [20] and Zhang [21] employed information entropy analysis to select channels from the
spectrum and employed a one-dimensional variational retrieval method to obtain the atmo-
spheric temperature and humidity profiles from HIRAS observation data. Wang [22], on
the other hand, used a weighted function based on various ozone channels and their inter-
fering components in combination with an information entropy method to perform channel
selection and estimate ozone profiles using the optimal estimation method. Zhang [9]
proposed a channel selection method based on peak sampling, considering both channel
sensitivity and weight function characteristics, for retrieving CO profiles from hyperspec-
tral infrared data. The RMSE of the retrieval result for CO profiles in the Alxa region during
winter was found to be 3.07 × 10−8 kg/kg. Wang [23] utilized the empirical orthogonal
function method to retrieve the vertical profile of CO in the atmosphere using infrared
hyperspectral data from the CrIS satellite, consistent with the verification set. Noel [24]
combined the onion stripping algorithm with the Weighting Function Modified Differen-
tial Optical Absorption Spectroscopy (WFM-DOAS) algorithm, using the 1.559~1.671 µm
band to retrieve the stratospheric CH4 profile. The retrieval accuracy was found to be
between 5 to 10 percent. Zhang [25] proposed a model for estimating methane profiles
using Empirical Orthogonal Function (EOF) based on spaceborne hyperspectral infrared
observations with a relative RMSE of less than 2.5%. Zhou [26] and Song [27] quantified
the errors associated with CH4 measurements in the infrared spectrum and highlighted
that precise estimates of temperature, and the gases overlapping the measurement of CH4,
can enhance the accuracy of CH4 retrieval. Deng [28] implemented an effective and precise
forward modeling retrieval algorithm based on several sensitivity studies, and most CH4
retrieval mistakes were under 1%. The core of the optimization method in physical retrieval
algorithms is a forward model based on a fast radiative transfer mode. In retrieving a single
observation sample, the radiative transfer mode must calculate satellite-simulated radiation
and the more time-consuming Jacobian matrix. Furthermore, the entire calculation process
is time-consuming as satellite forward calculations must be based on multiple forward
models. However, convolutional neural networks have been gradually introduced into
numerical weather forecasting and remote sensing satellite retrieval due to their adaptive,
self-organizing, and real-time learning features. They can obtain the best model of satellite
observation data and gas profile information without relying on complex atmospheric
radiative transfer processes [29]. Currently, there is an abundance of literature on using
neural networks to retrieve temperature and humidity profiles from infrared hyperspectral
data, but only a limited amount of literature exists regarding the retrieval of gas profiles.
Zhang [30] and Liu [31] employed artificial neural networks (ANN) to retrieve atmospheric
temperature and humidity profiles in their early studies and found that the neural net-
work method yielded higher retrieval accuracy compared to the eigenvector statistical
method. Huang [32] combined an artificial neural network algorithm with an improved
one-dimensional variational algorithm to retrieve temperature profiles for the Advanced
Geostationary Radiation Imager of FengYun-4A (FY-4A/GIIRS) data at various atmospheric
pressure layers. Yao [33] established CNN and U-NET networks based on GIIRS to retrieve
temperature and humidity profiles. Results show that the U-NET algorithm has signifi-
cantly improved retrieval across all altitudes compared to the CNN algorithm. Xue [34]
developed 1D-CNN and 3D-CNN models based on GIIRS to retrieve temperature and
humidity profiles. It shows that the retrieval results near the ground were lower, while
accuracy gradually improved with increased altitude. Neural networks have been used
for the retrieval and prediction of gas column concentrations, as evidenced by previous
studies [35–37]. Moreover, Jarosawski [38] demonstrated that the neural network retrieval
of a 10-layer O3 profile and comparison with site data led to greater consistency than when
using Umkehr’s method.
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Through the above analysis, although the physical retrieval method and neural net-
work method have made some achievements in the application of the infrared hyper-
spectrum, there are currently few research works available in the literature on gas profile
retrieval. It is of great significance to further explore the application ability of the infrared
hyperspectrum. In addition, it can furnish precise initial values for numerical prediction
models and serve as a reference for producing Fengyun satellite products. This study
utilized FY-3E/HIRAS-II to calculate the retrieval of atmospheric component profiles and
conduct a preliminary exploration of the changes, distribution, and concentration of im-
portant gas components including O3, CH4, and CO throughout the atmosphere. Since
providing accurate initial values for numerical prediction models is one of the tasks of satel-
lite atmospheric retrieval applications, this experiment compared the obtained component
profiles with the forecast data produced by the current international advanced numerical
prediction model to verify the correctness and accuracy of the retrieval results. Additionally,
the retrieval results were compared with those of similar instruments currently in orbit
internationally to verify their consistency.

2. Materials and Methods
2.1. Datasets

In this experiment, we used the infrared hyperspectral data of FY-3E/HIRAS-II during
in-orbit testing for atmospheric composition retrieval. Given the scarcity of actual measure-
ment data for the vertical profiles of component gases, it was necessary to fully consider
the insufficient sample size during the construction of the neural network. In order to
ensure the accuracy of the training set output, ERA5 (O3) and EAC4 (CO, CH4) reanalysis
data released by European Centre for Medium-Range Weather Forecasts (ECMWF) in
Europe were used as label data for this experiment. Verification and comparison results
were obtained by comparing GFS forecast data (O3), WACCM climate data (CO, CH4), and
component profile data products for AIRS (O3, CO, CH4) and for IASI (O3, CO). Using
these methods can improve the reliability and accuracy of the experiment, thus enabling
more effective evaluation of the model’s performance. The relevant datasets are shown in
the following Table 1.

Table 1. Retrieval of the dataset for each gas composition.

O3/Level CO/Level CH4/Level

Training/Validation Set HIRAS-II - HIRAS-II - HIRAS-II -
ERA5 37 EAC4 25 EAC4 25

Product Set
AIRS 28 AIRS 28 AIRS 28
IASI 101 IASI 19

Forecast Set
WACCM 88 WACCM 88 WACCM 88

GFS 41

2.1.1. FY-3E/HIRAS-II

On 5 July 2021, the FY-3E satellite was successfully launched, becoming the world’s
first weather satellite in a civil dawn–dusk orbit. It carries the HIRAS-II [39], an infrared
hyperspectral atmospheric detection instrument developed by the Shanghai Institute of
Technical Physics, Chinese Academy of Sciences. [40]

In this experiment, we used FY-3E/HIRAS-II Level 1 satellite data (http://satellite.
nsmc.org.cn/portalsite/default.aspx, accessed on 15 April 2023). The area selected for
the experiment is the sea area south of India (25◦N~25◦S, 45◦E~100◦E), and the selected
time interval is the on-orbit testing period during winter, from 21 December 2021 to
18 January 2022. Table 2 shows the spectral characteristics and related parameters of FY-
3E/HIRAS-II Level 1 (the data obtained from the website is unapodized, and more details
can be found in https://satellite.nsmc.org.cn/PortalSite/StaticContent/FileDownload.
aspx?CategoryID=1&LinkID=553, accessed on 15 April 2023). FY-3E/HIRAS-II has three

http://satellite.nsmc.org.cn/portalsite/default.aspx
http://satellite.nsmc.org.cn/portalsite/default.aspx
https://satellite.nsmc.org.cn/PortalSite/StaticContent/FileDownload.aspx?CategoryID=1&LinkID=553
https://satellite.nsmc.org.cn/PortalSite/StaticContent/FileDownload.aspx?CategoryID=1&LinkID=553
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bands for longwave, mediumwave, and shortwave, with a total of 3041 spectral channels
ranging from 650–2550 cm−1, the instrument is capable of infrared-wide-spectrum con-
tinuous hyperspectral detection as well as high-precision calibration. Each detector array
contains 9 detector bands that observe the target region simultaneously. Furthermore, each
probe element has an opening angle of 1◦, corresponding to an instantaneous field of view
of each probe unit to be about 14 km at its lowest point [41–43].

Table 2. FY-3E/HIRAS-II spectral characteristics and detection indicators.

Performance and
Parameters

Wavenumber (cm−1)
Spectral

Resolution
(cm−1)

Number of Channels

Unapodized Apodized

Spectral
Characteristics

Long Wave 650–1168.125
(15.38–8.56 µm) 0.625 834 830

Medium Wave 1 1168.75–1920
(8.55–5.20 µm) 0.625 1207 1203

Medium Wave 2 1920.625–2550
(5.20–3.92 µm) 0.625 1012 1008

Detection
Indicators

Scan cycle 8 ± 0.1 s
Field of view 1◦

Pixel/scan line 252(28 × 9)
Maximum scanning angle ±(50.4 ± 0.1) ◦

Spectral calibration accuracy 7 ppm

2.1.2. ERA5 and EAC4 Reanalysis Data

The training set labels were determined based on selected gas datasets in this experi-
ment. To be more specific, the O3 dataset used was obtained from ERA5 reanalysis datasets
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels, ac-
cessed on 15 April 2023) that were post-processed and combined with different types of
observation data. The dataset comprises 37 layers and has a time resolution of 1 h. Then,
the CH4 and CO datasets were primarily derived from the EAC4 reanalysis data (https:
//ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4, accessed
on 15 April 2023), which were used as the training output in this experiment. EAC4 is
the fourth generation of global atmospheric composition reanalysis data of the ECMWF,
which is mainly based on physical and chemical models of atmospheric radiation and
incorporates global observations. Similar to ERA5, it provides post-processed data every
3 h globally, and there are 25 pressure levels in total. The retrieval layers of O3, CO, and
CH4 in this experiment were consistent with the levels of gas profiles corresponding to
ERA5 and EAC4.

2.1.3. WACCM Forecast Data

The WACCM climate model data use the CESM (Community Earth System Model)
from the National Center for Atmospheric Research (NCAR) as their numerical framework
and incorporate observations and modeling of the upper atmosphere from HAO (High
Altitude Observatory), middle atmosphere observations and modeling from ACOM (At-
mospheric Chemistry and Modeling), and global climate observations from Climate Global
Dynamics (CGD) tropospheric modeling. The dataset has 88 barometric layers and focuses
on atmospheric vertical information. Some scholars consider the data produced by this
climate model as background field data or the initial guess value of the physical retrieval
method. This study primarily used CO and CH4 background forecast data in the WACCM
climate model data (https://rda.ucar.edu/datasets/ds313.6/dataaccess/, accessed on
15 April 2023) to compare the accuracy of retrieval results. The spatial resolution of the
dataset is 0.9◦ × 1.25◦, and the temporal resolution is 6 h, which is similar to the timing of
the test set. In this paper, we selected the O3, CH4, and CO profiles of WACCM to compare
the retrieval results using a similar timing to that of the test set.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4
https://rda.ucar.edu/datasets/ds313.6/dataaccess/
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2.1.4. GFS Forecast Data

The GFS forecasting data (https://www.ncei.noaa.gov/data/global-forecast-system/
access/grid-004-0.5-degree/analysis, accessed on 15 April 2023) produced by the National
Center for Environmental Prediction (NCEP) are used in this experiment. The data have
a forecast time of 6 h and a spatial resolution of 0.5◦. The GFS O3 profile was selected to
compare the retrieval results using a similar timing to that of the test set.

2.1.5. AIRS Product Data

The main purpose of the dataset (available at https://disc.gsfc.nasa.gov/datasets/
AIRS2RET_7.0/summary?keywords=AIRS2RET_7.0, accessed on 15 April 2023) is to pro-
vide AIRS secondary products with temperature and humidity profiles, as well as contour
lines for O3, CH4, and CO profile. This dataset includes two sets of retrieval data, one
for ascending orbit and another for descending orbit, which are updated daily. The stan-
dard data products are issued 72 h after the L1 (Level 1) data, and the spatial resolution
is 1◦ × 1◦. Some parameters are calculated using the optimal estimation in the physical
retrieval algorithm. In this study, we selected O3, CH4, and CO profile parameters from
the AIRS L2 (Level 2) products for comparing the retrieval results. The time frame of the
dataset matches that of the test set.

2.1.6. IASI Product Data

The primary objective of IASI (Infrared Atmospheric Sounding Interferometer) is to
procure atmospheric emission spectrum data and high-resolution secondary product data
(https://archive.eumetsat.int/usc/UserServicesClient.html, accessed on 15 April 2023)
that provide accurate temperature and humidity distribution information. The instrument
is also capable of detecting trace gases, including O3, N2O, CO2, and CH4, and obtaining
data on land and ocean surface temperature, emissivity, and cloud characterization. In this
study, we selected O3 and CO profiles from the secondary products of the IASI to compare
the retrieval outputs. The time frame of the dataset matches that of the test set.

2.2. Data Preprocessing

Figure 1 shows the framework diagram for the neural network (CNN and UNET)
retrieval of atmospheric component gas profiles in this experiment. The retrieval was
achieved with advances in data preprocessing, including observations from HIRAS-II,
reanalysis data, and forecast background data, as well as secondary products from AIRS and
IASI. Specific data preprocessing methods include the thresholding of HIRAS-II observation
data, selection of clear sky ocean sample points, and interpolation calculation of AIRS
reanalysis data products. These advancements demonstrate the effectiveness of the neural
network approach in atmospheric component gas profiles retrieval.

(1) Spectral Apodization
The channel spectral response function of hyperspectral detectors is difficult to mea-

sure directly in the laboratory due to the narrow detection band of each channel. Instead,
a sinc-like function is commonly used to simulate the channel spectral response function of
the interferometer without apodization. However, the sinc-like function produces sidelobes
on both sides of the main peak, leading to inaccuracies in spectral simulation. In order to
reduce this effect, apodization is required on the L1 data of HIRAS-II. Apodized on the
interferogram is equivalent to multiplication by a gradual Hamming window function,
while thresholding on the spectrum is equivalent to smoothing processing. Therefore,
a Hamming function was selected as the apodization function for HIRAS-II L1 data [44].
The specific calculation formulas are as follows:

Radn = 0.23 × Radn−1 + 0.54 × Radn + 0.23 × Radn+1 (1)

where Radn is the radiation value when the index is n in a spectrum sample.

https://www.ncei.noaa.gov/data/global-forecast-system/access/grid-004-0.5-degree/analysis
https://www.ncei.noaa.gov/data/global-forecast-system/access/grid-004-0.5-degree/analysis
https://disc.gsfc.nasa.gov/datasets/AIRS2RET_7.0/summary?keywords=AIRS2RET_7.0
https://disc.gsfc.nasa.gov/datasets/AIRS2RET_7.0/summary?keywords=AIRS2RET_7.0
https://archive.eumetsat.int/usc/UserServicesClient.html
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Figure 1. Retrieval system for gases profiles by FY-3E/HIRAS-II.

Figure 2 depicts the spectrum of FY-3E/HIRAS-II with and without apodization. The
solid black line shows the spectral brightness temperature without apodization, while the
solid red line shows the spectral brightness temperature after apodization. As shown in
the figure, apodization results in a smoother spectrum [21].
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(2) Bright Temperature Conversion
The radiation value is converted into a brightness temperature value using Planck’s

formula. The specific calculation formulas are as follows:

u(λ, T) =
8πhc

λ5 · 1

e
hc

λkT − 1
(2)

where u(λ, T) represents the total energy of radiation with wavelength λ and thermody-
namic temperature T, k is the Boltzmann constant, h is the Planck constant, and c is the
speed of light.



Remote Sens. 2023, 15, 2931 8 of 28

(3) Clear Sky Area Screening
The high intensity of infrared background radiation from clouds significantly affects

the accuracy of retrieval for gas profiles in the infrared spectral region. Therefore, cloud
removal processing is necessary for spectral data. In this research, clear sky samples
without clouds are selected using a screening process using part of the longwave spectrum
of FY-3E/HIRAS-II, which differs from usual research that employs a cloud detection
algorithm on the same platform. Clear sky samples are judged based on the observation
data of five representative infrared channels (810 cm−1, 830 cm−1, 850 cm−1, 870 cm−1,
890 cm−1) in the longwave window area. The selected samples must have a spectral
brightness temperature greater than 290 K to ensure that the sample point is definitely a
clear sky sample [21,45].

(4) Spatio-Temporal Matching
The ultimate training and test sets were determined by the pixels through clear

sky screening. Due to the differences in the temporal and spatial resolutions between
reanalysis, forecast, secondary satellite product, and HIRAS-II observation data sources, it
is necessary to utilize the time, latitude, and longitude of observation samples as a reference
for interpolation. This method performs spatio-temporal matching and pressure layer
interpolation on data from other sources.

Specifically, (1) in temporal matching: on account of ERA5, EAC4, GFS, and WACCM
datasets having uniform distribution of time and space, we selected time-matched data by
linear interpolation from similar time periods before and after the sample point. However,
since AIRS and IASI instruments have a limited number of revisits to the same area within
a day, we collected data in the vicinity of the sample point as approximate time-matched
data; (2) in spatial matching: currently, four commonly used spatial interpolation meth-
ods are bilinear interpolation, nearest neighbor interpolation, inverse distance weighting
method, and cubic spline interpolation (Cubic). However, the nearest neighbor interpo-
lation method is prone to cause discontinuity of the data due to its sawtooth effect. The
remaining three interpolation methods are superior and more appropriate for spatial inter-
polation. In this experiment, spatial interpolation of reanalysis data, forecast data, AIRS,
and IASI data were performed by cubic spline interpolation (Cubic) based on the latitude
and longitude of HIRAS-II sample points; (3) in hierarchical interpolation: the approach
was utilized to linearly interpolate the O3 profile to 37 layers and the CH4 and CO data
to 25 layers of EAC4 based on the stratification of the reanalysis data. In addition, for
data with a hierarchy range less than that of the reanalysis data, interpolation was only
performed within the appropriate hierarchy range.

2.3. Channel Selection

The channel sensitivity analysis of HIRAS-II was carried out based on the perturbation
information of the retrieval accuracy of the international part of the gas at present. The
spectral sensitive position of the gas was determined first, and then the improved channel
algorithm for OSP (the Optimal Sensitivity Profile method) was employed to optimize the
channels. In this experiment, the channel selection is based on the noise estimation DS
NEDT (Deepspace Noise Equivalent Delta Temperature) and gas Jacobi matrix simulated
by RTTOV during the FY-3E/HIRAS-II in-orbit test, and DS NEDT was derived from the
FY-3E/HIRAS-II L1 dataset.

Using the FY-3E/HIRAS sensor coefficient file given by RTTOV, the brightness tem-
perature values of each infrared channel of HIRAS are calculated. Based on this, the
micro-perturbation is carried out according to the retrieval accuracy of the current related
gas [46], which are CO (10%), N2O (2%), CH4 (10%), H2O (20%), O3 (10%), CO2 (1%), T
(1 K), and Tsurf (1 K), which were used to exhibit the level of the response the changes
in atmospheric composition parameters. The simulated brightness temperature’s change
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value is utilized to represent the response value of each channel concerning the atmospheric
parameters perturbation, according to the given equation:

∆BTj(v) = BT
(
X0 + δXj

)
− BT(X0) (3)

In the formula, BT epresents the simulated brightness temperature calculated by RT-
TOV, X0 epresents the original atmospheric composition information of the reanalysis data,
δXj represents the disturbance amount of the atmospheric composition information j, and
the change value of the simulated observed brightness temperature ∆BTj(v) represents the
variation of each atmospheric parameter in different wavenumber channels sensitivity [47].

In the experiment, the absorption position of some gases in the infrared spectral region
and the brightness temperature change brought about by disturbing the gas content are
shown in Figure 3 below.
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Figure 3. Channel sensitivity analysis by FY-3E/HIRAS-II.

After determining the spectral position of the sensitive channel, the improved al-
gorithm for OSP was used for channel optimization, which combined the DS NEDT of
HIRAS-II and the Jacobian matrix of different gases obtained by the partial derivative.
After the lateral selection of spectral position and the longitudinal selection of sensitive gas
layer, the optimal channel of different gases is finally determined. The improved algorithm
for OSP channel selection works as follows: First, the algorithm selects the channel with
the largest Jacobian peak in different pressure layers to be the first channel. Secondly, it
calculates the signal-to-noise ratio (SNR) of each channel and excludes channels in which
the target gas is less than the DS NEDT. Then, the algorithm uses the SNR of the first
channel in each pressure layer as a threshold and excludes channels with a Jacobian peak at
the same height but with an SNR lower than the threshold. This ensures that more similar
channels are excluded, and information redundancy between channels is avoided.

As shown in Figure 4, (a) the channel selected by O3 with concentration of channels
ranging between 1000 cm−1 and 1080 cm−1, exhibiting low interference from other gases;
(b) it shows that the preferred channels for CO are located between 2080 cm−1 and
2200 cm−1; (c) the channel selected by CH4 is primarily located within the channel se-
lected, ranging between 1240 cm−1 and 1360 cm−1. It can be seen that both CO and CH4
are greatly affected by water vapor absorption. Eventually, we selected 96 groups of O3 ab-
sorption channels, 76 groups of CO absorption channels, and 150 groups of CH4 absorption
channels in the experiment, with the detailed bands shown in Table 1.



Remote Sens. 2023, 15, 2931 10 of 28

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 31 
 

 

 
Figure 3. Channel sensitivity analysis by FY-3E/HIRAS-II. 

After determining the spectral position of the sensitive channel, the improved algo-
rithm for OSP was used for channel optimization, which combined the DS NEDT of 
HIRAS-II and the Jacobian matrix of different gases obtained by the partial derivative. 
After the lateral selection of spectral position and the longitudinal selection of sensitive 
gas layer, the optimal channel of different gases is finally determined. The improved al-
gorithm for OSP channel selection works as follows: First, the algorithm selects the chan-
nel with the largest Jacobian peak in different pressure layers to be the first channel. Sec-
ondly, it calculates the signal-to-noise ratio (SNR) of each channel and excludes channels 
in which the target gas is less than the DS NEDT. Then, the algorithm uses the SNR of the 
first channel in each pressure layer as a threshold and excludes channels with a Jacobian 
peak at the same height but with an SNR lower than the threshold. This ensures that more 
similar channels are excluded, and information redundancy between channels is avoided. 

As shown in Figure 4, (a) the channel selected by O3 with concentration of channels 
ranging between 1000 cm⁻¹ and 1080 cm⁻¹, exhibiting low interference from other gases; 
(b) it shows that the preferred channels for CO are located between 2080 cm−1 and 2200 
cm−1; (c) the channel selected by CH4 is primarily located within the channel selected, 
ranging between 1240 cm⁻¹ and 1360 cm⁻¹. It can be seen that both CO and CH4 are greatly 
affected by water vapor absorption. Eventually, we selected 96 groups of O3 absorption 
channels, 76 groups of CO absorption channels, and 150 groups of CH4 absorption chan-
nels in the experiment, with the detailed bands shown in Table A1. 

 
(a) 

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 31 
 

 

 
(b) 

(c) 

Figure 4. The preferred channel of atmospheric component gases. (a) O3 (b) CO (c) CH4. 

2.4. Neural Network Model and Experimental Process 
This paper develops network models for O3, CO, and CH4 using widely-used fully 

convolutional neural networks (CNN and UNET).  
(1) CNN Model 

Convolutional neural network (CNN) provides an end-to-end learning model whose 
parameters can be trained by gradient descent method, and CNN can learn the deep fea-
tures of the samples. The CNN model structure [33,48] is displayed in Figure 5 and in-
cludes one input layer (brightness temperature data), four convolutional layers, two pool-
ing layers (using average pooling), one fully connected layer, and one regression output 
layer. The input data are the brightness temperature data derived after optimizing the 
infrared hyperspectral channel from FY-3E/HIRAS-II. The first three convolutional layers 
comprise convolution, normalization, and rectified linear unit (ReLU) activation func-
tions. Batch normalization operations stabilize the data following the convolution opera-
tion and nonlinearity of the activation function is utilized for feature extraction. In partic-
ular, the activation function enhances the network’s nonlinear fitting capacity. Although 
the initial convolutional layer demonstrates the ability to learn shallower features, the 
higher-level convolutional layers were capable of gaining more abstract feature infor-
mation. Finally, the regression output layer of the training set represents the reanalysis 
profile information from ERA5 and EAC4. 

Figure 4. The preferred channel of atmospheric component gases. (a) O3 (b) CO (c) CH4.

2.4. Neural Network Model and Experimental Process

This paper develops network models for O3, CO, and CH4 using widely-used fully
convolutional neural networks (CNN and UNET).

(1) CNN Model

Convolutional neural network (CNN) provides an end-to-end learning model whose
parameters can be trained by gradient descent method, and CNN can learn the deep
features of the samples. The CNN model structure [33,48] is displayed in Figure 5 and
includes one input layer (brightness temperature data), four convolutional layers, two
pooling layers (using average pooling), one fully connected layer, and one regression output
layer. The input data are the brightness temperature data derived after optimizing the
infrared hyperspectral channel from FY-3E/HIRAS-II. The first three convolutional layers
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comprise convolution, normalization, and rectified linear unit (ReLU) activation functions.
Batch normalization operations stabilize the data following the convolution operation and
nonlinearity of the activation function is utilized for feature extraction. In particular, the
activation function enhances the network’s nonlinear fitting capacity. Although the initial
convolutional layer demonstrates the ability to learn shallower features, the higher-level
convolutional layers were capable of gaining more abstract feature information. Finally,
the regression output layer of the training set represents the reanalysis profile information
from ERA5 and EAC4.
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Figure 5. CNN model.

The specific network parameters of CNN are detailed in Table 3, which provides the
values of Nin and Nout representing the input and output channel dimensions, respectively.

Table 3. Detailed parameters of CNN model.

Layers Kernel Filters Stride Output Size

Input - - - 1 × Nin
Adapt - - - 1 × 128

Conv, BN, ReLU 1 × 5 32 1 32 × 1 × 128
Average Pooling 1 × 2 - 2 32 × 1 × 64
Conv, BN, ReLU 1 × 5 64 1 64 × 1 × 64
Average Pooling 1 × 2 - 2 64 × 1 × 32
Conv, BN, ReLU 1 × 5 64 1 64 × 1 × 32
Conv, BN, ReLU 1 × 5 64 1 64 × 1 × 32

Flatten - - - 1 × 2048
FC - Nout 1 × Nout

(2) UNET Network Model

In traditional CNN, features are extracted through the convolution layer and pooling
layer, and the final parameters are determined through back propagation. In this pro-
cess, shallow features are gradually discarded and deep features are mined. However,
the feature extraction steps of U-shaped network model (UNET) are relatively complex,
and can be divided into encoder and decoder. Through the skip-connection, a shallow
feature of samples can be retained, as well as deep features. The UNET network model
structure [49,50] is provided in Figure 6. The original structure included two-dimensional
layers, where various convolutional layers, pooling layers, and other function layers were
reduced for the purpose of reducing dimensions in this paper. Accordingly, we adopted
a shorter structure with shorter convolution layers and path lengths. The 1D-Unet inte-
grates two paths, the contraction path for localized feature extractions and the expansion
path for precise segmentation, and the contraction path is mainly composed of convolu-
tional and pooling layers, while the expansion path includes upsampling and convolutional
layers. This encoding–decoding-like nature involves information encoding and decoding
for output in a compressed and denoised manner. Meanwhile, the skip connection structure
assists in restoring information lost during the convolution pooling process. In practice,
this structure improves the accuracy of retrieval operations.
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Figure 6. UNET Network Model.

The specific network parameters of UNET are detailed in Table 4, which provides the
values of Nin and Nout, representing the input and output channel dimensions, respectively.

Table 4. Detailed parameters of UNET network model.

Layers Kernel Filters Stride Output Size

Input - - - 1 × Nin
Adapt - - - 1 × 128

Conv, BN, ReLU 1 × 3 32 1 32 × 1 × 128
Conv, BN, ReLU 1 × 3 32 1 32 × 1 × 128
Down-Sample 1 × 2 - 2 32 × 1 × 64

Conv, BN, ReLU 1 × 3 64 1 64 × 1 × 64
Conv, BN, ReLU 1 × 3 64 1 64 × 1 × 64
Down-Sample 1 × 2 - 2 64 × 1 × 32

Conv, BN, ReLU 1 × 3 128 1 128 × 1 × 32
Conv, BN, ReLU 1 × 3 128 1 128 × 1 × 32
Down-Sample 1 × 2 - 2 128 × 1 × 16

Conv, BN, ReLU 1 × 3 256 1 256 × 1 × 16
Conv, BN, ReLU 1 × 3 128 1 128 × 1 × 16

Up-Sample 1 × 3 128 2 128 × 1 × 32
Skip-Connection - - - 265 × 1 × 32
Conv, BN, ReLU 1 × 3 128 1 128 × 1 × 32
Conv, BN, ReLU 1 × 3 128 1 128 × 1 × 32

Up-Sample 1 × 3 128 2 64 × 1 × 64
Skip-Connection - - - 64 × 1 × 32
Conv, BN, ReLU 1 × 3 64 1 64 × 1 × 64
Conv, BN, ReLU 1 × 3 64 1 64 × 1 × 64

Up-Sample 1 × 3 32 2 32 × 1 × 128
Skip-Connection - - - 64 × 1 × 128
Conv, BN, ReLU 1 × 3 32 1 32 × 1 × 128

Conv 1 × 1 1 1 1 × 1 × 128
FC - Nout - 1 × Nout



Remote Sens. 2023, 15, 2931 13 of 28

Throughout the convolutional neural network’s training process, the training input
consists of satellite observation brightness temperature data from the preferred channel,
while the label comes from the corresponding reanalysis data, and the output is the profile
of the retrieval. In addition, the test set inputs are satellite observations that are independent
of the training samples and are recorded at a lagged time than the training data. During
the training, the loss function is used to calculate the difference between the network
output and the label. The training process involves iteratively propagating the loss function
backward, updating weights using derivatives, and continually reducing the loss function.
Specifically, the experiment used the RMSE function as the loss function.

3. Result
3.1. Analytical Method

In this experiment, we selected clear-sky sample data from FY-3E/HIRAS-II in the
sea area south of India (25◦N~25◦S, 45◦E~100◦E) during on-orbit operation and divided
them chronologically into a training set and test set. Figure 7a shows the distribution
of the training samples of FY-3E/HIRAS-II with the 890 cm−1 spectral brightness and
temperature after clear sky pixel selection. Figure 7b shows the distribution of the test
samples of FY-3E/HIRAS-II with an 890 cm−1 observation brightness and temperature
after pixel selection for the test set. The input data of the neural network are the spectral
brightness and temperature data selected by FY-3E/HIRAS-II through its spectral channel.
Meanwhile, the label data correspond to the gas composition profile, matching time and
space with the ERA5 and EAC4 reanalysis data of FY-3E/HIRAS-II. Finally, the output
data are the gas composition profile obtained through neural network retrieval. Within the
training set, we selected the spectral brightness and temperature data of FY-3E/HIRAS-II
from 21 December 2021 to 9 January 2022, having a total of 67,472 spectral samples. We
randomly divided the verification set, which constituted 20% of these spectral samples,
for performance evaluation during the training process. Within the test set, we selected
spectral brightness and temperature data of FY-3E/HIRAS-II from 10 to 18 January 2022,
totaling 15,315 samples.
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This experiment applied MPE and RMSE to compare and analyze the accuracy of
retrieval outcomes. Meanwhile, we utilized the determination coefficient (R2) to evaluate
the effectiveness of the model. The specific calculation formulas are as follows:

MPE =
∑N

i=1 (ŷi − yi)/yi

N
× 100% (4)
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RMSE =

√
∑N

i=1(ŷi − yi)
2

N
(5)

R2 = 1 − ∑N
i=0(ŷi − yi)

2

∑N
i=0(y − yi)

2 (6)

where ŷi denotes the inverted value, yi represents the actual value, and N pertains to the
number of samples.

3.2. Evaluation of Model Training and Test

In this study, network models were constructed for various gases, and different models
were employed to perform retrieval calculations on the corresponding gas composition
profiles. Ultimately, the profiles for O3, CO, and CH4 were determined and verified using
relevant data. The accuracy of retrieval results was analyzed from the model verification
effect and the retrieval results of gas composition comparison.

In this paper, CNN and UNET models were built for the three gas components. We
preprocessed sea surface clear sky samples in the target area, trained the network with
the validation and training sets, and used the test set to run retrieval calculations of the
model. Figure 7 shows scatter plots of the concentration of each of the three gas components
compared to label data (ERA5 and EAC4). As shown in Figure 8, in subfigure (a), the x-axis
and y-axis, respectively, represent the model output data of the validation set in the training
set and its corresponding label data; in subfigure (b), the horizontal and vertical coordinates,
respectively, represent the model output data of the test dataset and its corresponding label
data. The units for these coordinates are kg/kg of gas concentration. The CNN model
results are represented by the blue scatter plot, while the green scatter plot represents the
UNET model results.
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As shown in Figure 8, due to the large concentration difference between different
levels of O3, there is a stratification phenomenon among the samples, and most of the data
are concentrated near the red line in both the training set and the test set. In this experiment,
the centralized overall evaluation indicators of O3 were counted. CNN and UNET models
performed similarly, with decision coefficients greater than 0.998 on the validation set and
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greater than 0.996 on the test set. These results suggest strong generalization ability without
any clear signs of overfitting. Among them, the generalization ability of the CNN network
for retrieval O3 is slightly better than that of UNET.

When comparing the scatter plots in Figure 9, it becomes apparent that some sample
points and lines diverge more. Retrieval results for the test set within the range of 0–700 hPa
for both the CNN and UNET models were found to have determination coefficients (R2)
of 0.920 and 0.912, which are some gaps with the indicator results of the validation set.
Additionally, Table 5 presents the evaluation indexes of the retrieval data at various lev-
els. The determination coefficients of the retrieval results for the test set are superior to
0.9 before 700 hPa and below 1 × 10−8 kg/kg for the RMSE. Table 3 shows that the data
of each index decrease as the middle and lower troposphere, ranging from 700 hPa to
1000 hPa, near the surface. These decreases could be attributed to the influence of wa-
ter vapor, and additionally, the fitting of CO is impacted by significant changes in the
concentration of lower pressure layers, including the surface state.
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Figure 10 demonstrates that the scatter plots of the test set samples were relatively
concentrated. The R2 for the CNN model and the UNET model are 0.9814 and 0.9767,
respectively, comparable to the results of the validation set. The overall ME and MPE
indices of both models are very low, and the MPE being less than 0.1% suggests uniformity
in the CH4 retrieval data, indicating that the model’s overall results are relatively ideal.
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Overall, the performance results of the typical CNN and the representative UNET
network model with deep and shallow feature links are comparable. The results suggest
that, while UNET is marginally better than CNN at extracting sample features, its general-
ization ability is slightly inferior to that of CNN, and both models achieved great results.
The experiment that employed a neural network to retrieve O3 and CH4 gas composition
profiles showed good results. Although the retrieval of CO also achieved good results in
the range of 0 to 700 hPa, the retrieval results in the range of 700 to 1000 hPa were worse,
and the divergence from the real point was high.

3.3. Analysis of O3 Retrieval Results

The retrieval results of the experimental area are averaged by the atmospheric pressure
layer, demonstrating the changing trend of O3 profile’ concentration at various levels
throughout the region. Figure 11 depicts that when the atmospheric pressure layer ranges
between 100~1000 hPa, the average O3 concentration is less than 10−7 kg/kg. The O3
concentration profile changes more obviously above 80 hPa and reaches the concentration
peak near the atmospheric pressure layer of 10 hPa. As a whole, the concentration of the
O3 profile shows a rapid increase at first, a rapid decrease, and finally, a low and stable
concentration from the top to the bottom of the atmosphere. In the figure, the green line
represents the O3 reanalysis concentration profile of the label ERA5 data. Meanwhile, the
blue lines marked differently depict the O3 concentration profile of two distinct satellite
instrument products. Similarly, the purple lines marked differently represent the O3
concentration profile of two forecast datasets. The color markers in the subsequent figures
will have identical meanings. The retrieval results show an overall consistency with the
trend of the entire layer in both the satellite product data and the forecast data.
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3.3.1. Comparison of O3 between Retrieval Results and Forecast Data

As one of the primary objectives of atmospheric composition retrieval is to produce
precise initial values for global numerical prediction models, which incorporate atmo-
spheric models and regional climate models, this experiment assessed the O3 retrieval
outcomes against advanced forecast model data.

As shown in Figure 12, compared with the data of ERA5, WACCM has positive
deviations in most layers; the absolute MPE of the whole layers is 18.69%, the maximum
absolute MPE is 45.48%, while the RMSE of the whole layers is 1.74 × 10−7 kg/kg, and the
maximum RMSE is 1.23 × 10 −6 kg/kg; as for the GFS, having negative deviations in most
levels, the absolute MPE of the whole layers is 15.08%, and the maximum absolute MPE is
27.13%, while the RMSE of the whole layers is 2.52 × 10−7 kg/kg, and the maximum RMSE
is 1.92 × 10−6 kg/kg; the absolute MPEs of the whole layers for CNN and UNET data
in relation to ERA5 data were 7.59% and 7.06%, with the maximum absolute MPE being
less than 15%. The RMSEs of the whole layers for CNN and UNET was 1.33 × 10−7 kg/kg
and 1.43 × 10−7 kg/kg, with the maximum RMSE below 7.5 × 10−7 kg/kg. The O3
profile concentration deviation from the neural network model was lower than that of both
forecast models.
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3.3.2. Comparison of O3 between Retrieval Results and Similar Satellite Products

In order to improve the credibility and reliability of the retrieval results, the Level-
2 products of AIRS and IASI were compared with the retrieval results. The O3 profile
products were obtained from the same transit experiment area as HIRAS-II and, within the
simultaneous period, were chosen. The number of pressure levels used for interpolation
was 37. Finally, the O3 profiles obtained from the retrieval results were compared with the
Level-2 products of AIRS and IASI, respectively.

In Figure 13, the absolute MPE of the whole layers and maximum absolute MPE values
for AIRS compared with ERA5 data were 11.90% and 31.35%, while the RMSE of the whole
layers and maximum RMSE values were 2.21 × 10−7 kg/kg and 1.14 × 10−6 kg/kg. As
for IASI, the absolute MPE of the whole layers and maximum absolute MPE values were
10.96% and 30.86%, while the RMSE of the whole layers and maximum RMSE values were
2.52 × 10−7 kg/kg and 9.20 × 10−7 kg/kg. The retrieval results were mostly superior to
the AIRS and IASI satellite products within the pressure range of 0~100 hPa. Within the
pressure range of 100~1000 hPa, where the O3 concentration values were smaller and closer
to zero, the MAE percentage and root mean square error of these datasets were acceptable.

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 31 
 

 

 
(a) (b) 

Figure 13. Comparison of O3 between retrieval results and similar satellite products: (a) MPE; (b) 
RMSE 

3.4. Analysis of CO Retrieval Results 
Similar to the previous operation, averaging the retrieval results of each atmospheric 

pressure layer within the experimental area can reflect the concentration trends of CO 
profiles at different levels in the region. The specific retrieval result is shown in Figure 14, 
which shows that the CO concentration was maintained at a low level within the top of 
the atmospheric pressure layer between 0 and 100 hPa. Between 150 and 700 hPa, the CO 
concentration increased to around 7 × 10−8 kg/kg and remained relatively constant, while 
the concentration of CO was relatively high in the part near the surface from 700 hPa to 
1000 hPa. The data from the two satellite products are consistent with the retrieval and 
other datasets in terms of magnitude, but differences exist in some pressure layers. In con-
trast, the retrieval results are much closer to the reanalysis and prediction data. 

 
Figure 14. CO profiles by different datasets. 

  

Figure 13. Comparison of O3 between retrieval results and similar satellite products: (a) MPE;
(b) RMSE.

3.4. Analysis of CO Retrieval Results

Similar to the previous operation, averaging the retrieval results of each atmospheric
pressure layer within the experimental area can reflect the concentration trends of CO
profiles at different levels in the region. The specific retrieval result is shown in Figure 14,
which shows that the CO concentration was maintained at a low level within the top of
the atmospheric pressure layer between 0 and 100 hPa. Between 150 and 700 hPa, the CO
concentration increased to around 7 × 10−8 kg/kg and remained relatively constant, while
the concentration of CO was relatively high in the part near the surface from 700 hPa to
1000 hPa. The data from the two satellite products are consistent with the retrieval and
other datasets in terms of magnitude, but differences exist in some pressure layers. In
contrast, the retrieval results are much closer to the reanalysis and prediction data.
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3.4.1. Comparison of CO between Retrieval Results and Forecast Data

Figure 15 shows that the concentration of CO in the upper atmosphere is low, which
can lead to a significant error percentage. After removing the influence of 0–50 hPa data,
the absolute MPE of the whole layers and maximum absolute MPE values for WACCM
compared with the data of EAC4 was 14.69% and 30.64%, while the RMSE of the whole
layers and maximum RMSE values were 3.34 × 10 −8 kg/kg and 9.69 × 10 −8 kg/kg. The
absolute MPEs of the whole layers for CNN and UNET data in relation to EAC4 data were
10.70% and 6.93%, with the maximum absolute MPE being less than 18%. The RMSEs of
the whole layers for CNN and UNET were 3.69 × 10−8 kg/kg and 3.77 × 10−8 kg/kg,
with the maximum RMSE below 1.4 × 10−7 kg/kg. The RMSE of the retrieval results
and the forecast data showed a gradual increase in value from 700 hPa to 1000 hPa, while
the absolute MPE had a small overall fluctuation. In this range, the effect of the retrieval
results is not as good as WACCM as well as the range from 200 to 500 hPa. It also indicates
that the sample points’ values are more distinct from the reanalysis data compared with
other pressure levels. The possible reason for this could be the substantial variation in the
concentration of near-surface CO.
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3.4.2. Comparison of CO between Retrieval Results and Similar Satellite Products

Since AIRS and IASI lack partial-level data information, they are not shown in
Figure 16. Consistent with the prior approach, data effects between 0 to 50 hPa need to be
removed. In the range of 50 to 900 hPa, the absolute MPE of the whole layers and maximum
absolute MPE values for AIRS compared with the data of EAC4 were 29.70% and 45.63%,
while the RMSE of the whole layers and maximum RMSE values were 4.01 × 10−8 kg/kg
and 1.20 × 10−7 kg/kg. As for IASI, the absolute MPE of the whole layers and maximum
absolute MPE values for AIRS compared with the data of EAC4 were 36.90% and 79.02%,
while the RMSE of the whole layers and maximum RMSE values were 4.26 × 10−8 kg/kg
and 8.65 × 10−8 kg/kg. On the other hand, in the range of 50 to 900 hPa, the absolute
MPEs of the whole layers for CNN and UNET data in relation to EAC4 data were 10.42%
and 7.93%, with the maximum absolute MPE being less than 18%, while the RMSEs of the
whole layers for CNN and UNET were 2.21 × 10−8 kg/kg and 2.22 × 10−8 kg/kg, with the
maximum RMSE below 7.5 × 10−8 kg/kg. The retrieval results of CO in the range of 50 hPa
to 900 hPa were better than those of AIRS and IASI product data. It should also be noted
that the trend shows an increasing error between AIRS and IASI near the surface, indicating
great challenges in retrieving CO from both pattern retrieval and statistical regression.
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3.5. Analysis of CH4 Retrieval Results

Figure 17 shows that the concentration of CH4 in the range of 100~1000 hPa within
the atmospheric pressure layer undergoes a stable fluctuation, maintaining an average con-
centration of around 1.0 × 10−6 kg/kg, while the concentration of 0~100 hPa in the upper
layer is relatively low. In terms of methane concentration, the forecast data and satellite
product data have shown higher values compared to the retrieval and reanalysis data.
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3.5.1. Comparison of CH4 between Retrieval Results and Forecast Data

As shown in Figure 18, the methane concentration obtained via model retrieval is
generally lower than that obtained via WACCM. After excluding the influence of 0–50 hPa
data, in the range of 50 to 900 hPa, the absolute MPE of the whole layers and maximum
absolute MPE values for WACCM compared with the data of EAC4 were 6.83% and 7.42%,
while the RMSE of the whole layers and maximum RMSE values were 6.94 × 10−8 kg/kg
and 8.77 × 10−8 kg/kg. The absolute MPEs of the whole layers for CNN and UNET data
in relation to EAC4 data were 0.62% and 0.70, with the maximum absolute MPE being less
than 1%. The RMSEs of the whole layers for CNN and UNET were 1.43 × 10−8 kg/kg and
1.43 × 10−8 kg/kg, with the maximum RMSE below 5.0 × 10−8 kg/kg. The retrieval of
CH4 resulted in a significant improvement compared to the WACCM forecast data.
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3.5.2. Comparison of CH4 between Retrieval Results and Similar Satellite Products

In Figure 19, similar to the comparison results of WACCM, the CH4 concentration
obtained by the model retrieval was generally lower than that obtained by AIRS. After
excluding the influence of 0~50 hPa data, in the range of 50 to 900 hPa, the absolute MPE
of the whole layers and maximum absolute MPE values for WACCM compared with the
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data of EAC4 were 5.30% and 8.07%, while the RMSE of the whole layers and maximum
RMSE values were 5.36 × 10−8 and 8.09 × 10−8 kg/kg. The retrieval of CH4 resulted in
a significant improvement compared to the AIRS data.
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4. Discussion

The FY-3E satellite is the fifth satellite under China’s second-generation polar orbit
meteorological satellite and the world’s first civil operational meteorological satellite in
sun-synchronous dawn and dusk orbit. The infrared hyperspectral payload HIRAS-II
is a crucial component of the FY-3E satellite, having great significance in developing
atmospheric remote sensing applications for it. This study employs FY-3E/HIRAS-II data
to retrieve atmospheric component gas profiles including ozone (O3), carbon dioxide (CO),
and methane (CH4). The physical method requires the computation of the complicated
atmospheric radiation transport equation and extensive auxiliary data that can be time-
consuming and laborious, limiting its ability for quick retrieval. However, neural networks
are increasingly utilized in atmospheric remote sensing as they possess the characteristics
of self-adaptation, self-organization, and real-time learning. This experiment demonstrates
that the application of atmospheric composition profile retrieval based on FY-3E/HIRAS-
II data can be realized quickly and in a timely fashion. We compared the results with
international advanced forecast data and international atmospheric products with similar
instrument loads. The results showed that the gas composition profile retrieved including
O3 andCH4 by the neural network model has evident accuracy advantages for most
pressure layers compared to both the forecast data (WACCM) and satellite product (AIRS
and IASI). As for the CO retrieval results, the error was higher than that of the forecast data
at the pressure level of 200~500 hPa and lower than that of similar satellite products with
most pressure levels. Based on the preliminary results, the retrieval experiment exhibits
high accuracy and a positive effect.

Here, are some things to discuss and analyze for the retrieval results. One factor that
affects the retrieval results is the sensitive channel of the gases. As depicted in Figure 4,
the CH4 channel close to 1306.2 cm−1 is minimally affected by other gases or water vapor,
resulting in the most accurate retrieval result for CH4, with a maximum percentage error of
less than 1%. Similarly, the O3-sensitive channel range between 1000 cm−1 and 1080 cm−1

reveals minimal disruption from gas signals, and the O3 sensitivity intensity is relatively
high, therefore producing favorable retrieval results, especially in the high concentration
range of 0–50 hPa. Relative errors derived from partial concentrations near zero are within
acceptable limits across other barometric layers. However, the impact of water vapor
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collection on CO remains significant in the sensitive channel range from 2080 cm−1 to
2200 cm−1. Although greater spectral resolution improves the information capacity of CO,
it can still result in relatively large errors during retrieval. On the other hand, analyzing the
distribution and errors of gas profiles from the top of the atmosphere to the surface reveals
that retrieval results are poorer near the surface, especially for CO. Crevoisierl [48] gave
a certain explanation for this problem: although infrared sounders provide comprehensive
spatio-temporal coverage and contribute significantly to our understanding of the three-
dimensional atmosphere, they are still limited in their sensitivity to the lower troposphere
near the surface.

Due to the absence of sounding data for O3, CO, and CH4, this study employs the
reanalysis datasets of ERA5 (O3) and EAC4 (CO, CH4) for comparison purposes. Although
this means that there are no measured data, the test and training sets are independent
of one another, and the test set data lag behind the training set, which is a reasonable
experimental design that has yielded positive retrieval results. However, this study has
a few limitations that must be addressed in future research.

(1) In this experiment, we selected sea surface data from a fixed geographic area with
a limited sample breadth in time and space. Considering the seasonal weather changes,
the passage of time may alter the sample spectrum data in the region. Additionally, dif-
ferent latitudes have varying distributions of certain gas concentrations, which requires
continued study. In the future, the potential of cloud computing can be leveraged to
perform distributed retrievals of global gas profiles, revealing the spatio-temporal vari-
ation characteristics of these component gases and augmenting the accuracy and speed
of retrieval.

(2) Compared with the traditional physical method of model retrieval, the current
statistical regression method, including a neural network, has a faster retrieval ability.
However, it is challenging to construct an efficient two-dimensional graphical structure due
to the need to eliminate samples of non-clear sky polluted by clouds. Retrieving only one
clear sky sample results in a loss of spatial characteristics, generating the map information
with noise points and insufficiently smooth retrieval outcomes across the entire region.
Addressing this issue and optimizing sample spatial structure characteristics to refine
retrieval ability is a topic that merits further exploration.

The results of this experiment showed that the neural network model’s component
profile has the advantages of high precision and fast response time, which can provide
a reference for the operation and the production of related products and also provide
a basis for improving the follow-up instrument-related algorithm. Therefore, the retrieval
model of FY-3E/HIRAS-II proposed in this experiment has a broad application prospect.
Additionally, in future experiments, analyzing multi-instrument data can improve the time
resolution of the polar orbit meteorological satellite, which is significant for the continuous
observation of gas components.

5. Conclusions

The neural network model in this experiment was built based on the data of FY-
3E/HIRAS-II, a new generation of FY-3E/HIRAS-II polar orbit satellite hyperspectral
detector. The model was trained using satellite observation data and reanalysis data from
21 December 2021 to 9 January 2022, while the test set data for the retrieval model were
from 10 to 18 January 2022. After the clear sky pixel screening in the experimental area,
an improved channel selection method was used for channel optimization, and 96 O3
channels, 76 CO channels, and 150 CH4 channels were selected based on their noise signals,
which are higher than HIRAS-II cold air. Overall, the performance results of the typical
CNN and the representative UNET network model with deep and shallow feature links
are comparable. Retrieval calculations of O3, CO, and CH4 were carried out to obtain the
profile concentration maps of each gas. These results can indicate the changes of each
component gas in the different atmospheric levels. Comparing the relevant scatter plot and
data in the process of model testing, the R2 difference between the two methods is less than



Remote Sens. 2023, 15, 2931 24 of 28

0.01 and the generalization ability of CNN network is slightly higher than that of UNET.
The retrieval results show that both the CNN and UNET models can achieve good retrieval
effects, and the retrieval accuracy of CNN is slightly higher than that of UNET (0.53% for
O3, 3.77% for CO and 0.08% for CH4). Under the condition of only using spectral structure
information, there is no need to deepen the network further that using CNN network can
meet the retrieval needs. This experiment demonstrates high retrieval accuracy, which can
provide a reference to improve numerical forecast accuracy. The atmospheric composition
profiles obtained through the neural model retrieval are better than the forecast data and
international similar satellite product data to some extent.

The absorption of various gas molecules exists in the infrared spectral region. Whether
infrared hyperspectral data can be used to retrieve part of the gas content in the atmo-
sphere with higher precision and faster speed has always been one of the directions of
the application of infrared hyperspectral data. This experiment presents a new approach
to retrieve infrared hyperspectral data that can broaden their application prospect. The
methods and results of this experiment can provide a reference for benefits for application
from FY-3E/HIRAS-II capabilities.
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Appendix A

Table 1. The channels of O3, CO and CH4.

Count Channels (cm−1)

O3
Channels

96

1004.375 (569) 1005.000 (570) 1005.625 (571) 1006.250 (572) 1006.875 (573) 1007.500 (574) 1008.125 (575)
1008.750 (576) 1009.375 (577) 1010.000 (578) 1010.625 (579) 1011.250 (580) 1011.875 (581) 1012.500 (582)
1013.125 (583) 1013.750 (584) 1014.375 (585) 1015.000 (586) 1015.625 (587) 1016.250 (588) 1016.875 (589)
1017.500 (590) 1018.125 (591) 1018.750 (592) 1019.375 (593) 1020.000 (594) 1020.625 (595) 1021.250 (596)
1021.875 (597) 1022.500 (598) 1023.125 (599) 1023.750 (600) 1024.375 (601) 1025.000 (602) 1025.625 (603)
1026.250 (604) 1026.875 (605) 1027.500 (606) 1028.125 (607) 1028.750 (608) 1029.375 (609) 1030.000 (610)
1030.625 (611) 1031.250 (612) 1031.875 (613) 1032.500 (614) 1033.125 (615) 1033.750 (616) 1034.375 (617)
1035.000 (618) 1035.625 (619) 1036.250 (620) 1036.875 (621) 1037.500 (622) 1038.125 (623) 1038.750 (624)
1039.375 (625) 1040.000 (626) 1040.625 (627) 1041.250 (628) 1041.875 (629) 1044.375 (633) 1045.000 (634)
1045.625 (635) 1046.250 (636) 1046.875 (637) 1047.500 (638) 1048.125 (639) 1048.750 (640) 1049.375 (641)
1050.000 (642) 1050.625 (643) 1051.250 (644) 1051.875 (645) 1052.500 (646) 1053.125 (647) 1053.750 (648)
1054.375 (649) 1055.000 (650) 1055.625 (651) 1056.250 (652) 1056.875 (653) 1057.500 (654) 1058.125 (655)
1058.750 (656) 1059.375 (657) 1060.000 (658) 1060.625 (659) 1061.250 (660) 1061.875 (661) 1062.500 (662)
1063.125 (663) 1063.750 (664) 1064.375 (665) 1065.000 (666) 1065.625 (667)

CO
Channels

76

2081.875 (2301) 2082.500 (2302) 2085.625 (2307) 2086.250 (2308) 2086.875 (2309) 2090.000 (2314) 2090.625 (2315)
2094.375 (2321) 2095.000 (2322) 2098.750 (2328) 2099.375 (2329) 2102.500 (2334) 2103.125 (2335) 2103.750 (2336)
2106.875 (2341) 2107.500 (2342) 2108.125 (2343) 2110.625 (2347) 2111.250 (2348) 2111.875 (2349) 2115.000 (2354)
2115.625 (2355) 2116.250 (2356) 2119.375 (2361) 2120.000 (2362) 2120.625 (2363) 2123.125 (2367) 2123.750 (2368)
2124.375 (2369) 2126.875 (2373) 2127.500 (2374) 2128.125 (2375) 2131.250 (2380) 2131.875 (2381) 2135.000 (2386)
2135.625 (2387) 2136.250 (2388) 2139.375 (2393) 2146.875 (2405) 2147.500 (2406) 2150.625 (2411) 2151.250 (2412)
2153.750 (2416) 2154.375 (2417) 2155.000 (2418) 2157.500 (2422) 2158.125 (2423) 2158.750 (2424) 2161.250 (2428)
2161.875 (2429) 2162.500 (2430) 2165.000 (2434) 2165.625 (2435) 2166.250 (2436) 2168.750(2440) 2169.375 (2441)
2170.000 (2442) 2172.500 (2446) 2173.125 (2447) 2175.625 (2451) 2176.250 (2452) 2176.875 (2453) 2179.375 (2457)
2180.000 (2458) 2180.625 (2459) 2182.500 (2462) 2183.125 (2463) 2183.750 (2464) 2186.250 (2468) 2186.875 (2469)
2189.375 (2473) 2190.000 (2474) 2190.625 (2475) 2193.125 (2479) 2203.125 (2495) 2203.750 (2496)
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Table 1. Cont.

Count Channels (cm−1)

CH4
Channels

150

1228.750 (932) 1229.375 (933) 1230.000 (934) 1230.625 (935) 1233.750 (940) 1235.625 (943) 1236.250 (944)
1236.875 (945) 1237.500 (946) 1238.125 (947) 1238.750 (948) 1240.625 (951) 1241.250 (952) 1241.875 (953)
1242.500 (954) 1243.125 (955) 1245.000 (958) 1245.625 (959) 1246.250 (960) 1246.875 (961) 1247.500 (962)
1248.125 (963) 1248.750 (964) 1249.375 (965) 1250.000 (966) 1252.500 (970) 1253.125 (971) 1253.750 (972)
1254.375 (973) 1255.000 (974) 1255.625 (975) 1256.250 (976) 1256.875 (977) 1258.750 (980) 1259.375 (981)
1260.000 (982) 1260.625 (983) 1261.250 (984) 1261.875 (985) 1262.500 (986) 1263.125 (987) 1263.750 (988)
1264.375 (989) 1265.000 (990) 1265.625 (991) 1266.250 (992) 1267.500 (994) 1268.125 (995) 1268.750 (996)
1269.375 (997) 1270.000 (998) 1270.625 (999) 1271.250 (1000) 1271.875 (1001) 1274.375 (1005) 1275.000 (1006)

1275.625 (1007) 1276.250 (1008) 1276.875 (1009) 1277.500 (1010) 1278.125 (1011) 1281.250 (1016) 1281.875 (1017)
1282.500 (1018) 1283.125 (1019) 1283.750 (1020) 1284.375 (1021) 1286.875 (1025) 1287.500 (1026) 1288.125 (1027)
1288.750 (1028) 1289.375 (1029) 1290.000 (1030) 1291.875 (1033) 1292.500 (1034) 1293.125 (1035) 1293.750 (1036)
1294.375 (1037) 1295.000 (1038) 1295.625 (1039) 1296.250 (1040) 1296.875 (1041) 1297.500 (1042) 1298.125 (1043)
1298.750 (1044) 1299.375 (1045) 1300.000 (1046) 1300.625 (1047) 1301.250 (1048) 1301.875 (1049) 1302.500 (1050)
1303.125 (1051) 1303.750 (1052) 1304.375 (1053) 1305.000 (1054) 1305.625 (1055) 1306.250 (1056) 1306.875(1057)
1307.500 (1058) 1311.250 (1064) 1311.875 (1065) 1316.875 (1073) 1321.250 (1080) 1321.875 (1081) 1322.500 (1082)
1323.125 (1083) 1323.750 (1084) 1324.375 (1085) 1326.250 (1088) 1326.875 (1089) 1327.500 (1090) 1328.125 (1091)
1328.750 (1092) 1331.250 (1096) 1331.875 (1097) 1332.500 (1098) 1333.125 (1099) 1333.750 (1100) 1334.375 (1101)
1336.250 (1104) 1336.875 (1105) 1337.500 (1106) 1338.125 (1107) 1341.250 (1112) 1341.875 (1113) 1342.500 (1114)
1343.125 (1115) 1343.750 (1116) 1345.625 (1119) 1346.250 (1120) 1346.875 (1121) 1347.500 (1122) 1348.125 (1123)
1348.750 (1124) 1350.625 (1127) 1351.250 (1128) 1351.875 (1129) 1352.500 (1130) 1353.125 (1131) 1353.750 (1132)
1355.000 (1134) 1355.625 (1135) 1356.250 (1136) 1356.875 (1137) 1357.500 (1138) 1358.125 (1139) 1359.375 (1141)
1360.000 (1142) 1360.625 (1143) 1361.250 (1144)



Remote Sens. 2023, 15, 2931 27 of 28

References
1. Zhang, X.; Wang, F.; Wang, W.; Huang, F.; Chen, B.; Gao, L.; Wang, S.; Yan, H.; Ye, H.; Si, F.; et al. Development and Application of

Satellite Remote Sensing for Atmospheric Compositions in China. Adv. Meteorol. Sci. Technol. 2022, 12, 64–73. [CrossRef]
2. Liang, P.; Niu, S.J. A Comparison of Total Column Ozone Values Derived from AIRS, TOVS and TOMS. J. Remote Sens. 2008,

30, 196–203. [CrossRef]
3. Winterstein, F.; Tanalski, F.; Jckel, P.; Dameris, M.; Ponater, M. Implication of Strongly Increased Atmospheric Methane Concentra-

tions for Chemistry–Climate Connections. Atmos. Chem. Phys. 2019, 19, 7151–7163. [CrossRef]
4. Sierk, B.; Richter, A.; Rozanov, A.; Savigny, C.V.; Schmoltner, A.M.; Buchwitz, M.; Bovensmann, H.; Burrows, J.P. Retrieval and

Monitoring of Atmospheric Trace Gas Concentrations in Nadir and Limb Geometry Using the Space-Borne Sciamachy Instrument.
Env. Monit Assess. 2006, 120, 65–77. [CrossRef] [PubMed]

5. Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.;
Turquety, S.; et al. Monitoring of Atmospheric Composition Using the Thermal Infrared IASI/MetOp Sounder. Atmos. Chem.
Phys. 2009, 9, 6041–6054. [CrossRef]

6. Chengli, Q.; Mingjian, G.; Xiuqing, H.; Chunqiang, W. FY-3 Satellite Infrared High Spectral Sounding Technique and Potential
Application. Adv. Meteorol. Sci. Technol. 2016, 6, 88–93.

7. David, M.; Ibrahim, M.H.; Idrus, S.M.; Ngajikin, N.H.; Azmi, A.I.; En Marcus, T.C. Optical Path Length, Temperature, and
Wavelength Effects Simulation on Ozone Gas Absorption Cross Sections towards Green Communications. J. Electron. Sci. Technol.
2016, 14, 199–204. [CrossRef]

8. Liou, K.N. An Introduction to Atmospheric Radiation; China Meteorological Press: Beijing, China, 2004.
9. Beibei, Z.; Ning, W.; Weiyuan, Y.; Lingling, M. Channel selection for carbon monoxide retrievals based on ultraspectral thermal

infrared data. J. Infrared Millim. Waves 2021, 40, 391–399.
10. Han, Y.; Revercomb, H.; Cromp, M.; Gu, D.; Johnson, D.; Mooney, D.; Scott, D.; Strow, L.; Bingham, G.; Borg, L.; et al. Suomi NPP

CrIS Measurements, Sensor Data Record Algorithm, Calibration and Validation Activities, and Record Data Quality. J. Geophys.
Res. Atmos. 2013, 118, 12–734. [CrossRef]

11. Hilton, F.; Armante, R.; August, T.; Barnet, C.; Zhou, D. Hyperspectral Earth Observation from IASI. Bull. Am. Meteorol. Soc. 2012,
93, 347–370. [CrossRef]

12. Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Goldberg, M.; et al.
AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. Am. Meteorol. Soc. 2006, 87, 911–926.
[CrossRef]

13. Nalli, N.R.; Tan, C.; Warner, J.; Divakarla, M.; Gambacorta, A.; Wilson, M.; Zhu, T.; Wang, T.; Wei, Z.; Pryor, K.; et al. Validation of
Carbon Trace Gas Profile Retrievals from the NOAA-Unique Combined Atmospheric Processing System for the Cross-Track
Infrared Sounder. Remote Sens. 2020, 12, 3245. [CrossRef]

14. De Wachter, E.; Barret, B.; Le Flochmoën, E.; Pavelin, E.; Matricardi, M.; Clerbaux, C.; Hadji-Lazaro, J.; George, M.; Hurtmans, D.;
Coheur, P.F.; et al. Retrieval of MetOp-A/IASI CO Profiles and Validation with MOZAIC Data. Atmos. Meas. Tech. 2012,
5, 2843–2857. [CrossRef]

15. Serio, C.; Blasi, M.G.; Liuzzi, G.; Masiello, G.; Venafra, S. Using the Full IASI Spectrum for the Physical Retrieval of Temperature,
H2O, HDO, O-3, Minor and Trace Gases. In Proceedings of the Radiation Processes in the Atmosphere and Ocean; Davies, R., Egli, L.,
Schmutz, W., Eds.; Amer Inst Physics: Melville, NY, USA, 2017; Volume 1810, p. 060004.

16. Nalli, N.R.; Gambacorta, A.; Liu, Q.; Tan, C.; Iturbide-Sanchez, F.; Barnet, C.D.; Joseph, E.; Morris, V.R.; Oyola, M.; Smith, J.W.
Validation of Atmospheric Profile Retrievals from the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 2:
Ozone. IEEE Trans. Geosci. Remote Sens. 2018, 56, 598–607. [CrossRef]

17. Rodgers, C.D. Inverse Methods for Atmospheric Sounding-Theory and Practice; World Scientific: Singapore, 2000. [CrossRef]
18. Cyril, C.; Alain, C.; Scott, N.A. AIRS Channel Selection for CO2 and Other Trace-gas Retrievals. Q. J. R. Meteorol. Soc. 2010,

129, 2719–2740. [CrossRef]
19. Zong, X. Inversion accuracy and spectral channel evaluation of atmospheric polluted gases of atmospheric infrared radiation

ultra-high detector under limb sounding. Acta Sci. Circumstantiae 2020, 40, 1410–1421. [CrossRef]
20. Li, S.; Hu, H.; Fang, C.; Wang, S.; Xun, S.; He, B.; Wu, W.; Huo, Y. Hyperspectral Infrared Atmospheric Sounder (HIRAS)

Atmospheric Sounding System. Remote Sens. 2022, 14, 3882. [CrossRef]
21. Zhang, C.; Gu, M.; Hu, Y.; Huang, P.; Yang, T.; Huang, S.; Yang, C.; Shao, C. A Study on the Retrieval of Temperature and

Humidity Profiles Based on FY-3D/HIRAS Infrared Hyperspectral Data. Remote Sens. 2021, 13, 2157. [CrossRef]
22. Wang, Y. Research on Temperature/Pressure and Ozone Retrieval Algorithm Based on Atmospheric Infrared Ultraspectral

Spectrometer. Master’s Thesis, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, 2017.
23. Wang, T. Retrieval of Atmospheric CO Vertical Profiles on CrIS IR Hyperspectral Satellite Data. Master’s Thesis, Chinese Academy

of Sciences, Beijing, China, 2015.
24. Noël, S.; Bramstedt, K.; Hilker, M.; Liebing, P.; Plieninger, J.; Reuter, M.; Rozanov, A.; Sioris, C.E.; Bovensmann, H.; Burrows, J.P.

Stratospheric CH4 and CO2 Profiles Derived from SCIAMACHY Solar Occultation Measurements. Atmos. Meas. Tech. 2016,
8, 11467–11511. [CrossRef]

https://doi.org/10.1016/j.atmosres.2020.105056
https://doi.org/10.3724/SP.J.1047.2008.00014
https://doi.org/10.5194/acp-19-7151-2019
https://doi.org/10.1007/s10661-005-9049-9
https://www.ncbi.nlm.nih.gov/pubmed/16715354
https://doi.org/10.5194/acp-9-6041-2009
https://doi.org/10.11989/JEST.1674-862X.603213
https://doi.org/10.1002/2013JD020344
https://doi.org/10.1175/BAMS-D-11-00027.1
https://doi.org/10.1175/BAMS-87-7-911
https://doi.org/10.3390/rs12193245
https://doi.org/10.5194/amt-5-2843-2012
https://doi.org/10.1109/TGRS.2017.2762600
https://doi.org/10.1142/9789812813718
https://doi.org/10.1256/qj.02.180
https://doi.org/10.13671/j.hjkxxb.2019.0436
https://doi.org/10.3390/rs14163882
https://doi.org/10.3390/rs13112157
https://doi.org/10.5194/amt-9-1485-2016


Remote Sens. 2023, 15, 2931 28 of 28

25. Zhang, Y.; Chen, L.; Tao, J.; Su, L.; Yu, C.; Fan, M. Retrieval of Methane Profiles from Spaceborne Hyperspectral Infrared
Observations. J. Remote Sens. 2012, 16, 232–247.

26. Zhou, M.; Shu, J.; Song, C.; Gao, W. Sensitivity Studies for Atmospheric Carbon Dioxide Retrieval from Atmospheric Infrared
Sounder Observations. J. Appl. Remote Sens. 2014, 8, 083697. [CrossRef]

27. Song, C.; Shu, J.; Zhou, M.; Gao, W. Sensitivity Studies of High-Precision Methane Column Concentration Inversion Using
a Line-by-Line Radiative Transfer Model. Front. Earth Sci. 2013, 7, 46. [CrossRef]

28. Deng, J.; Liu, Y.; Yang, D.; Cai, Z. CH4 Retrieval from Hyperspectral Satellite Measurements in Short-Wave Infrared: Sensitivity
Study and Preliminary Test with GOSAT Data. Chin. Sci. Bull. 2014, 59, 1499–1507. [CrossRef]

29. Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F.; Alemohammad, S.H. Soil Moisture Retrieval from AMSR-E and ASCAT Microwave
Observation Synergy. Part 2: Product Evaluation. Remote Sens. Environ. 2017, 195, 202–217. [CrossRef]

30. Zhang, X.; Guan, L.; Wang, Z.; Han, J. Retrieving Atmospheric Temperature Profiles Using Artificial Neural Network Approach.
Meteorol. Mon. 2009, 35, 137–142.

31. Liu, Y.; Guan, L. Study on the Inversion of Clear Sky Atmospheric Humidity Profiles with Artificial Neural Network. Meteorol.
Mon. 2011, 37, 318–324.

32. Huang, S. An Improved Method Combining CNN and 1D-Var for the Retrieval of Atmospheric Humidity Profiles from FY-
4A/GIIRS Hyperspectral Data. Remote Sens. 2021, 13, 4737. [CrossRef]

33. Shuhan, Y.; Li, G. Atmospheric temperature and humidity profile retrievals using a machine learning algorithm based on
satellite-based infrared hyperspectral observations. Infrared Laser Eng. 2022, 51, 461–472.

34. Xue, Q. Research on Retrieval Algorithm of All Sky Atmospheric Temperature and Humidity Profiles from the FY4A GIIRS. Ph.D.
Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2022.

35. Chowdhury, S.; Rubi, M.A.; Bijoy, M. Application of Artificial Neural Network for Predicting Agricultural Methane and
CO2 Emissions in Bangladesh. In Proceedings of the 2021 12th International Conference on Computing Communication and
Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021.

36. Sayeed, A.; Choi, Y.; Eslami, E.; Lops, Y.; Roy, A.; Jung, J. Using a Deep Convolutional Neural Network to Predict 2017 Ozone
Concentrations, 24 Hours in Advance. Neural Netw. 2020, 121, 396–408. [CrossRef] [PubMed]

37. Zhang, X.; Zhang, Y.; Lu, X.; Bai, L.; Zhu, L. Estimation of Lower-Stratosphere-to-Troposphere Ozone Profile Using Long
Short-Term Memory (LSTM). Remote Sens. 2021, 13, 1374. [CrossRef]

38. Jarosawski, J. Improvement of the Umkehr Ozone Profile by the Neural Network Method: Analysis of the Belsk Umkehr Data.
Int. J. Remote Sens. 2013, 34, 5541–5550. [CrossRef]

39. Zhang, P.; Hu, X.; Lu, Q.; Zhu, A.; Lin, M.; Sun, L.; Chen, L.; Xu, N. FY-3E:The First Operational Meteorological Satellite Mission
in an Early Morning Orbit. Adv. Atmos. Sci. 2022, 39, 1–8. [CrossRef]

40. Yang, T.; Zhang, C.; Zuo, F.; Hu, Y.; Gu, M. Uncertainty analysis of inter-calibration collocation based on FY-3E spaceborne
infrared observations. Infrared Laser Eng. 2022, 1–9.

41. Tian-Hang, Y.; Ming-Jian, G.; Chun-Yuan, S.; Chun-Qiang, W.; Cheng-Li, Q.; Xiuqing, L. Nonlinearity correction of FY-3E HIRAS-II
in pre-launch thermal vacuum calibration tests. J. Infrared Millim. Waves 2022, 41, 597–607. [CrossRef]

42. Zhang, C.; Qi, C.; Yang, T.; Gu, M.; Zhang, P.; Lee, L.; Hu, X. Evaluation of FY-3E/HIRAS-II Radiometric Calibration Accuracy
Based on OMB Analysis. Remote Sens. 2022, 14, 3222. [CrossRef]

43. Chen, H.; Guan, L. Assessing FY-3E HIRAS-II Radiance Accuracy Using AHI and MERSI-LL. Remote Sens. 2022, 14, 4309.
[CrossRef]

44. Yang, T. Tropospheric Wind Field Measurement Based on Infrared Hyperspectral Observations. Ph.D. Thesis, Shanghai Institute
of Technical Physics, University of Chinese Academy of Sciences, Shanghai, China, 2020.

45. Ren, J. Study on the Atmospheric Temperature and Humidity Profiles of Satellite Remote Sensing Based on One-Dimensional
Variational Algorithm. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2018.

46. Crevoisier, C.; Clerbaux, C.; Guidard, V.; Phulpin, T.; Armante, R.; Barret, B.; Camy-Peyret, C.; Chaboureau, J.P.; Coheur, P.F.;
Crépeau, L.; et al. Towards IASI-New Generation (IASI-NG): Impact of Improved Spectral Resolution and Radiometric Noise on
the Retrieval of Thermodynamic, Chemistry and Climate Variables. Atmos. Meas. Tech. 2014, 7, 4367–4385. [CrossRef]

47. Luo, L.; Qiu, D.; Cui, L. Study on FY-4A/GIIRS infrared spectrum detection capability based on information content. J. Infrared
Millim. Waves 2019, 38, 765–776.

48. Shenfield, A.; Howarth, M. A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults.
Sensors 2020, 20, 5112. [CrossRef]

49. Ying Huang; Lie Wang. Arrhythmia Classification Method Based on Improved One Dimensional U-Net. Microelectron. Comput.
2022, 39, 8.

50. Yan, J.; Meng, J.; Zhao, J. Bottom Detection from Backscatter Data of Conventional Side Scan Sonars through 1D-UNet. Remote
Sens. 2021, 13, 1024. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1117/1.JRS.8.083697
https://doi.org/10.1007/s11707-013-0391-x
https://doi.org/10.1007/s11434-014-0245-2
https://doi.org/10.1016/j.rse.2017.04.020
https://doi.org/10.3390/rs13234737
https://doi.org/10.1016/j.neunet.2019.09.033
https://www.ncbi.nlm.nih.gov/pubmed/31604202
https://doi.org/10.3390/rs13071374
https://doi.org/10.1080/01431161.2013.793463
https://doi.org/10.1007/s00376-021-1304-7
https://doi.org/10.11972/j.issn.1001-9014.2022.03.011
https://doi.org/10.3390/rs14133222
https://doi.org/10.3390/rs14174309
https://doi.org/10.5194/amt-7-4367-2014
https://doi.org/10.3390/s20185112
https://doi.org/10.3390/rs13051024

	Introduction 
	Materials and Methods 
	Datasets 
	FY-3E/HIRAS-II 
	ERA5 and EAC4 Reanalysis Data 
	WACCM Forecast Data 
	GFS Forecast Data 
	AIRS Product Data 
	IASI Product Data 

	Data Preprocessing 
	Channel Selection 
	Neural Network Model and Experimental Process 

	Result 
	Analytical Method 
	Evaluation of Model Training and Test 
	Analysis of O3 Retrieval Results 
	Comparison of O3 between Retrieval Results and Forecast Data 
	Comparison of O3 between Retrieval Results and Similar Satellite Products 

	Analysis of CO Retrieval Results 
	Comparison of CO between Retrieval Results and Forecast Data 
	Comparison of CO between Retrieval Results and Similar Satellite Products 

	Analysis of CH4 Retrieval Results 
	Comparison of CH4 between Retrieval Results and Forecast Data 
	Comparison of CH4 between Retrieval Results and Similar Satellite Products 


	Discussion 
	Conclusions 
	Appendix A
	References

